COMPUTER-1 -- A Modern Simple Computer to Introduce Computer
Organization and Assembler Language Programming

Donald S. Milier
Computer Science Department
Arizona State University
Tempe, Arizona

ABSTRACT

COMPUTER-1 is an interactive editor/assembler
simulator-debugger and program evaluator to be used
as an instructional tool for an introductory course
in computer organization and assembler Tanquage
programming. COMPUTER-1's organization, assembler
language and interactive facilities are designed to
introduce basic concepts of computer architecture
and assembly Tanguage programming while minimizing
the amount of computer system dependent details
present during this learning period. COMPUTER-1
is a decimal machine with a small modern single
address instruction repertoire. A run-time view
into COMPUTER-1's memory and registers is provided
to help in program understanding and debugging.
COMPUTER-1 provides a flexible instructor-oriented
method for specifying and evaluating programming
assignments and a way for students to determine
whether and how well their programs have worked.
COMPUTER-1 runs under UNIX and presumes the
availability of a CRT with full-screen cursor
‘addressability. COMPUTER-1 is a modern descendent
of BASICT [1] in that it simulates a more
contemporary architecture and possesses interactive
features which are not tied to the capabilities of
hard copy terminals or card readers.

I. Introduction and background

It is well known that a major problem in
teaching-an introductory course in computer or-
ganization and assembler language programming such
as ACM Curriculum '78 CS 3 "Introduction to
Computer Systems," [2] is the amount of detailed
information about the hardware and software of the
computer system being used which must be concurrent-
1y explained. This includes computer system
command string interpreter or JCL, complex computer
architecture and assembler language syntax, text
editor and terminal usage, binary and hexadecimal
or octal number systems, and rules for performing

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-091-5/83/002/0271 .$00.75

the assembly/1ink/load/execute steps, and input
and output on the given system. The obfuscation
provided by these details makes teaching and
learning the basic concepts far more difficult
for two reasons:

1. The amount of material which has'to be
absorbed initially is huge,

2. It is difficult to separate the basic
concepts from computer system dependent
details.

There have been many attempts over the years
to narrow the “environment", simplify the machine
and/or its assembler language, simplify 1/0 and
reduce or simplify the steps between source code
composition and program execution that the student
must perform. These include MIX [3], ASSIST [4]
and BASICI[1] used by the author at Washington
State University and many others. COMPUTER-1 was
developed as a direct result of experience using
BASICT.

BASICY is an interactive assembler/loader/
interpreter which includes the following
characteristics [1]:

1. a simple hardware structure--a uniform, word
organized memory, a minimum of programmable
registers and basic instruction and data fetch-
sequencing

2. a small instruction repertoire containing the
fundamental operations and addressing modes~-
all instructions are of the same length and
format

3. decimal numbers used for all addresses, data,
op-codes and arithmetic

4. a straightforward and simple method for per-~
forming input/output

5. an assembler possessing a minimum of syntactic
rules, only essential pseudo-ops and which
accepts free-format source input and provides
diagnostics in English -

6. a loader which requires no user control
information

7. a run-time executive which

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952978.801063&domain=pdf&date_stamp=1983-02-01

a. can execute the loaded program and its
data with no further user control infor-
mation

b. provides substantial offline debugging
aids--a dump, trace, and intelligible
diagnostics

¢. has runtime interactive data and command
input/output capabitity including the
ability to set breakpoints, examine and
set memory and to step or run through
program segments with or without tracing.

A co-program, another assembler/loader/
interpreter named TESTER provides a method to
determine whether programs really work and in some
sense how "good" they are, BASICI was designed to
incrementally introduce students to the
complexities of assembler language programming. A
"basic" instruction set consisting of add, subtract,
store, branch if less or equal, input, output, halt
and no operation, and only one addressing mode for
each instruction was presented first. Later this
was expanded to "partial" or "full" instruction
sets which included loading, immediate data, in-
direct addresses, conditional and unconditional
branching, digit manipulations, transfer of control,
loop control and stack manipulation. Experience
with BASIC1 indicated by student and instructor
reactions over a long period of time was very
favorable. During the conversion of the BASICI
source code from FORTRAN to C and the simultaneous
change to a more terminal-oriented and interactive
version it became very clear that BASIC1 had two
fundamental shortcomings [1].

