
COMPUTERrl -- A Modern Simple Computer to Introduce Computer
Organization and Assembler Language Programming

Donald S. Miller
Computer Science Department

Arizona State University
Tempe, Arizona

ABSTRACT

COMPUTER-I is an interactive editor/assembler
simulator-debugger and program evaluator to be used
as an instructional tool for an introductory course
in computer organization and assembler language
progran~ning. COMPUTER.I's organization, assembler
language and interactive fac i l i t ies are designed to
introduce basic concepts of computer architecture
and assembly language programming while minimizing
the amount of computer system dependent details
present during this learning period. COMPUTER-I
is a decimal machine with a small modern single
address instruction repertoire. A run-time view
into COMPUTER-I's memory and registers is provided
to help in program understanding and debugging~
COMPUTER-I provides a flexible instructor-oriented
method for specifying and evaluating programming
assignments and a way for students to determine
whether and how well their programs have worked.
COMPUTER-I runs under UNIX and presumes the
avai labi l i ty of a CRT with full-screen cursor
addressabili~y COMPUTER-I is a modern descendent
of BASIC1 [l j in that i t simulates a more
contemporary architecture and possesses interactive
features which are not tied to the capabilities of
hard copy terminals or card readers.

I. Introduction and background

I t is well known that a major problem in
teachingan introductory course in computer or-
ganization and assembler language programming such
as ACM Curriculum '78 CS 3 "Introduction to
Computer Systems," [2] is the amount of detailed
information about the hardware and software of the
computer system being used which must be concurrent-
ly explained. This includes computer system
command string interpreter or JCL, complex computer
architecture and assembler language syntax, text
editor and terminal usage, binary and hexadecimal
or octal number systems, and rules for performing

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0 - 8 9 7 9 1 - 0 9 1 - 5 / 8 3 / 0 0 2 / 0 2 7 1 . $ 0 0 . 7 5

the assembly/link/load/execute steps, and input
and output on the given system. The obfuscation
provided by these details makes teaching and
learning the basic concepts farmore d i f f icu l t
for two reasons:

I. The amount of material which has to be
absorbed i n i t i a l l y is huge.

2. I t is d i f f i cu l t to separate the basic
concepts from computer system dependent
details.

There have been many attempts over the years
to narrow the "environment", simplify the machine
and/or i ts assembler language, simplify I/O and
reduce or simplify the steps between source code
composition and program execution that the student
must perform. These include MIX [3], ASSIST [4]
and BASICI[I] used by the author at Washington
State University and many others. COMPUTER~I was
developed as a direct result of experience using
BASICI.

BASICI is an interactive assembler/loader/
interpreter which includes the following
characteristics [I] :

I. a simple hardware structure--a uniform, word
organized memory, a minimum of programmable
registers and basic instruction and data fetch
sequencing

2. a small instruction repertoire containing the
fundamental operations and addressing modes--
all instructions are of the same length and
format

3. decimal numbers used for all addresses, data,
op-codes and arithmetic

4. a straightforward and simple method for per-
forming input/output

5. an assembler possessing a minimum of syntactic
rules, only essential pseudo-ops and which
accepts free-format source input and provides
diagnostics in English

6. a loader which requires no user control
information

7, a run-time executive which

271

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952978.801063&domain=pdf&date_stamp=1983-02-01

a. can execute the loaded program and i ts
data with no further user control infor-
mation

b. provides substantial o f f l ine debugging
aids--a dump, trace, and i n te l l i g i b le
diagnostics

c. has runtime interactive data and command
input/output capabil i ty including the
ab i l i t y to set breakpoints, examine and
set memory and to step or run through
program segments with or without tracing.

