
Animations of Computers as Teaching Aids

Thomas R. Leap
Computer Science Department

Elizabethtown College
Elizabethtown, Pennsylvania 17022

This paper discusses several programs which are used as
teaching aids for teaching computer science students. The
programs are animations of the internal workings of a central
processing unit. They should be particularly useful in
assembly language and computer organization courses or to give
introductory students a more tangible example of what is going
on inside the computer. The animation techniques use only the
capabilities of common dumb conversational computer terminals
and can easily be implemented on many different computer
systems.

INTRODUCTION

Simple character graphics can be used
to turn a computer terminal into an
automated blackboard. When combined with
animation, these illustrations can produce
dramatic simulations of normally
intangible operations. Teaching aids for
teaching Computer Science using the
computer terminal and these techniques
include: animated arrays for
demonstration of sorting or list
processing; an animated computer to
demonstrate the internal operation of
computers; illustrated computer and
equipment simulations where laboratory
stations are unavailable; and animated
tracing aids for teaching program
execution principles and debugging
techniques. All of these teaching aids
have been implemented or are being
developed at Elizabethtown College. They
have been implemented on the college's
Digital Equipment Corp. VAX computer using
common dumb terminals and are programmed
in the Pascal language. All of these
teaching aids should be easily
transportable to any computer or
microcomputer with Pascal language
capability.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM-0-89791-126-1/84/002/0084 $00.75

The graphics and animation techniques
necessary to implement these aids can
easily be created on most computer
terminals connected to timesharing
computers and on microcomputers. The
basic technique for animation consists of
drawing a picture or displaying
information on the terminal, then
redrawing a changed picture or new
information over the old to simulate
motion or a continuing operation. This
animation can be used to indicate the
movement of data along buses in e computer
or the modification of information in a
memory element or register.

HARDWARE REQUIREMENTS

The computer terminal is the most
important piece of hardware for performing
animations. When microcomputers are used,
the microcomputer's display can be
considered to be a computer terminal. The
features and capabilities of this device
determine the quality of the displays that
can be generated. Graphical illustrations
can be created using line drawing
character sets or simple characters such
as "+" for corners, " " for horizontal
lines and "!" for vertical lines. Even
though character graphics is not as
impressive as solid line graphics, the
result is equally effective.

When performing animations, the speed
of the terminal becomes important. 300
baud operation is too slow to perform
acceptable movement of objects on the
terminal. Generally, 2400 baud operation
is both acceptable and optimal.

84

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952980.808629&domain=pdf&date_stamp=1984-01-01

TERMINAL INDEPENDENCE

Terminal independence may not be very
important in many schools where there is
only one kind of computer terminal in use.
However, some schools are using several
different types of terminals. Also, if a
program is to be transportable, it should
be written to handle different types of

terminals.

Even though there is an ANSI standard
for terminal commands, there are still
many different command sequences which
different types of terminals recognize.
Dependency on any one command sequence can
be eliminated by implementing a set of
centralized routines in a program which
issue the terminal dependent commands.
The program can inquire about the terminal
type using one of several common methods.
These include: asking the operating system

(this requires that the operating system
maintain s list of terminals and their
types), issuing an identification request
command sequence to the terminal and
examining the response (this will only
work with terminals which respond to such
a command), or asking the user what type
of terminal he is using. The terminal
type can then be used in the command
sequence generation routines to select the

proper command sequence.

It is important to develop a profile
of a standard terminal which has features
that are common among all the different
types of terminals with which the program
should work. If this set of features
is kept simple, it is probable that
commands for new terminals can easily be
added to the program. The common features
among most terminals include: a 24 line
by 80 column display screen, direct cursor
addressing and screen clearing (erasing
the entire screen). A terminal must at
least have direct cursor addressing to be
be used for animation.

The size of the screen is only
important in determining the size of the
picture or the amount of information that

can be displayed. If a terminal has a
larger screen size, columns past 80 and
lines past 24 can probably be ignored. If
an animation is to work on a terminal with
a smaller display size (such as 16 by 40
in some microcomputers), there may not be
enough display area to show everything.

Screen clearing is not an absolute
necessity since it can be performed by
writing spaces across the entire screen.
Most terminals also have the additional
functions for clearing to the end of a
line and to the end of a page. These two
functions can also be performed by writing
spaces to clear the respective areas of
the screen.