1. It represents a machine and a method of
studying machines which comes out of the 60's.
Two examples -- BASIC1 has no index register
and the assembler syntax does not include a
label field.

2. It's runtime interactive features are tied to
the technology of hard copy terminals and
punched cards. Very little use was made of
the full screen cursor addressability feature
present in many terminals these days nor of
the features available from a modern
hierarchical file system and command string
interpreter such as those found in UNIX. As
examplies -- a multiple Togical area screen
display part of which displays memory and
registers, another part of which displavs

computer messages with another part reserved
for echoing user input, any or all of which
could be updated independently couid provide
a lot more flexibility than BASIC1's line-at-
a-time scrolled input. As a second example,
the UNIX command string interpreter (the
shell) and its file system make editing and
running a user program on his own test data
and on the instructor's test data as well as
directing hard copy to the printer all
nossible from within an interactive computer
simulation.

Observations such as these led to the design of
COMPUTER~1 [5].

272

‘'modes is presented,

1T. COMPUTER-1

The organization of COMPUTER-1 is shown in
Figure 1. It has a 999 word memory and three

Organization and Programming

MEMORY

Lo tore
00y

=T}
Oo3

TRiYRUCTION
rCLree

|
|
!
|
|
|
| I
|
|
|
i
|

POLAR M
Covure g,

CuRe
]

AtC MU LATER

e NV v [)
TV REGIFTLAR

MU —

STRL®
roIUTLR

(Al [ST

———tdrrr e e - - —

A Addregs
) q5g

4499

M Adlverr Mede

OfF or- Cede
v Valiue

|
!
|
}
’ Leceon |
)
|
!
|
|

Hi cort

Fiovee |, COMPLTER-1 Conturee Orcnuiznrie~

programmable registers’, an accumulator, an index
register and a stack pointer, Memory words, the
accumulator and index register hold six decimal
digits and sign, The stack pointer and program
counter hold three-digit memory addresses. The
program counter is incremented once per instruction
cycle and its contents may be altered with program
control type instructions. The stack pointer
points to the top of the current stack. Instructions
consist of a two digit op-code, an address mode
digit and a three digit operand. The total
instruction repertoire consists of 23 instructions
which can have from one to six addressing modes.
Initially only the "basic" instruction set of add,
subtract, store, branch less equal, input, output,
exit and nop using direct or implied addressing
Students code mnemonics for
op-codes, labels or absolute numbers for addresses
and decimal signed magnitude representation for
data. The COMPUTER-1 assembler has only three
pseudo-ops, dc, save and end. Each instruction in
the basic set, its op-code, operand, corresponding
machine instruction, a Pascal Tike notation
description and an instruction description are
given in Figure 2a,as they would be presented to
students. Input is to the accumulator from an

-external data set and output is to an external data

set from the accumulator. COMPUTER-1 assembler
pseudo-ops are given in Figure 2b, COMPUTER-1
source code is nearly free format with spaces as a
delimiter. As shown in Figure 3, each source code

Instruction Assemrbler Machine
Name Mneronic Instruction Operation Description
add add loc 0110C acc = acc + loc add the contents of loc to acc; leave loc
unchanged
subtract sub loc 02110C acc := ace - loc subtract the contents of loc from ace;
leave loc unchanged
store store loc o3110C loc := acc store contents of acc at loc; leave acc
unchanged
branch if < 0 ble place 08110C if (acc < = Q) branch to place if contents of acc is < 0
go to place else take next instruction in sequence
input in 040000 ace =:; input rumber read next input value into acc
output out 050000 output (acc) write contents of acc to output; acc is
unchanged
exit exit 060000 stop stop COMPUTER-1 execution and return to
conmand mode
no operation nop 070000 none do nothing
(a)
Hame Mnemonic Description
define oconstant dc value put value into menory at current location
save space save number set the next number locations to zero
erd delimiter end <loc> signals end of source program; execution starts
at 1 or Ic:
(b}
Figure 2. COMPUTER-1 “basic" Instruction Set (a) General Instructions, (b} Pseudo-operations

line contains one or more of the following: a
label, a machine instruction or pseudo-op, an
operand and a comment. Instructions consist of
the full instruction name or a mnemonic for it,

The operand may be a label defined in the program
or a decimal number representing either an address
or data. Simple address addition s permitted, In
addition, as described below, the operand field may
contain a symbol indicating addressing mode.

