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Abstract: An instructional computing laboratory, consisting of about 60 high-performance, 
graphics-based personal workstations connected by a high-bandwidth, resource-sharing local area 
network, has recently become operational at Brown University. This hardware, coupled with an 
innovative courseware/software environment, is being used in the classroom in an attempt to 
radically improve the state of the art of computer science pedagogy. This paper describes the 
current state of the project. The hardware and courseware/software environments are described 
and their use illustrated with detailed descriptions, including sample screen images. Some com- 
ments are included on our initial reactions to our experience to date with the environment and 
on our future plans. 

1. Introduction 

Several years ago, in anticipation of rapidly 
developing improvements in available hardware and 
software environments, the Department of Computer 
Science at Brown University embarked on a project 
designed to put the best possible technology to good 
use in the classroom. Projections at that  time indi- 
cated that it would be feasible to put a large number 
of very powerful graphics-based computer systems in 
a lecture hall, and we began to plan for the use of 
such a system in our teaching programs. 

Based on previous experience, we felt that high- 
resolution graphics could be used to provide detailed 
pictures of programs, data structures, and repre- 
sentations of other concepts commonly taught in com- 
puter science; that  powerful computer systems sup- 
porting the displays could be used to expose the 
dynamic characteristics essential to such concepts; 
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and that a very high bandwidth connection among 
the systems could facilitate exploration of new inter- 
active teaching modes. More details on the rationale 
for the development of such an environment may be 
found in last year's proceedings of this conference 
[Brow83]. 

Actually we have been able to achieve many 
of the things that we planned: in the fall of 1983, 
we opened an Instructional Computing Laboratory 
with about 60 high-performance Apollo computer sys- 
tems that is used throughout our curriculum, includ- 
ing classroom use for our introductory programming 
course and for our algorithms course. The purpose 
of this paper is to give some details on the develop- 
ment of this laboratory and on its use in classroom 
teaching. 

The next section describes the laboratory hard- 
ware in detail. Section 4 describes our current soft- 
ware/courseware environment. Section 5 presents two 
typical lectures: the first one is on binary trees and is 
suitable for an introductory programming course or a 
course in algorithms and data structures. The second 
example is on range searching, an advanced use of a 
binary tree structure. It is suited for either an algo- 
rithms or computational geometry course. We also 
briefly outline how other courses are using the lab. In 
section 6 we summarize what we've learned from the 
first semester of production use. We conclude with a 
description of our future plans both for the lab and 
for educational computing on campus in general. 

91 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952980.808630&domain=pdf&date_stamp=1984-01-01


Figure 1 - Foxboro Auditorium at Brown University 

2. Foxboro Auditorium 

Foxboro Auditorium, shown in Figure 1, was 
designed and specially built in 1982 to house the 
Department 's  Instructional Computing Environment. 
There are eight tiers containing seven personal 
workstations each, plus the front podium containing 
the instructor's machine. During class, two students 
sit at each workstation; outside of the classroom, stu- 
dents use machines individually. 

Each personal workstation is a powerful Apollo 
DN300 featuring a Motorola 68010 processor with 
1.SMB of main memory. There is an additional 
128KB of memory dedicated to the 1024xS00x1 
resolution bit-mapped display, and a hardware "bit- 
blt," capable of moving rectangular regions of 
memory at the rate of 32 Mbits per second. Each 
machine has a 3-buttoned mouse for graphical input. 
Groups of five nodes share a 158 MB Winchester disk, 
which is attached to a DN400 server. All nodes are 
connected by the Apollo proprietary token-passing 
ring network running at 12 MHz. The operating sys- 
tem is Unix System HI, running on top of Apollo's 

Aegis OS. There is a 96-bit network-wide virtual ad- 
dress space with a 32-bit virtual address space for 
each system object (e.g., file) built on a demand pag- 
ing system. There is a completely transparent naming 
space over the network, complete with both hard and 
soft links. 