A co-program, another assembler/loader/
interpreter named TESTER provides a method to
determine whether programs real ly work and in some
sense how "good" they are. BASICI was designed to
incrementally introduce students to the
complexities of assembler language programming. A
"basic" instruction set consisting of add, subtract,
store, branch i f less or equal, input, output, halt
and no operation, and only one addressing mode for
each instruction was presented f i r s t . Later this
was expanded to "part ial" or " f u l l " instruction
sets which included loading, immediate data, in-
direct addresses, conditional and unconditional
branching, d ig i t manipulations, transfer of control,
loop control and stack manipulation. Experience
with BASICI indicated by student and instructor
reactions over a long period of time was very
favorable. During the conversion of the BASICI
source code from FORTRAN to C and the simultaneous
change to a more terminal-oriented and interactive
version i t became very clear that BASICI had two
fundamental shortcomings [l] .

I . I t represents a machine and a method of
studying machines which comes out of the 60's.
Two examples -- BASICl has no index register
and the assembler syntax does not include a
label f ie ld .

2. I t ' s runtime interactive features are t ied to
the technology of hard copy terminals and
punched cards. Very l i t t l e use was made of
the fu l l screen cursor addressability feature
present in many terminals these days nor of
the features available from a modern
hierarchical f i l e system and command string
interpreter such as those found in UNIX. As
examples -- a multiple logical area screen
display part of which displays memory and
registers, another Dart of which displav~
computer messages with another part reserved
for echoing user input, any or al l of which
could be updated independently could provide
a lo t more f l e x i b i l i t y than BASICI's l ine-at -
a-time scrolled input. As a second example,
the UNIX command string interpreter (the
shell) and i ts f i l e system make editing and
running a user program on his own test data
and on the instructor 's test data as well as
directing hard copy to the printer al l
possible from within an interactive computer
simulation.

Observations such as these led to the design of
COMPUTER-I [5].

I I . COMPUTER-I Organization and Programming

The organization of COMPUTER-I is shown in
Figure I . I t has a 999 word memory and three

h E,,. PIO ~ y
L.o r.o Lr.

OOl I °°' I
oo 3

t i t , q ' r t ¢ I

I
I
I

. zcu~.t" I

OP o f ' - Co,te. qg'~

~..-L

Fi~Lt L C O M P L } T ~ . R . - 1 Co,.,,'P~'rts,. O r (c ^ . J , a ~ . r , , ~

programmable regTsters', an accumulator, an index
register and a stack pointer, Memory words, the
accumulator and index register hold six decimal
digi ts and Sign. The stack pointer and program
counter hold three-digi t memory addresses. The
program counter is incremented once per instruction
cycle and i ts contents may be altered with program
control type instructions. The stack pointer
points to the top of the current stack. Instructions
consist of a two d ig i t op-code, an address mode
d ig i t and a three d ig i t operand. The total
instruction repertoire consists of 23 instructions
which can have from one to six addressing modes.
I n i t i a l l y only the "basic t~ instruction set of add,
subtract, store, branch less equal, input, output,
ex i t and nop using direct or implied addressing

'modes is presented. Students code mnemonics for
op-codes, labels or absolute numbers for addresses
and decimal signed magnitude representation for
data. The COMPUTER-I assembler has only three
pseudo-ops, dc, save and end. Each instruction in
the basic set, i t s op-code, operand, corresponding
machine instruct ion, a Pascal l ike notation
description and an instruction description are
given in Figure 2a, as they would be presented to
students. Input is to the accumulator from an

external data set and output is to an external data
Set from the accumulator. COMPUTER-I assembler
pseudo-ops are given in Figure 2b. COMPUTER-I
source code is nearly free format with spaces as a
delimiter. As shown in Figure 3, each source code

272

Instruction Assembler Machine
Nam~ M~m~lic Instn~tion ~era~on Description

add add loc 011IEC acc := acc + loc add the contents of loc te acc; leave ice
unchanged

s~btract sub loc 0211OC aco := aco - loc subtract the contents of icc from acc;
leave loc unchanged

store store Icc 031LOC icc := acc store contents of acc at loc;' leave acc
unchanged

branch if _< 0 ble place 0811(~ if (acc < = 0) branch to place if contents of acc is <_ 0
go to place else take next ii%struction in sequence

input in 040000 aco =: input number read next input value into acc

cetput out 050000 output (acc) write contents of ace to output; acc is
uncha~ed

exit exit 060000 stop stop ~ R - I execut/on and return to
command mede

no operat/on hop 070000 none do nothing

Name °

define constant

save space

end de l imi ter

(a)