= *

a character string starting with a letter and ending with ":"
string specifying an instruction

operand: specifies mancry location, register or literal data

ded by ";" and i d by CCMPUTER~1

Figure 3, OOMPUTER-1 Instruction Format

Figure 5 contains the source text of the
initial design of a simple program to input a
number, multiply it by ten, output it and 1oop back
for another number, Suitable programming assign-
‘ments using only the basic 8 instruction subset
described so far would be serially reusable
programs which perform a left shift or a right
shift of up to 5 places determined by an input
parameter. The complete set of addressing modes
-and the full instruction set given in direct or
implied modes are presented in Appendices 1 and I1
respectively. Typical programming assignments are
to implement a fixed point multiply or divide,
perform a bubble sort or play the game of REVERSE,

273

ITI. COMPUTER-1 Control and Runtime Interaction
COMPUTER-1 has a set of commands to assist in
program composition, assembling running,
debugging, evaluation and understanding. These are
Tisted in Appendix III. COMPUTER-1 commands fall
into three general categories: control of
COMPUTER-1 execution, debugging aids and general
utility. Program control commands cause assembly
and initiate execution in various modes, A
program can be run to termination or a breakpoint
is reached, it can be manually single stepped or
automatically stepped at a user defined rate.
Input data can be reused. Debugging commands
provide breakpoint control, memory window displays
and core dumps, memory setting,
flexible program patching, program testing using
the instructor's test cases and 1isting of program
plus changes. General utilities provide an
ability to enter the editor to compose or modify
text, list at the terminal or the line printer,
define a source file, specify terminal type, get
help on how to use COMPUTER-1, execute any UNIX
command and exit COMPUTER-1. The example described
below and in Figures 4-10 presents some of
COMPUTER-1's available interactive features.

1

Greetingssuﬂeat-&xerightmfthusicsetpmgmisdueby
sandown tCmorTort

—> edit bylo

Figure 4. Initiating a COMPUTER-1 session

After logon, the user responds to the UNIX
shell "%" prompt with

¢l

to execute COMPUTER-1. COMPUTER-1 outputs any
messages from the instructor that may be present
followed by a "-->" prompt at the lower left
hand corner of the screen as shown in Figure 4.
The programmer inputs

edit byl0

to enter the UNIX text editor vi [6] to compose a
program which multiplies an input number by ten

and Toops back to input another number. The source
code is to be stored on a file named byl10. The
initial text of the program is given in Figure 5.

Program to multiply the input by 10

more:
in ; acc = input-
add a ; acc = acc + acc
store ¢ it o= 2%acc
add t ; aoc := 4*acc
store m ; m = 4*acc
add m ; acc := 8*acc
add t ; acc := l0%acc
out ; print(l0*acc)
back: ble moxe ; input another mamber
exit ; that's all
t: de 0
m: & 0
end
Figure 5. Initial source text of multiply byl0 program

When the programmer quits the editor, he is return-
ed to COMPUTER-1 as indicated by the "-->" in
Tower left corner of screen. The user types

go
COMPUTER-1 responds with
Input file to be assembled

The user enters
by10

which causes COMPUTER-1 to assemble byl10, load it
into COMPUTER-1 (i.e., into COMPUTER-1's inter-
preter), initiate execution and generate the
display shown in Figure 6 when it reaches a point
where user interaction is required - in this case
to provide the input requested by byl0's first
instruction. The five logical.areas in the display
are indicated by the numbers in the left hand
column (which are not present in the actual

1: Last instruction:
Current instruction: in

Next instruction: add a

2:

3 PC Accoum Index Stack Pointer
1 [o 999

4: * Input:

5: ~>
Figure 6. COMPUTER-1 display during execution

of first instruction of byl0

274

Area 1 contains the previous, current

and next instruction. Area 2 is for windows into
memory (see below). Area 3 displays register
contents. Area 4 displays messages from COMPUTER-T1.
The most recent message is Indicated by an "*".
Area 5 contains the command prompt and error
messages. COMPUTER-1 is prompting for input.
user responds with

10

and COMPUTER-1 executes the remainder of the
program after which the display is updated as
shown in Figure 7. After checking the operation
of byl0 on other numbers using the commands "go 1"

display).