The Department owns a total of sixty-three 
DN300's dedicated to the instructional environment 
with almost 2 gigabytes of disk storage. The 
Department is also using Apollo computers for much 
of its research efforts into graphics-based workstation 
environments (see [Pato83] for details). Each of the 
eleven faculty members and many staff and graduate 
student offices are equipped with an Apollo DN300. 
These machines are more powerful than those in the 
lab, as they each have 2MB of memory and a private 
33MB Winchester disk. Each is equipped with either 
a mouse, data tablet, or touch pad. We own about 
twenty-five such research machines. 

We have two full-time employees and one part- 
time student who are responsible for the maintenance 
and installation of all hardware. On the software 
front, we have a full-time system administration 

92 



and four part-time student helpers. Full-backups 
are done weekly, and incremental-backups are done 
daily by our staff. Files to be printed are trans- 
fered to the University's main computing facilities 
via the Brown University Network, BRUNET, a 300 
MHz broadband cable connecting all 125 buildings 
on campus. The Apollo network communicates to 
the Department's research computers (Vax 11/780) 
by various 9600-baud serial links and an Ethernet hi- 
speed link. 

The laboratory is open to students daily from 
9:00 am to 2:00 am, and for the entire night during 
~crunch" periods. Whenever the lab is open, there is 
a student consultant on duty (to answer non-course- 
specific questions and to do first-level trouble shooting 
of faulty hardware) and a student waitlist monitor (to 
check student id badges and to administer the waiting 
list). We have used a simple ~first-come, first-serve" 
policy with a one hour maximum time limit rather 
successfully, although we spent many days debating 
the relative merits of a sundry of more complex algo- 
rithms. 

With the lab operating in ~production mode" 
during the fall of 1983, it was used during lectures 
for our two largest courses, and just about all student 
programming assignments in the Computer Science 
Department were done using the equipment in the 
laboratory. The artificial intelligence course (about 
70 students) uses a dialect of LISP called T which was 
developed by Yale University. The systems program- 
ming course (about 50 students) uses both Pascal and 
C, in addition to much of the local software developed 
for facilitating the creation of interactive graphics 
programs. The operating systems course (about 60 
students) use a Motorola 68000 simulator developed 
locally. In addition, an advanced mathematics course 
on differential geometry and the introductory neural 
science course use the lab on an regular basis for in- 
teractive classroom demonstrations. 

The two courses which actually use the laboratory 
for interactive demonstrations during the class are 
the first semester introductory programming course 
(about 200 students) and the third semester algo- 
rithms and data structures course (about 175 stu- 
dents). In the introductory course, the laboratory 
is used in the majority of the lectures, and demos 
cover all programming constructs and data structures 
taught. In the algorithms course, the laboratory is 
used integrally in all of the lectures. Both of these 
courses meet in two sections of about 90-100 students. 
The students in these courses also use the laboratory 
for their programming assignments. 

3. The Courseware/Software Environment 

BALSA (Brown University Algorithm Simulator 
and Animator) is our software environment for the 
instructional computing laboratory. Our basic design 
philosophy was to develop a system that would allow 
a user to see and manipulate his programs by provid- 
ing pictures of his data structures that mimic the 
representation that he uses himself. Since computer 
programs are inherently dynamic objects, dynamic 
pictures must be used to illustrate the operational 
characteristics of programs. 

We set out to develop a comprehensive environ- 
ment that would support the systematic animation of 
programs in a classroom environment. Our primary 
goals were are follows: 

• It was desired that the instructor animating a 
program just write code for the specific algorithm 
being animated. The demo writer should not 
need to write any utilities, user-interaction routines 
(other than specifying a menu table to a front end 
module), or even pictorial representations of com- 
mon objects. 

• It was desired to have one common set of familiar, 
"standard" controls. Thus, once students learned 
how to interact with the system in one course, they 
would be able to use the system in the same way 
for all other courses. 