Mnemonic Description

dc value put value into m~pry at current locat/on

save ~ set the next nLm~er locations tm zero

end <Icc> signals end of source program; execution starts
at 1 or ic

(b)

FigUre 2. O3MPUTER-I "basic" Instruction Set (a) General Instructions, (b) Pseudo-operations

l ine contains one or more of the following: a
label, a machine instruction or pseudo-op, an
operand and a comment. Instructions consist of
the fu l l instruction name or a mnemonic for i t ,
The operand may be a label defined in the program
or a decimal number representing either an address
or data. Simple address addition is permitted. In
addition, as described below, the operand f ie ld may
contain a symbol indicating addressing mode.

label: a ~ string starting with a lett~ a~ e~ding with ":"

irm~cot1~: a ~rac~r s=i.g ~ an i n ~ r ~

~-~: ~m~Ifles m~ry lo~ti~, r~/Ls~r or li~ral data

Figure 3. OCRPb'I~-I ~ F~at

Figure 5. contains thesource text of the
i n i t i a l design of a simple program to input a
number, mult iply i t by ten, output i t and loop back
for another number. Suitable programming assign-

ments using only the basic 8 instruction subset
described so far would be ser ia l ly reusable
programs which perform a l e f t sh i f t or a r ight
sh i f t of up to 5 places determined by an input
parameter. The complete set of addressing modes

and the fu l l instruction set given in direct or
implied modes are presented in Appendices I and I I
respectively. Typical programming assignments are
to'implement a fixed point multiply or divide,
~erform a bubble sort or play the game of REVERSE,

I I I . COMPUTER-I Control and Runtime Interaction

COMPUTER-I has a set of commands to assist in
program composition, assembling running,
debugging, evaluation and understanding. These are
l isted in Appendix I l l . COMPUTER-I commands fa l l
into three general categories: control of
COMPUTER-I execution, debugging aids and general
u t i l i t y . Program control commands cause assembly
and in i t i a te execution in various modes. A
program can be run to termination or a breakpoint
is reached, i t can be manually single stepped or
automatically stepped at a user defined rate.
Input data can be reused. Debugging commands
provide breakpoint control, memory window displays
and core dumps, memory setting,
f lex ib le program patching, program testing using
the instructor's test cases and l i s t i ng of program
plus changes. General u t i l i t i e s provide an
ab i l i t y to enter the editor to compose or modify
text, l i s t at the terminal or the l ine pr inter,
define a source f i l e , specify terminal type, get
help on how to use COMPUTER-I, execute any UNIX
command and exi t COMPUTER-I. The example described
below and in Figures 4-1O presen~ some of
COMPUTER-I's available interactive features.

%cl

si~dent - the right shift basic set pr~ra~a is due by
s ~ ~uarrrc~!

--> ed i t bylO

273

After logon, the user responds to the UNIX
shell "%" prompt with

cl

to execute COMPUTER-I. COMPUTER-I outputs any
messages from the instructor that may be present
followed by a "-->" prompt at the lower l e f t
hand corner of the screen as shown in Figure 4.
The programmer inputs

edit bylO

to enter the UNIX text editor vi [6] to compose a
program which multipl ies an input number by ten
and loops back to input another number. The source
code is to be stored on a f i l e named bylO. The
i n i t i a l text of the program is given in Figure 5.

