
A Tool For Program Grading:
The Jacksonville University Scale

R. Wayne Hamm
Kenneth D. Henderson, Jr.

Marilyn L. Repsher
Kathleen M. Timmer

Jacksonville University, Florida

Burgeoning enrollments in computing
present problems--nicer problems than
those encountered by our colleagues in
disciplines now in less demand--but prob-
lems nonetheless. Larse enrollments cause
particular difficulty in those courses
which requite substantial programming as-
signments slnce programming is not a
s~ectator sport. Good programming tech-
nlques are seldom learned by reading
programs or by watching others program.
Rather, such skills are learned by doing.

Professors confronted with large
numbers of programs to grade tend to de-
fend themselves in several ways. They may
employ a cadre of graders or teaching
asslstants. They may decrease the number
of programming assignments. Or they may
be forced to grade so hastily that they
seize one or two simplistic criteria often
unrelated to their course objectives.
Unfortunatel$, the results are evaluation
inconsistenc~es, a loss of student confi-
dence in grading fairness, and a dimin-
ished level of student competence in
programming.

Although the computing curricula
have moved away from the teaching of
programming languages as important in
themselves, skill in programming remains
both a marketable commodity and a door-
way to a thorough understanding of
concepts of computer science and
of information processing.
Good programming courses demand expert
teachers and excellent pedagogy. Too
often students encounter classes in
which plagiarism is rampant, style is
ignored, and grading between classes or
among graders is inconsistent. This
latter problem is exacerbated in many

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission,

© 1983 ACM 0-89791-091-5/83/002/0248 $00.75

departments by heavy use of adjunct
faculty, many of whom do not or cannot
confer frequently with regular faculty.
Indeed, even the teacher who personally
evaluates all students' programs finds
difficulty in grading fairly and
consistently.

These considerations prompted the
computer information systems faculty at
Jacksonville University to meet and dis-
cuss ways of improving grading consis-
tency within and between courses and of
ensuring attention to efficiency and
style as well as correctness of output
while increasing the speed and ease of
evaluation. The product of these
deliberations is an instrument we will
refer to as the Jacksonville University
(J.U.) Scale.

Our solution to the problem evolved
as follows: one of the writers of this
paper came into the computing field as a
result of his interest in artificial
languages. A professor of linguistics in
the English department, he is also a
speciallst in the teaching of composition.
As he familiarized himself with the plan-
ning tools of computer programnling, he
began to see an exciting potential for
pedagogical cross-fertilization between
his new and old fields. Concepts such as
top-down planning, pseudo-code~ and
modularization gave him powerful new
analogies to present to his composition
students. But of greatest interest to us
was an idea that passed in the other
direction. One day, after hearing
several of us complain repeatedly of the
burden of program-evaluation, wishing for
a better way, he said, "But there is a
better way! Try the Diederich Scale."

He explained that Paul Diederich, a
specialist in information processing
since World War II and a leadin$ expert
of the Educational Testing Servlce
(E.T.S.), had developed the most widely
respected set of techniques for evaluation
of student writing available. The tech-
nique is explained in the classic
Measuring Growth in En$1ish (I). What
English pro~essionals respect about

248

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952978.801059&domain=pdf&date_stamp=1983-02-01

Diederich is the breadth and quality of
the research that led to the development
of the scale. The rigor of this research
has not been paralleled in the development
of any competlng grading scheme. His
procedure was to glve three hundred pieces
of student writing to sixty professional
readers--thirty in academic areas, includ-
ing English, and thirty in non-academic
professions, such as business and law.
The readers were asked to sort all the
papers into nine piles of graduated merit
and--most importantly--to note on each
paper some indication of their reasons for
a particular classification.

The results of this procedure were
many and suggestive, but for our purposes
the most striking feature was Diederich's
factor analysis of the comments. Using
a large number of papers and a wide range
of readers, his group of specialists
determined statistically what English
teachers had previously only guessed
at--sometimes shrewdly and accurately,
often disastrously off the mark--the
nature add weight of the factors that
cultured readers use formally or infor-
mally when evaluating writing. He found
that readers look first at the 9uality of
the ideas and then at the organlzatlon.
Both of these factors have twice the
weight of any other factor, the others
being flavor, wording, usage, spelling,
punctuation, and manuscript attractlve-
ness and,, legibility. Diederlch" observes
that the flve factors we found in this
particular study are a matter of know-
ledge, not oplnion. We know that these
five qualities in student writing
influenced the judgments of this partic-
ular set of readers, and I use the word
know deliberately. These results are
a~more.~onvincing than any theoretical,
armchair analysis of how students ought
to write" (1.9).