• It was desired to build a rich set of common tools for 
displaying and interacting with common data. For 
example, after some basic primitives are developed 
for displaying a binary tree, the myriads of pro- 
grams which use a binary tree data structure could 
readily be animated. Primitives might include dis- 
playing a static tree, pruning and moving subtrees, 
and adding new nodes. 

• It was desired to research various techniques for 
animating algorithms. For example, what is the 
best way to animate a convex hull algorithm? 
matrix multiplication? file compression? 

• It was desired to build a very robust front end 
that would be able to accommodate all user- 
interaction and program control with modern tech- 
niques, exemplified by the various Xerox environ- 
ments. 

• It was desired to have a rich set of common 
"utilities." Utilities include getting hardcopy of 
screen, saving a snapshot of the "world," and play- 
ing back a previous session. 

BALSA graphically displays multiple views of 
the user's program and data structures. Each view 
is automatically maintained during execution to give 
the user a motion picture of his program in action in 

93 



the terms which make it easiest to understand. The 
user controls which views are active, as well as the size 
and location of windows in which views are displayed. 
Windows are rectangular regions of the screen that  
can overlap without interference. The user can step 
through a program both forward and backward at 
any speed he sets, mark a point during the execution 
to return to later, set and clear breakpoints, and 
interrupt an executing program. 

The user can both zoom and scroll through the 
graphical contents of a view. In addition, it is easy 
for an experienced programmer to write additional 
views to provide alternative representations. Thus, 
by having multiple views of a given data structure 
with different panning and zooming factors, one can 
simultaneously study it from both global and local 
perspectives. (See Figures 5 and 6, in particular.) 

One very useful utility in BALSA is the ability 
for one user to "broadcast ~ his display to one or 
more other users; the designated recipients then see 
on their screen exactly what the broadcaster is doing 
on his screen. This can be used in the laboratory in 
a number of modes: first, the instructor can show his 
screen to students to introduce concepts. Then, stu- 
dents can continue using the screen that was broad- 
cast to their station to work further on the new con- 
cepts. Finally, the instructor (or teaching assistants) 
can "monitor" onto students' displays, to get feed- 
back on how each student is mastering the subject 
matter. Other utilities include saving a replayable, 
user-editable history of a user session, and making a 
hardcopy bitmap of the screen. 

4. Examples 

In this section, we illustrate the use of the 
laboratory through several examples. The first, on 
binary trees, is suited for either an introductory 
programming course or a course on algorithms and 
data structures. The second sample lecture is on 
range searching using an extension of binary trees 
called 2-D trees and is geared for a beginning or ad- 
vanced course on algorithms and data structures or 
a graduate course on computational geometry. The 
third example illustrates the computation of the tran- 
sitive closure of a directed graph. It is also suited 
for an algorithms or combinatorics course. These 
three examples, Figures 2-9, have all been developed 
in BALSA (we've deleted the logo and prompt areas 
from most of the figures in order to conserve space). 
The fourth example is from a course on differential 
geometry, and the last example is from an introduc- 

tory neural science course. 

In the following descriptions, we've concentrated 
on explaining what the screen images are and what 
can be done with them, rather than how the displays 
are actually used in the classroom. Typically, con- 
cepts are introduced with each student's computer 
mimicking the instructor's; then students are given 
an opportunity to execute the programs at their own 
pace and with their own data or preassigned data, 
often including the sample data presented in the 
textbook. 

4.1 Sample Lecture - Binary Trees 

The motivation for this lecture is to develop a 
program which will maintain the information in a 
phone book containing 1 million entries. One must 
be able to insert new entries and search for entries 
relatively efficiently. We first illustrate what e~ic/ent 
means by comparing the values of N, N/2, and 
log2(N ) for N ---- 1,000, 000 on a computer capable 
of performing 100 operations per second. We present 
three algorithms: (1) maintain an unordered array, 
and then search sequentially through it; (2) maintain 
a sorted array, and also search it sequentially; and (3) 
maintain a sorted array, but use a bisection algorithm 
for the search. Figure 2 shows the computer screen 
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Figure 2 - Array Searching Methods 
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after a simulation of the searching aspect of the three 
methods. 