~vre:

t:
m:

i~ ~tL~tiply the input by 10

i n ; ace :~ i npu t

s t ~ r e t ;; ~ , , = ' 2 " ~ c + a~c
a~d t ;acc := 4*acc
S~Ee m ; m := 4*aCe
add m ; acc := 8*acc
add t ; a~ :ffi 10*acc
out ; prlnt (10*ace)
ble m~e ; input anDtt~r number
exit ; that's all
dcO
dvO
e~d

Figure 5. Initlal ~ource text of m.t%t.i,ply bylO p z v g r ~

When the programmer quits the editor, he is return-
ed to COMPUTER-I as indicated by the "-->" in
lower l e f t corner of screen. The user types

go

COMPUTER-I responds with

Input f i l e to be assembled

The user enters

bylO

which causes COMPUTER-I to assemble bylO, load i t
into COMPUTER-I (i . e . , into COMPUTER-Ysinter-
preter), i n i t i a te execution and generate the
display shown in Figure 6 when i t reaches a point
where user interaction is required - in this case
to provide the input requested by bylO's f i r s t
instruction. The f ive logical areas in the display
are indicated by the numbers in the l e f t hand
column (which are not present in the actual

Last instruction:
Current instruction: in
Next instruction: a6da

2:

3: PC ~ Ir~ex Stack Pointer

1 0 0 999

4: * h~ut:

5: ->

Fig=ce 6. cu~J~m~ 1 d~ay duri~ exe~tt~
of first instruction of by10

display). Area l contains the previous, current
and next instruction. Area 2 is for windows into
memory (see below). Area 3 displays register
contents. Area 4 displays messaaes from COMPUTER-I.
The most recent message is indicated by an "*"
Area 5 contains the command prompt and error
messages. COMPUTER-I is prompting for input. The
user responds with

lO

and COMPUTER-I executes the remainder of the
program after which the display is updated as
shown in Figure 7. After checking the operation
of bylO on other numbers using the commands "go l "

List irish: ble 1
Current irish: exit
Nextlnstructlon:

PC Accum
i0 I00

Output (~ c 8): 100
* Exe~Ition 8t :~0~1 at: I0

->

stack ~
0 999

or "go more" the programmer tri'es by10 on the
instructor"s test data by entering

tester mult

COMPUTER-I responds taci 'turnly

Program did not work

The programmer real izing that his program fai led
because i t w i l l not loop back for products
greater than zero hi'ts the "DEL" or "BREAK" key
causing an interrupt message to appear and
COMPUTER-I to enter the command mode. Then he
patches his program with

replace back

COMPUTER-I responds

Input new instruction

and the programmer enters

br more

and then

dump more back

to ver i fy that the change was made. The resultant
COMPUTER-I display is shown in Figure 8. To
further check operation the user enters

display t
go more

and in response to the input request at location l

lO

274

--> dump more ba~
1 in
2 adda
3 s~ore ll
4 a~ll
5 sbc~e 12
6 addl2
7 addll
8 c~t
9 brl

-->

Figure 8. OC~K~J~R-I dump after replacing ble nmre with hr more

The resulting display, given in Figure 9, indicates
that the program did in fact loop back for more
data, an output of lO0 occurred and the appro-
priate intermediate values were stored in t and m
as indicated in the eight memory location window

xast ins~uct/on: hr 1
current instzuction: in
Next ~ : a~d a

Ii: 40 80 0 0 0 0 0

PC Ac~Jm
10 100

I.n~t= [lO]
Outpat (loc 8) : 100

* Input:

Index Stack Pointer
0 999

Figure 9. CU~JEm~I display after proaessing an input
of i0 with patched version of bylo

display. The programmer tr ies the instructor's
test data again with

tester mult

and COMPUTER-I responds with

Program worked for test data: mult
In 44 steps, using 12 core. Figure of Merit: 528

te l l i ng the programmer that his program worked
and had a figure of merit of 528 the product of
memory used and instructions executed. The pro-
grammer must now enter his change on his source
text f i l e bylO using the editor. After returning
to COMPUTER-I he enters

submit

to get the l i s t i ng shown in Figure I0 containing
the source text preceded by three columns contain-
ing source code l ine number, memory location and
the COMPUTER-I machine language instruction.
COMPUTER-I has additional useful debugging aids
such as breakpoint control and the ab i l i t y to step
through a program at varying rates which are not
demonstrated in the above example.