Video attributes such as reverse
video, bold or blinking text are nice
additions to an animation but are somewhat
less standard among terminals. Some
terminals only allow one video attribute
to be displayed at any one time. On some
terminals, one character position on the
screen is used every time the video
attribute is changed. In order to remain
applicable to many terminals, the standard

terminal profile should allow only one
video attribute at a time and always use
one character position when changing

attributes. A blank space should be left
immediately before and after any field on
a screen that will be displayed using a
video attribute. This will allow room for
the video attribute change character.

The animations described in the rest
of this paper use a fairly simple standard
terminal profile. The features that are
needed are a 24 line by 80 column screen
size, direct cursor addressing and reverse
video capability. All other features are
simulated when necessary. Scrolling of
the terminal screen is even simulated by
redrawing the portion of the screen that
is to be scrolled. The terminals that the
animations have been implemented on
include: the Digital Equipment Corp.
VTIO0 and VT52; the Applied Digital Data
Systems Viewpoint AI and 60; the Lear
Seigler ADM 5; the Hazeltine Esprit I and
III$ and the IBM personal computer
running a program emulating the ADDS

Viewpoint AI.

AN ANIMATED COMPUTER

The Cardiac "cardboard" computer from
Bell Telephone Laboratories has been very
useful in teaching students the
fundamentals of information storage and
instruction execution in a central
processing unit. One attempt to improve
on this teaching aid is to simulate the
Cardiac computer on a real computer.
Programs can be entered from a terminal,
executed by the simulator program and the
result printed on the terminal.
Unfortunately, this bypasses one of the
best features and original purposes of the
Cardiac computer. The student no longer
sees what is going on inside the computer

during execution.

Character graphics and animation can
be used to restore the view of the
internal parts of the computer. This
animated computer is similar to the
"visible" automobile engine or "visible"
man where the internal parts are visible.

One animated computer in use at
Elizabethtown College is used in
introductory Computer Science courses.
The animated computer consists of 100
words of memory, an accumulator, an
instruction register and a program
counter. A terminal for input and output

85

MAIN MEMORY
+ + + + +

00 : 0000 ii : 0000
+ + + + +

01 : 0000 12 : 0000
+ + + + +

02 : 0000 13 : 0000
+ + + + +

03 : 0000 14 : 0000
+ + + + +

04 : 0000 15 : 0000
+ + + + +

05 : 0000 16 : 0000
+ + +_-'--+ +

06 : 0000 17 : 0000
+ + + + +

07 : 0000 18 : 0000
+ + + + +

08 : 0000 19 : 0000
+ + + + +

09 : 0000 20 : 0000
+ + + + +

i0 : 0000 21 : 0000
+ + + + +

ACCUMULATOR
+ +

I o o o o I

INSTRUCTION
REGISTER

+ + +

I o o I o o I
+ + +

PROGRAM
COUNTER
+ +

I oo I
+ +

I- -I

I -- I
I I
I I
I I

DISK

TERMINAL
. +

Animated Computer Display Layout
Figure i.

and a disk for program storage are also
included in the animation.

Since it is intended for use in an
introductory course, the animated computer
is kept very simple. The instruction set
of the computer consists of basic
instructions for: loading and storing the
accumulator; integer addition,
subtraction, multiplication and division
operations; jump and jump if accumulator
is negative; terminal input and output;
and halt. Memory words and the
accumulator hold 4 digit decimal values.

Instructions are decoded by breaking a
word in half to give an operation code and
an operand.

The contents of the three registers
and the first 22 memory locations are
displayed on the screen (see ~igure I for
the screen layout). Generally, most
programs used in an introductory course
need no more than the 22 displayed memory
locations.

A boxed area in the lower righthand
corner is used to display terminal input

and output. Only basic operations of a
computer terminal are carried out in this
box. Short lines of information can be
entered by the user or displayed as a
result of computer operations. As new
lines of information appear at the bottom
of the terminal box, the existing lines
scroll up and disappear from the top of
the box. This is done by redrawing the
entire contents of this area each time
scrolling is performed. The terminal is
used by the student to enter commands
which control the operation of the
computer, to enter instructions and data
values into memory and to enter input and

display output resulting from program

execution.

Program execution in the animated
computer consists of a simple execute

cycle. Each step in the execution of an

instruction is animated as fully as

possible to illustrate what is occuring
inside the computer. An execution cycle
begins with an instruction being fetched
from memory. The program counter is
displayed in reverse video as well as the
corresponding memory address to clarify
which memory location is being accessed.
The contents of the selected memory
location are then moved to the instruction

register.