The

K Accumn Index Stack Pointer
10 100 0 999
Input: [10]

Output (loc 8): 100
* Execution stopped at: 10

->

1 display after campletion

Figure 7. OMPUTER-.
of last instruction of byl0

or "50 more" the programmer tries byl0 on the
instructor*s test data by entering

tester mult

COMPUTER-1 responds taciturnly

Program did not work
The proarammer realizing that his program failed
because it will not loop back for products
greater than zero hits the "DEL" or "BREAK" key
causing an interrupt message to appear and
COMPUTER-1 to enter the command mode. Then he
patches his program with

replace back
COMPUTER-1 responds

Input new instruction

and the programmer enters
br more
and then
dump more back
to verify that the change was made. The resultant
COMPUTER-1 display is shown in Figure 8. To

further check operation the user enters

display t
go more

and in response to the input request at location 1

10

bWV
g .
[

LY RN
&

!

Figure 8. COMPUTER-1 durp after replacing ble more with br more

The resulting display, given in Figure 9, indicates
that the program did in fact loop back for more
data, an output of 100 occurred and the appro-
priate intermediate values were stored in t and m
as indicated in the eight memory location window

Last instruction: brl

Qurrent instruction: in

Next instruction: ad a
n 40 80 0 0 0] 0
FC Accum Index Stack Pointer
10 100 0 999
Ingut: [10]

output (loc 8): 100
* Input:

CQOMPUTER-1 display after processing an input
of 10 with patched version of byl0o

Figure 9.

display. The programmer tries the instructor's
test data again with

tester mult

and COMPUTER-1 responds with

Program worked for test data: mult
In 44 steps, using 12 core. Figure of Merit: 528

telling the programmer that his program worked
and had a figure of merit of 528 the product of
memory used and instructions executed. The pro-
grammer must now enter his change on his source
text file byl0 using the editor. After returning
to COMPUTER-1 he enters

submit

to get the 1isting shown in Figure 10 containing
the source text preceded by three columns contain-
ing source code line number, memory location and
the COMPUTER-1 machine language instruction,
COMPUTER-1 has additional useful debugging aids
such as breakpoint control and the ability to step
through a program at varying rates which are not
demonstrated in the above example.

275

Computer-l listing of: bylQ Page 1

1
2 Program to multiply the input by 10
3
4 1 more:
5 1 040000 in ; acc := input
6 2 (12000 add a ; ace = acc + ace
7 3 030N store t 7 t = 2%acc
8 4 010N add t acc = 4*acc
9 5 031012 stare m 7 m = d*acc
10 6 011012 add m : acc := 8*acc
n 7 onon add t ; acc = 10%acc
12 8 050000 cut ; print(l0*acc)
13 9 141001 back: br more ; loop back for more
14 10 060000 exit ; that's all
15 1 0 t: dc 0
16 12 [m:]
end

Program worked for test data: mult
In 44 steps, using 12 ocore. Figure of Merit: 528

QOMPUTER-1 line printer listing of final version of
byl0 with instructor test data results

Figure 10.

IV. Instructor Features

COMPUTER-1 has been designed to provide

maximum assistance to the instructor. He may

specify a file for his messages to be displayed

whenever COMPUTER-1 1is executed. Test inputs are

prepared by writing to a file in the instructor's

directory a header 1ine consisting of the allowed

instruction set, total number of inputs and total

number of outputs, followed by the inputs and

outputs as they occur during testing. For

example writing
full 5 5
!

10

-1

-10

0

0

99999

999999

-99999

-999999

to the file mult would have provided a reasonably
good set of test data for the example in the
previous section. It is also possible to set
things up so that the students execute COMPUTER-1
directly instead of a UNIX shell when they log on

by modifying the password file for their accounts
thus creating an almost total COMPUTER-1 environ-
ment. As noted COMPUTER-1 evaluates the students
programs,

V. Summary

COMPUTER-1 was designed as a modern replace-
ment for BASIC1, The objective was to keep as
many of the instructional features which have
worked so well over the years while

1. including architectural and software features
commonly found in contemporary computer
systems

2. more fully utilizing the full screen
addressability feature commonly found in
today's CRTs and the software features found
in modern process-oriented operating systems
such as UNIX.