cmapu~r-i]/sting of: bylo page i

1
2
3
4 1 more:
5 1 040000 in
6 2 01'2000 a& l a
7 3 031011 s m t
8 4 O l l O l l add t
9 5 031012 s t ~ r e m

10 6 011012 add m
11 7 011011 ~ t
12 8 050000 out
13 9 141001 back: b r more
14 i0 060000 exit
15 11 0 t: dc 0
16 12 0 m: dc 0

end

P~u~,, w~rked for test data: mult
In 44 steps, uaing 12 core. Figure of Merit:

;acc :=~t

; m :~ 4*acc

; prlnt (1o*acc)
; ioup back for more
; that's all

Figure 10. C C ~ I l ine ~rinter] /st ing of f inal versicm of
bylo with i n s t r u c ~ test data results

IV. Instructor Features

COMPUTER-I has been designed to provide
maximum assistance to the instructor. He may
specify a f i l e for his messages to be displayed
whenever COMPUTER-I is executed. Test inputs are
prepared by writ ing to a f i l e in the instructor's
directory a header l ine consisting of the allowed
instruction set, total number of inputs and total
number of outputs, followed by the inputs and
outputs as they occur during testing. For
example writ ing

fu l l 5 5
l
lO
- l
-lO
0
0
99999
999999
-99999
-999999

to the f i l e mult would have provided a reasonably
good set of test data for the example in the
previous section. I t is also possible to set
things up so that the students execute COMPUTER-I
d i rect ly instead of a UNIX shell when they log on
by modifying the password f i l e for their accounts
thus creating an almost total COMPUTER-I environ-
ment. As noted COMPUTER-I evaluates the students
programs.

V. Summary

COMPUTER-I was designed as a modern replace-
ment for BASICI, The objective was to keep as
many of the instructional features which have
worked so well over the years while

l .

2.

including architectural and software features
commonly found in contemporary computer
systems

more f u l l y u t i l i z i ng the fu l l screen
addressability feature commonly found~n
today's CRTs and the software features found
in modern process-oriented operating systems
such as UNIX.

275

To achieve the f i r s t objective an ~ndex register,
a more general set of addressing modes, modern
subroutine jump and return and in,memory incre-
ment and decrement instructions.were added to the
hardware and labels and very simple address
arithmetic were added to the assembler syntax, A
new set of commands was written to achieve the
second objective. These feature a f ive f ie ld
display presenting windows into the current
instruction area, memory and al l registers and
message and prompt areas. Each f ie ld is indepen-
dently updatable. These windows can be examined
as a program is stepped at user determined rates
through i ts instructions. Such i n i t i a l l y
d i f f i c u l t concepts as the dist inctions between
addresses and the values stored at addresses,
loading and storing, indexing, indirection and
immediate data are a l l displayed in an obvious
manner. Dumps are seldom needed i f one can view
several sections of memory while a program is
being executed. The flow of more complicated
algorithms, e.g., a bubble sort can be viewed at
a convenient rate to search for logical errors.
The UNIX f i l e and shell features were u t i l i zed
to implement runtime patching, testing and pr in t -
ing and the instructor oriented test program and
message generation. These features were also
u t i l i zed to implement the f i l e and entry/exi t
linkages between COMPUTER-I and the text editor.