Diederich arranged these factors in a
useful weighted scale, as follows:

Ideas 2 4 6 8 i0
Organization 2 4 6 8 i0
Flavor I 2 3 4 5
Wording i 2 3 4 5

Usage I 2 3 4 5
Spelling I 2 3 4 5
Punctuation i 2 3 4 5
MS Quality i 2 3 4 5

He instructed his readers at E.T.S--and
has encouraged English teachers everywhere
--to use these factors and this scale in
their evaluation of writing.

The advantage of Diederich's method
is threefold. First, it is the result of
careful research and of the widest con-
trolled field testing ever given a scoring
method. Teachers can have confidence in
the method. Second, it demonstrably
improves a teacher's conslstency, cutting
down on the opportunity for idiosyncratic
or eccentric grading. Teachers can feel
more comfortable about the grades they
assign. Third, it drastically reduces the
burden of evaluation. The teacher can
simply read a paper once, score it by
circling appropriate numbers on the scale,
and move on (1.3). The teacher need not
identify and mark errors on the paper. In
fact, it is best if the scores are not
totaled as the teacher reads through a set
of papers. That way he or she will not
know how many high or low scores are
emerging. This knowledge can be a subtle
but invalid pressure to tighten or loosen
one's evaluation. Totalling can be done
mechanically or by an aide at a later time.

The similarities between writing a
program and writing an English paper would
valldate the development and use of a sim-
ilar scale for grading student computer
programs. Like an essay, a program is the
solution to a communications problem--a
double one, in this case: communication
with the computer, and communication with
another person. As with an English paper,
one starts with an outline or flowchart--at
any rate, some logical plan--and then
implements the logical plan, well or less
well, in code. Like writing, programs have
qualities of style and individuality. Two
programs which generate the same output can
yet have differlng qualities. Like an
English student, the programmer has more
than one way to code the logic. And like
English teachers, teachers of computing

249

need the guidance of consistent factors in
order to avoid personal prejudice, the
quirks produced by the vagarles of one's
own background, and to ensure cross-
teacher and cross-course consistency.
Like English students, computing students
have the right to expect that the grade
given by one professor will bear some re-
semblance to the grade given by another on
the same project. Above all, computing
teachers are like English teachers in
their anguish over paper-load management.
In fact, the situation may be worse for
the computing teacher: programs are more
boring than essays; and typically the com-
puting class is larger than the English
class.

Despite the absence of discipline-
wide research to determine criteria, we
reached departmental agreement about the
factors we actually were using in prac-
tice. We grouped these into a scale that
would be used like Diederich's. At J.U.
we deal with courses in which programs
are written in BASIC, COBOL, FORTRAN,
PASCAL, or APL. Programs may represent
anything from a student's first experi-
ence with computing through a semester
project for a senior semlnar. Pending
wider research to validate criteria, we
settled on the following list of seven
factors as generally applicable:

Execution of the program
Correctness of the output
Design of the output
Design of the logic
Design of test data
Internal documentation
External documentation

To facilitate the use of this scale,
we wrote a program to generate forms to
use in grading projects. The numeric por-
tion of the form evolved to the following:

COMPUTING PROJECT I (see appendix)
P - POOR; A - ADEQUATE; G - GOOD

P A G
0 7 13 20
0 7 13 20
0 4 8 12 16 20
0 4 8 12 16 20

The version of the program we are
currently using allows the instructor to
recelve complete or minimal instructions,
specify the weight for each of the seven
factors and up to thirteen additional ones
specify the total value of the project,
and an identification for the project.
After the user enters the necessary infor-
mation, the computer generates a form.

When we began to use the new method,
we were pleased to discover that our
program-grading time was markedly de-
creased. We felt more secure about
grading since each paper had been evalu-
ated against the same criteria. We were
apprehensive about student acceptance of
the new method. To our surprise, we
found that students were pleased to have
criteria that they could aim to meet;
they liked the attempt to improve fairness
by ensuring equal grading across the
department; they understood that execution
of a program is only one factor.

The usefulness of any method of
evaluation, however, depends less upon its

e ' us rs inltlal response to it than upon
its validity, reliability, and effective-
ness as a teaching aid. The J.U. Scale
lacks (for now) the kind of validation
that went into Diederich's famous one.
This is a deficiency that we hope par-
tially to overcome with future research
which may well result in modification of
the scale. The scale itself probably will
not bring immediate reliability tc our
grading. Three of us, using the scale,
graded all papers turned in for a given
project. We had hoped to demonstrate that
use of the scale would show that the re-
liability of grading would be marked.
Forty-four percent of the scores, however,
differed by more than ten percent among.
the three graders. This is not surprlslng
since Diederich points out that a single
person cannot improve reliability of scor-
ing. Reliability can be enhanced only by
group work. Indeed, an early indication
that this may apply to the grading of
computing projects was found in the fact
that, after observing the pattern of
deviations, one grader was able, in grad-
ing subsequent projects, to bring his

250

scores closer to the group norm. Any fur-
ther attempt to improve reliability,
however, will necessitate the use of fixed
criteria such as the J.U. Scale. Thus our
scale is a valuable first step toward
improving reliability.