To achieve the first objective an index register,
a more general set of addressing modes, modern
subroutine jump and return and in-memory incre-
ment and decrement instructions-were added to the
hardware and labels and very simple address
arithmetic were added to the assembler syntax, A
new set of commands was written to achieve the
second objective. These feature a five field
display presenting windows into the current
instruction area, memory and all registers and
message and prompt areas. Each field is indepen-
dently updatable, These windows can be examined
as a program is stepped at user determined rates
through its instructions. Such initially
difficult concepts as the distinctions between
addresses and the values stored at addresses,
loading and storing, indexing, indirection and
immediate data are all dispiayed in an obvious
manner, Dumps are seldom needed if one can view
several sections of memory while a program is
being executed. The flow of more complicated
algorithms, e.g., a bubble sort can be viewed at
a convenient rate to search for logical errors.
The UNIX file and shell features were utilized

to implement runtime patching, testing and print-
ing and the instructor oriented test program and
message generation. These features were also
utilized to implement the file and entry/exit
Tinkages between COMPUTER-1 and the text editor.

Many needed less important enhancements to
BASIC1 were incorporated into COMPUTER-1. A few
of these follow. The message and prompt-error
message display areas enable a more comprehensive
and timely set of error diagnostics and user in-
formation to be provided. Breakpoint setting is
more fine grained depending on the type of access
to a given location. User data memory and execu-
tion time are both reduced as a result of the
decrease in memory size to 999 words. And lastly,
adding a tag byte to every memory location has
finally put an end to attempts to get low
evaluation numbers by using memory areas not
defined in the source program,

COMPUTER-1 still requires that the student
learn how to use a text editor concurrently with
the basic concepts of assembler language pro-
gramming. Fortunately, vi can be invoked in a
rather easy to learn and use line-oriented editor
ned®, for which an excellent tutorial exists [7].
It is not necessary to use the more complicated
“visual" features of vi to compose source programs
of the size that are required in COMPUTER-1 pro-
gramming assignments. A more serious criticism
of COMPUTER-1 is that the efforts to modernize
have added some complexity to COMPUTER-1's
architecture and its commands. This could have
considerable impact on the primary objective of
COMPUTER-1 contained in the title of this paper.
The author has no classroom experience with
COMPUTER-1 at this time on which to base a judge-
ment. Two desirable features which are not in the
current version of COMPUTER-1 are the ability to
scroll through COMPUTER-1 memory and to single
cycle through the fetch, increment and execute
parts of an instruction, Neither of these is
particularly difficult to implement.

276

within it are completely his.

VI. Current Status

COMPUTER-1 is written in C and ran on the
Computer Science Department PDP 11/60 under UNIX
Level 6 at Washington State University. It since
has been ported to the Computer Science Department
VAX 11/780 at Arizona State University where it
runs under the Virtual VAX-11 version of Berkeley
UNIX 4.1 bsd, COMPUTER-1 has a 15 K Byte share-
able text segment and a 15 K Byte data segment
per user. Current CS 3 class size of 250
students per semester necessitates that CS 3
programming be done on the ASU Academic Computing
Services IBM 3081 or PDP-11/70's neither of
which currently support UNIX. Inquiries by
potential users of COMPUTER-1 should be addressed
to the author.

Acknowledgements

COMPUTER-1 is the MS project of Stephen R.
Many of the innovative ideas contained

COMPUTER-1 has

been ported to the ASU VAX 11/780 by the combined

efforts of Cheng Ta Yu, Shik-Shan Tan and Bruce R.

Millard. The author would also like to thank Jody

Dean for her excellent typing of the draft and

Zeck.

Mildred Fort for her excellent typing of the camera

ready copy.

References

[1] D. S. Miller and B. R, Millard, "BASIC1 --
a Simple Computer to Introduce Computer
Organization and Assembler Language
Programming,” ACM SIGCSE Bulletin, February
1982, Volume 14, Number T, pp. 71-77.

[2] R. H. Austing, B. H. Barnes, D. T. Bonnette,
G. L. Engel, G. Stokes, "Curriculum '78:
Recommendations for the Undergraduate

Program in Computer Science--A Report of the
ACM Curriculum Committee on Computer Science,"
Communications of the ACM, Volume 22, pp.