Many needed less important enhancements to
BASlCl were incorporated into COMPUTER-I. A few
of these follow. The message and prompt,error
message display areas enable a more comprehensive
and timely set of error diagnostics and user in-
formation to be provided. Breakpoint setting is
mere fine grained depending on the type of access
to a given location. User data memory and execu-
tion time are both reduced as a result of the
decrease in memory size to 999 words. And lastly~
adding a tag byte to every memory location has
f i na l l y put an end to attempts to get low
evaluation numbers by using memory areas not
defined in the source program,

COMPUTER-I s t i l l requires that the student
learn how to use a text editor concurrently with
the basic concepts of assembler language pro-
gramming. Fortunately, vi can be invoked in a
rather easy to learn and use line-oriented editor
"ed", for which an excellent tutor ia l exists [7].
I t is not necessary to use the more complicated
"visual" features of vi to compose source programs
of the size that are required in COMPUTER-I pro-
gramming assignments. A more serious cr i t ic ism
of COMPUTER-I is that the efforts to modernize
have added some complexity to COMPUTER-I's
architecture and i ts commands. This could have
considerable impact on the primary objective of
COMPUTER-I contained in the t i t l e of this paper.
The author has no classroom experience with
COMPUTER-I at this time on which to base a judge-
ment. Two desirable features which are not in the
current version of COMPUTER-I are the ab i l i t y to
Scroll through COMPUTER-I memory and to single
cycle through the fetch, increment and execute
parts of an instruction, Neither of these is
part icular ly d i f f i c u l t to implement.

VI. Current Status

COMPUTER-I is written in C and ran on the
Computer Science Department PDP 11/60 under UNIX
Level 6 at Washington State University. I t since
has been ported to the Computer Science Department
VAX II/780 at Arizona State University where i t
runs under the Virtual VAX-II version of Berkeley
UNIX 4.1 bsd. COMPUTER-I has a 15 K Byte share-
able text segment and a 15 K Byte data segment
per user. Current CS 3 class size of 250
students per semester necessitates that CS 3
programming be done on the ASU Academic Computing
Services IBM 3081 or PDP-ll/701s neither of
which currently support UNIX. Inquiries by
potential users of COMPUTER-I should be addressed
to the author.

Acknowledgements

COMPUTER-I is the MS project of Stephen R.
Zeck. Many of the innovative ideas contained
within i t are completely his. COMPUTER-I has
been ported to the ASU VAX II/780 by the combined
ef for ts of Cheng Ta Yu, Shih-Shan Tan and Bru~e R.
Mil lard. The author would also l ike to thank Jody
Dean for her excellent typing of the draft and
Mildred Fort for her excellent typing of the camera
ready copy.

References

[I] D. S. Mi l le r and B. R. Mi l lard, "BASIC1 --
a Simple Computer to Introduce Computer
Organization and Assembler Language
Progran~ning," ACM SIGCSE Bul let in , February
1982, Volume 14, Number I , pp. 71-77.

[2] R. H. Austing, B. H. Barnes, D. T. Bonnette,
G. L. Engel, G. Stokes, "Curriculum '78:
Recon~nendations for the Undergraduate
Program in Computer Science--A Report of the
ACM Curriculum Committee on Computer Science,"
Communications of the ACM, Volume 22, pp.
147-166, March 1979,

[3] James L. Peterson, Computer Organization and
Assembly Language Progran~ning, Academic Press,
New York, N. Y., 1978.

[4] R. A. Overbeek and W. E. Singletary, Assembly
Language with Ass.ist, Science Research
Associatates, Chicago, IL, 1976.

[5] S. R, Zeck, "A Modern Simple Computer to
Introduce Assembler Language and Computer
Organization," Master of Science Project,
Computer Science Department, Washington State
University, Pullman, Washington, January, 1981

[6] W, Joy and M. Horton, "An Introduction to
Display Editing with VI, U Department of
Electrical Engineering and Computer Science,
University of Cali fornia, Berkeley, 1979.

[7] B. W. Kernighan, "A Tutorial Introduction to
the UNIX Text Editor," Bell Laboratories,
Murray H i l l , N. J., 1975.