All movement of data between memory
and registers is animated by drawing and
then erasing the data at successive
positions on the display (see figure 2).
This makes the data appear to move from
the memory location to the register.
The result shows clearly where the data
came from and that it was copied to its
destination rather than being moved.

The drawing and redrawing of data
when animating works best at terminal

speeds of 2400 baud or greater. 2400 baud
is probably the optimal speed because the
animation is fast enough to appear fairly
smooth without being too fast for students
to follow. At 9600 baud, the movements
appear quite smooth but are too fast for
most people to follow closely. No matter
how slowly the terminal is operated, some
capability is needed to control the
animation speed. There are always times
during a classroom demonstration or when a
beginning student is using the computer

86

MAIN MEMORY ACCUMULATOR
+ + + + + + +

00 : 0109 ii : 0000 ~ 1234

+ + + + + +--1234---+
01 : 0000 12 : 0000 1234123411234

+ + + + + 1234
02 : 0000 13 : 0000 1234 INSTRUCTION

+ + + + + 1234 REGISTER
03 : 0000 14 : 0000 1234 + + +

+ + + + + 1234 I 01 I 09 J
04 : 0000 15 : 0000 1234 + + +

+ + + + + 1234 LDA

05 : 0000 16 : 0000 1234
+ + + + + 1234 PROGRAM

06 : 0000 17 : 0000 1234 COUNTER
+ + + + + 1234

07 : 0000 18 : 0000 1234
+ + + + + 1234

08 : 0000 19 : 0000 1234

+ +-12341234123412341231234
09 : 1234 20 : 0000

+ + + + +

i0 : 0000 21 : 0000
+ + + + +

+ +

i 02 i TERMINAL
+ + +

10,0109
19,1234
IRUN

I
I
I

Animated Computer Data Movement

During Execution of a Load Instruction

Figure 2.

that the animation should be slowed down
or temporarily halted.

There are two ways for controling the
speed of the animation. One method is to
utilize an operating system's wait

facility to pause briefly between each
redrawing of a piece of data being moved.
The duration of this pause can be adjusted
to slow down or speed up the animation.
This method is subject to variations in
pause time depending on the current
response time when being used in a
timesharing computer system. The other
method is to output a series of characters
to the display. The characters printed
should be spaces so that they are not
noticeable to the person watching the
animation. The number of characters
printed will determine the length of the
pause. The duration of pauses in this
method is highly dependent on the baud
rate at which the terminal is being
operated.

After fetching the instruction from
memory, animation is used to show the
incrementing of the program counter. An
addition problem is displayed under the
program counter which shows that I is
added to the value in the program counter.
The result is then moved up to and
replaces the contents of the program
counter.

Instruction decoding and execution is
animated by breaking the instruction into
its operation code and operand parts. The
mnemonic name for the operation code is
then displayed under that portion of the
instruction register.

ACCUMULATOR
+ +

I 1234 I
+ +

+0345

1579

Add Values

Fig 3a.

ACCUMULATOR
+ +

J 1579
+--1579---+

1579
--1579-

1579

Move Result into Accumulator
Fig 3b.

ACCUMULATOR
+ +

1579 i
+ +

Final Accumulator
Fig 3c.

Accumulator Display for
an Add Instruction

Figure 3.

Execution of load and store
instructions consists of moving data to or
from the accumulator. Arithmetic
operations are illustrated by moving a
data value to a position just beneath the
accumulator and drawing an arithmetic
problem beneath the accumulator (see
figure 3). After an appropriate pause to
allow the student to examine the problem

that has be set up, the answer is moved up
into the accumulator. Animation of a jump
instruction consists of moving the

instruction's operand down to the program
counter. Input and output instructions
consist of moving data between memory and
the terminal box on the display screen.

The commands for operating the
animated computer are very similar to
those used in the Basic language.
Instructions and data are entered into

memory by typing a memory address followed
by the contents. This is similar to
entering a Basic statement by typing a

line number followed by the statement.
The other commands are:

RUN - Begin program execution
starting at memory location
zero

BYE or EXIT - Exit from the animated
computer

SCRATCH - Zero the contents of memory

87

LIST - Lists the memory contents on
a nearby printer

SAVE - Saves a program on disk
OLD - Reloads a program from disk
CONT - Continues execution from

where it stopped

When the SAVE and OLD commands are
executed, a trap door opens on the side of
the disk on the display screen. The file
name is written next to this door and a
stream of numbers move between memory and
the disk to show the transfer.