We believe that the scale is an
effective teaching aid in three ways:

The discipline can benefit from the
use of this method of evaluation by sain-
ing a hierarchy of values against whlch
all programming projects can be evaluated.
Such a set of principles needs to apply to
all programming languages and yet should
allow for the differences between lan-
guages. Our scale offers those advantages
by judging all projects by a specific set
of criteria while still allowing for
additional criteria as required by each
language.

Individual instructors benefit from
our method by relyin$ upon predetermined
criteria for all projects rather than by
determining a different, often highly
idiosyncratic, set for each project.
The burden is removed from the individual
instructors, who often have to defend
personal evaluation methods. Now in-
structors consider the same criteria
equally important. We acknowledge that
this is, at this time, the weak point in
our argument. Not until research like
Diederich's is accomplished can we say
with certainty, "These are the criteria
that the academic and comme~'6-~al com-
puting world looks for in a prosram."
But even departmental--or, we mlght
hope, regional--acceptance of our cri-
teria would dramatically increase
consistency in evaluation. At the same
time, some room has been left in our
scale for individual differences.
Pending more study, our open weishting
system allows for personal decislons.
The key is that a pre-specified set of
criteria must be considered and weighed by
an instructor.

Every advance in fairness is an advan-
tage for the s~udent, the third and most
important user group. Students greatly

benefit from knowing in advance the cri-
teria by which their work will be judged.
Students, we have found, will ask
educationally valuable questions such as,
"Well, what do I have to do to get a
'Good' on my external documentation next
time?" The ensuing discussion is likely
to be useful to a group wider than the
instructor and that single student.
Students also profit because the whole
project is weighed against individual
parts. The grade comes not from the
biases of the instructor but from the
student's achievement of criteria set by
the department and, we hope, the wider
discipline. For example, no project that
executed, had correct output, good logic,
and useful documentation could fail just
because some "output-oriented" instructor
didn't like the design of the output.
This instructor would be forced to see
output as one criterion among others and
thus would have to assign proper weight to
the other criteria

In summary, we think that use of the
J.U. Scale is advantageous to all three
interests involved. The key advantages
are consistency across the curriculum,
consistency between instructors, and
consistency across individual projects.
As we have stressed, further research is
needed to establish and weigh criteria
more scientifically. But until this work
is done and its results are available,
we believe that use of the J.U. Scale will
make the discipline's evaluation more
consistent, will make the work of the
instructor easier and faster, and will im-
prove the students' understanding of the
evaluation of their projects.

References

I. Paul B. Diederich,
Growth in English (Urbana, IIT~..'NL~I~, 1974).

251

Appendix

Sample Run of Scoring Program

:RUN SCORE

DO YOU WANT COMPLETE INSTRUCTIONS?YES

THE PROGRAM PROVIDES FOR THE EVALUATING OF UP TO 20 ASPECTS OF A PROGRAM.
7 ARE SPECIFIED AND 13 MAY BE SPECIFIED BY THE INSTRUCTOR.

FOR EACH ASPECT, THERE IS A CODE AND A WEIGHT.
IF THE CODE IS i, THE MAXIMUM NUMBER OF POINTS

FOR THAT ASPECT IS ASSOCIATED WITH ADEQUATE.
IF THE CODE IS 2, THE MAXIMUM NUMBER OF POINTS

IS ASSOCIATED WITH GOOD.
IF THE CODE IS 0 OR NOTHING IS ENTERED, THE ASPECT IS NOT TO BE SCORED.

YES OR NO QUESTIONS MAY BE ANSWERED "Y" FOR YES.
RESPONSES NOT STARTING WITH "Y" ARE INTERPRETED AS "NO".

ENTER THE PROJECT IDENTIFICATION
APPLICATION DEV. PROJECT 4

FOR
A
EXECUTION OF THE PROGRAM

CORRECTNESS OF THE OUTPUT 1 20

DESIGN OF THE OUTPUT

DESIGN OF THE LOGIC 2 20

DESIGN OF TEST DATA

INTERNAL DOCUMENTATION 1 20

EXTERNAL DOCUmeNTATION 2 I0

EACH ASPECT ENTER THE CODE AND WEIGHT, SEPARATED BY A SPACE.
RETURN ELIMINATES GRADING ON THE ASPECT

1 20

HOW MANY ASPECTS DO YOU WISH TO SPECIFY?
YOU ARE ALLOWED A MAXIMUM OF 13 1

ENTER THE ASPECT TO BE GRADED
USE OF A TABLE

ENTER THE CODE AND WEIGHT FOR THIS ASPECT

THE TOTAL OF THE POINTS ENTERED IS i00
THE POINTS CAN BE SCALED IF DESIRED.
WHAT WOULD YOU LIKE THE TOTAL TO BE? 50

1 i0

252