276

~mp~iea

Ddxect

~ter

Immediate

0peran~ Format

c~ooo0 ~mg~ied by insertion

~oc 2 c ~ c . ~ [~]

a (:~2000 AcoJmu/at~or
C~:'3000 Zndex Re~J..st~-

sp OP4000 Stack Pointer

~oc(i) oPtiC ~ + in,x]
loc(sp) oP6IEC ~loc + stack p o i n t e r]

#value 2 ~PTL1T

M~es:

i. C~ is 2 digit op-ccc~
IEC is 3 digit iccatic~
LIT is 3 d/git cc~ant

2. loc and value are a number or a label or the s~m of ~o of these

Appendix ZI. C0~ST~I Full ~ Set

Arit/~etic:

1~s~act~m ~ ~UressLng
a~d 1 Ali
sub 2 All
inc 16 All but im~ediat~
dec 17 All but immediate
sl 20 Albeolut~,

sr 21 A~solute, Indirect,

r~b~ Movement:

ioed 15 ALl
store 3 All but immediate
in 4 ~.plied

push 22 All

pop 23 ALl but immediate

Program Oontrol:

br 14 (All bran~es
bgt 13 Absolu~ or
blt 12 Indirect or
bge ~ ~exe~)
ble 8
bne 10
bz 9

jsr 18 Ahsolut~ or
Indirec~ or
Indexed

exit 6 Implied

~ s c r i p t i o ~ z
acc := acc ÷ soaz~e:
acc ~cc source
des : - ~ + i
des =-des - i
aCC := acc*10**source;

acc :- acc/10**so~e;

acc := source;
des :~ ~cc;
ace :- irkout ~--~_~;
o~Upu~(acc) ;
sp;.sp . I l
~.ory[sp] ~- source;
~es := ~ s p . h
sp : = s p + 1;

go~
if (acc>0) got;) place;
if (acc<0) got~. plao~;
if (ace>m0) go~o pl-Ce_;
if (ace<s0) ~ plaK~;
if (a=~0) go. pLy-e_;
if (acc~0) 9ot~ p!m~e_;

pc := ms.xy[sp];
sp := sp+ i;

s~ execut~m
do not~in~

.N~te:

i. source is the source operana val~
destination is the destination m~ozy location or register
place is the operand effeoT/ve a~dress

A p ~ I I I . cc~Jl~l ommand Summary

l ~ Control I

go <Ioc> starts ~uM~. at Ct~Tent pc or loc

single <ioc> e~cutes one instruction at curm~t pc or loc

speed <valu~ sets ~elay to zero or value seu~ds

om%t/m~ <count> <loc> e~ecutes count instruct/eros starting at current pc or
at loc with delay seconds bet~e~ cycles

reset in~/t to point to first data %~alu~

break <write> list

display list

show

clear (break/d~spL~) (Lu~JALL)

~ump <1oc i> < loc 2>

set loc value

~elete loc

imert loc

tester case prog

sutmit case prog

. ~ r ~ o ~

help <n~m~

~ i n t <rm.e>

q ~ t

ed i t

Note:

sets a i/st Of breakpoints; if loc is an
instructic~ breakpoint is after instrucT_~n
execution; for data aooesses breakpoint is
after access; write specifies only for writes

disp]ay 8 n,s.o~ ~ t i o ~ s s ta - , ' t i~ at ~oc

list break~ints, msm~y windo~ a~ ~e/ay

c/ear the irdicated ~reakpoints or display

dump from loci ~ loc 2

set luc to value

replace instruct/ore at loc with hop

replace ingtruction at loc with the one

like replace but ~ ~ for the ~u.wb~d
instruction before ~he c~e at loc

tests prog with case data

l i k e t e s t e r iout listing to line printsr

l i s t s br ief ~scr ipt ioa of a l l oomman~s (= nine

lists current program or name at terminal
asse~le name if not already assembled

like l~t e~c~pt oust b~ llne printa~

tarminate CO~mII~- 1

display current file source or set it ~ prog

tell Cr~Z~-i Mour terminal type

call vi with current file if defined

i . ~ in < > are o~/o~i
loc is a merry location indicated by a number or a symbol cr the sum

of t~ of rhea
list is a series of 1ocs separated by blanks
c~e par-dmM~r of eac~ ~/r ~ () must be selected

2 7 7