147-166, March 1979.

[3] James L. Peterson, Computer Organization and
Assembly Language Programming, Academic Press,

New York, N, Y., 1978,

(4] R. A. Overbeek and W. E. Singletary, Assembly
Language with Assist, Science Research

Associatates, Chicago, IL, 1976.

[5] S. R, Zeck, "A Modern Simple Computer to
Introduce Assemblier Language and Computer
Organization," Master of Science Project,
Computer Science Department, Washington State
University, Pullman, Washington, January, 1981
[6] W, Joy and M, Horton, "An Introduction to
Display Editing with VI," Department of
Electrical Engineering and Computer Science,
University of California, Berkeley, 1979.
[7] B. W, Kernighan, “A Tutorial Introduction to
the UNIX Text Editor," Bell Laboratories,
Murray Hi11, N, J., 1975.

Appendix I.

Operand Fommat 1

Mode Agsembler Syntax Machine Oode
Implied QP0000
Direct 10c? aplrec
Register a QP2000
i QP3000
sp OP4000
Indexed loc(i) QPSLOC
loc(sp) OP6LOC
Imediate tvalue? oP7LIT
Indirect {loc) OPBLOC

Notes:

1. P is 2 digit op-code
10C is 3 digit location
LIT is 3 digit constant

COMPUTER-1 Addressing Modes

Address Description

MM 1oc]

Accmulator
Index Register
Stack Pointer

MM 1loc + index]
MEM[loc + stack pointer]

veM(MEM[1oc]]

2. loc and value are a mamber or a label or the sum of two of these

Appendix IT.

add 1 RS

sub 2 Al

inc 16 All but immediate
dec 17 All but immediate
sl 20 Albeolute, Indirect
sr 21 Absolute, Indirect,

load 15 All

store 3 All but immediate

in 4 Implied

out 5 Implied

push 22 All

pop 23 All byt immediate

Program Control

br 14 (All branches

bgt 13 Absolute or

blt 12 Indirect or

bge 1n Indexed)

ble 8

bne 10

bz 9

jsr 18 Absolute or
Indirect or
Indexed

return 19 Implied

exit 6 Implied

nop 7 Implied

Note:

1. source is the source operand value

i

B BEEEY

%5

ace

COMPUTER-1 Full Instruction Set

1

i= acc + source:
= acc - souxce;
= deg + 1

imdes - 1

= acc*10**source;

1= aoc/10%*gource;

-swme.

= mpucruﬂ:er

output (ace) ;
spc!sp[‘- §

memory[sp] = soyrce;
des := mamryisp El‘

sp i=8p + 1;

goto place

if (acc>0) goto place;
if (acc<0)

if
if
if
if

destination is the destination mamory location or register

place is the operand effective address

277

break <write> list

display list
show

clear (break/display) (list/ALL)

dump <loc 1> <loc 2>

set loc value
delete loc
replace loc
insert loc
tester case prog
submit case prog
General Utility
help <name>

list <name>
print <name>

quit
file <progp>

l.parameters in < > are

Apperdix III.

OOMPUTER~1 Command Summary

starts program at current pc or loc
executes one instruction at current pc or loc
sets delay to zerc or value seconds

executes count instructions starting at current pc or
at loc with delay seconds between cycles

reset input to point to first data value

sets a list of hreakpoints; 1floc:|.san
instruction, int is after i

execution; for data accesses br t is
after access; write specifies only for writes
displzyanamryloeaﬁox.msta:ﬁmatloc
list breakpoints, meamry windows and delay
clear the indicated hreakpoints or display
windows

dump fram loc 1 to loc 2
set loc to value
replace instruction at loc with nop

replace instruction at loc with the one
pravpted for

like replace but makes roam for the prompted
instruction before the one at loc

tests prog with case data
like tester but listing to line printer

lists brief description of all camands or name

lists current program or name at terminal
asserble name if not already assembled

like list except output to line printer
teyminate COMPUTER-1

display current file source or set it to prog
tell COMPUTER-1 your terminal type

call vi with current file if defined

opticnal

loc is a memary location indicated by a mumber or a symbol or the sum

of two of them

list is a series of locs separated by blanks
one parameter of each pair ingide () must be selected