There are three additional commands
used for controling the speed of
animation. Two of these commands (FAST
and SLOW) are used to shorten or lengthen
pauses at critical points in the animation
(such as during arithmetic instruction
displays). These commands operate in an
incremental manner in which each time the
command is issued, the animation slows or
speeds up by one increment. The remaining
command (STEP) is used to enter single
step mode in which the animation halts
after the execution of each instruction.

ANALYSIS OF THE ANIMATED COMPUTER'S USE

The animated computer has proven to
be most useful in helping introductory
students to comprehend the internal parts
of a computer and how they operate. It
gives the student a more tangible example
of how memory works and how a computer
processes instructions sequentially. A
typical assignment might be to give the
students a program and ask them to trace
it both with and without the aid of the
animated computer. Students are generally
interested in the animated computer
because of the novelty of the animation.
This makes them more apt to spend time
outside class using it.

The animated computer can also be
used in class to help demonstrate the
relationship between machine language,
assembly language and higher level
languages. This is done by showing how a
simple Basic program can be compiled or
rewritten in assembly language and then in
machine language, e

The amount of emphasis that
instructors at Elizabethtown College have
put on teaching the animated computer and
on using it as a teaching aid has varied
greatly from semester to semester. The
variation goes from requiring students to
play with the computer on their own
without classroom lectures on it to
spending several weeks teaching students
to write programs for it. Experience has
demonstrated that the animated computer is
not a teaching machine but is just a
teaching aid. It cannot replace classroom
lectures. Students who are made to use
the animated computer without benefit of
lectures and armed only with a handout
often get little out of the exercise and

frequently are unable to understand it.
The other extreme of teaching introductory
students to program in the animated
computer's machine language is a bit too
much for students. Many introductory
students struggle to learn to write small
programs in Basic. Requiring them to
write a machine language program is beyond
their ability and is best left to an
assembly language course where the
animated computer serves well as a short
introduction to the course.

A MICROCOMPUTER WORK STATION

Single board microcomputer work
stations are often used in assembly
language programming courses. These
stations are relatively inexpensive but
usually provide only the capability for
machine language programming. A computer
simulation of one of these microcomputers
is providing as many work stations as
there are terminals on the timesharing
system at Elizabethtown College.

The microcomputer simulator, called
ANa080, is a simulation of the Intel
Corporation 8080 microcomputer. With
ANa080, as in the animated computer, the
terminal's screen is used to display the
contents of internal registers and memory
and terminal input and output (see figure
4). When ANaO80 is operating, the
registers and memory displayed on the
screen are updated at the end of each
instruction. The movement of data between
memory and the registers is not shown as
in the animated computer. This is because
ANS080 is meant for use by more advanced
students who already understand the
concepts illustrated by showing data
movements. This movement would only slow
the operation ANSOSO to a point where it
would frustrate the student.

Memory is displayed on the screen
using four memory windows consisting of
eight bytes each. The simulation can be
configured to actually have as much memory
as desired. The starting addresses for
each of the memory windows can be set
independently allowing four different
sections of memory to be displayed

simultaneously.

Programs can be loaded either by hand
from the terminal or from a file. The
contents of memory can also be saved in a
file. Programs in memory can be modified
from the terminal by loading new contents
for memory locations. To facilitate
programming, an assembler exists which
generates object code which can then be
loaded into memory. Object files use
standard Intel hex format.

There are three speeds of operation
available to the user. The default speed
is slow because all changed registers and
memory locations must be written to the

88

A FLAGS PC
+ + + + +

I oo I oo I I o o o o I
+ + + + +

B C SP
+ + + + +

I oo I oo I I o o o o I
+ + + + +

D E INSTR MAR
+ + + + + + +

I 00 I 00 I I oo I I 0 0 0 0 I
+ + + + + + +

H L
+ + +

I OO I oo I
+ + +

0000 0008 0010 0018
.__+ + +--+ + +--+ + +--+ +

00:00
+--+ +

01:00
+--+ +

0 2 : 0 0
+--+ +

03:00
+--+ +

04:00
+--+ +

05:00
+--+ +

06:O0
+--+ +

07:O0

08:00 10:00 18:00
+--+ + +--+ + +--+ +

09:00 11:00 19" 00
+--+ + +--+ + +--+ +

0A" 00 12" 00 1A" 00
+--+ + +--+ + +--+ +

0B: 00 13:00 1B: 00
+--+ + +--+ + +--+ +

0C: 00 14:00 1C: 00
+--+ + +--+ + +--+ +

0D: 00 15:00 ID: 00
+--+ + +--+ + +--+ +

0E" 00 16:00 IE: 00
+--+ + +--+ + +--+ +

OF: 00 17" 00 1F" 00
+ TERMINAL BASE:f6 ...

I*
I

AN8080 Display Layout

Figure 4.

display screen after each instruction is

executed. This speed varies according to

the baud rate of the terminal. In the

fast speed, only the program counter is

updated during execution. 0nly when

execution halts are all changed registers

and dlsplayed memory locations updated on

the display screen. In the very fast

mode, the internal parts of the

microcomputer are not displayed at all and

no updating of the display screen is ever

done. Single step mode and program

breakpoints are also available to ald in

d e b u g g i n g .

The AN8080 program is really a
framework for s i m u l a t i n g microcomputers.

The program consists of a command language

interpreter, an animation driver, register

and memory structure tables, and an

instruction decoder/Interpreter. It

should be posslble to modify the program

to simulate any microcomputer by

specifying the register structure and

writing a new instruction decoder.

S e v e r a l s t u d e n t s h a v e u s e d b o t h t h e
AN8080 w o r k s t a t i o n and t h e I n t e l SDK-85
c o m p u t e r . T h e y e m p h a t i c a l l y p r e f e r t h e
AN8080 b o t h f o r l e a r n i n g t o p r o g r a m and
for program development. One s t u d e n t t s
statement, "It0s easy to think you are

losing control when using the SDK-85

c o m p a r e d t o t h e AN8080" sums up t h e
c o m p a r i s o n o f t h e t w o .

i0 REM * * * * * SELECTION SORT **~**

20 DIM N$(10)

30 REM ***** INPUT NAMES *****

40 FOR I=l TO i0

50 PRINT "ENTER NAME ";I;
60 INPUT N$(I)

70 NEXT I
80 REM ***** SORT NAMES *****

90 FOR I=1 TO 9

100 FOR J=I+l TO 10

110 IF N$(I)<=N$(J) THEN 150

120 T$=N$(I)

130 N$(I)=N$(J)

140 N$(J)=T$

150 NEXT J

160 NEXT I

170 REM ***** PRINT NAMES ***~*

180 FOR I=1 TO 10

190 PRINT I;N$(I)

200 NEXT I

210 END

+

N$(1) :
+ +

N$12) :
+ +

N$(3) :
+ +

N$(41 :
+ +

N$(51 :
+ +

N$16) :
+ +

N$17) :
+ +

N$(8) :
+ +

N$191 :
+ +

N$(10):
+

VARIABLES

+ +

I : 0 I
+ +

J • 0 I
+ +

T$ " i
+ +

+ TERMINAL--+ +
READY

A n i m a t e d H i g h L e v e l L a n g u a g e C o m p u t e r
D i s p l a y L a y o u t

F i g u r e 5 .

89

AN ANIMATED HIGH LEVEL LANGUAGE COMPUTER

Another animated computer that
executes either Basic or Pascal language
programs is currently being developed. In
this computer animation, the Basic program
being executed will be displayed on the
left side of the terminal screen (see
figure 5). The variables used in the
program and their current values will be
displayed on the right hand side. The
bottom few lines of the terminal will be
used to display terminal input and output.

Execution of a program in this
animation will consist of highlighting the
statement currently being executed and the
variables being used in its execution. In
the case of arrays, only the array
elements involved will be highlighted.
For assignment statements, the variable to
receive the data will be flashed at the
end of the instruction.

This animation should be very useful
in teaching both sequential program logic
and loops. It should also be helpful as a
tracing tool and should help clear up the
confusion about how variables work.

CONCLUSIONS

The animated computer provides an
excellent teaching aid to help the
introductory student understand the
internal parts of a computer. The
animated computer and animations in
general are far superior to messy
blackboard work when frequent changes must
be made to illustrate continuous
operations. The techniques of animation
can be extended to advanced computer
simulations for use by advanced students
such as in the case of the ANS080 computer
simulation. The animated high level
language computer should provide the same
benefits when teaching programming in high
level languages.

Contact the author at the address
given above for information on acquiring
any of these programs.

ACKNOWLEDGEMENTS

My thanks to Elizabethtown College
students Eric Luckenbaugh, for his help in
writing the animated computer, and Kelly
Williams, for his help in writing the
Intel 8080 assembler. I also want to
thank Barbara Tulley of the Elizabethtown
College Computer Science Department for
her helpful advice and opinions regarding
the animated computer.

90