There are three large rectangular regions on 
the screen, corresponding to the three different algo- 
r/thins. Each algorithm window contains a graphi- 
cal view of the algorithm's data structure, the array 
of keys. Each element of the array is displayed as 
a stick; the larger the stick, the larger the element 
of the array. Each array contains 90 elements; the 
white space at the right of each view indicates tha t  
the array has been defined to hold at most 105 ele- 
ments. The thin box surrounding a stick indicates 
that  we ~probed ~ that  element of the array in search- 
ing for the desired key. The size of the surrounding 
box indicates the value of the element for which we 
are searching. We are searching for an element which 
is about one-quarter of the way between the minimum 
and maximum values. The bottom view, of bisection, 
has some large thin vertical lines. These lines repre- 
sent the left and right ~pointers ~ in the search. Each 
~pointer" line has a little box at the top and at the 
bottom indicating whether it is a left or right pointer. 

The reader must bear in mind that  this figure, 
like all the others we will show, is a static snapshot 
of a dynamic processes. When the simulation is ac- 
tually run, one sees the three algorithms running in 
parallel. The surrounding boxes are drawn as each 
corresponding element is probed. By watching these 
three searching methods students get an intuitive feel 
for the relative speeds of the methods. 

An informal analysis of the relative running 
times, for an array containing N elements, is as fol- 
lows: the top algorithm (sequential search in an un- 
sorted array) takes AT probes if the key is not already 
in the array, and about N/2 if the key is in the array; 
the middle algorithm (sequential search in a sorted 
array) requires about N/2 probes for both a success- 
ful and an unsuccessful search; the bottom algorithm 
(bisection searching of a sorted array) takes about 
log2(N ) probes for both a successful and unsuccessful 
search. 

We next run a simulation of the insertion aspect 
of these three algorithms to illustrate the amount of 
data movement required. The unsorted array requires 
no data movement because the new key is inserted 
at the end of the array, whereas the sorted array 
(bottom two algorithms) requires N/2 elements (on 
the average) to be moved to the right in order to make 
room for the new key. 

The students quickly realize that bisection is the 
appropriate searching method, but an unordered ar- 
ray is best for inserting. Since linked lists were used in 
a previous class to maintain order but eliminate data 

Figure 3 - B inary  Tree Bui l t  wi th  52 Random Keys  

movement, we desire a linked list type of a structure 
which can supported bisection. We present Figure 3 
as a solution. This diagram clearly illustrates some 
of the basic properties of binary trees. Each node has 
three parts: the key (the letter of the alphabet), a left 
subtree (which may be null for nodes such as R and a), 
and a right subtree (which may also be null for nodes 
such as a and g). All nodes follow the rule that the 
left son is lexicographically less than the node and the 
right son is lexicographically greater than the node. 

m 
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Figure 4 - His tory  o f  Building a Binary  Tree 
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Figure 3 also illustrates the fact the binary trees are 
not perfectly balanced. For example, the right son of 
Z contains many more elements than its left son. 

Figure 4 illustrates the history of the tree as it 
is built from the letters E, A, S, Y, , E, X, A, M, P, L, 
E (note the blank space following the letter Y). The 
view in the upper left corner is a view of the input. As 
a letter to be added to the tree is read, it is displayed 
in this window. If the letter is successfully added to 
the tree, it is encircled; otherwise (the letter already 
appeared in the tree), the node is displayed as a filled 
circle. 

The next part of the lecture is to explain the 
code needed to search for a node and to add a node 
to a tree. In an upper level algorithms course, it 
would suffice to describe the method at the pseudo- 
code level; in an introductory programming course, 
we would use Figure 5 to illustrate the actual Pascal 
implementation. 

The current line of code that is being executed 
is highlighted in the large window on the left. Each 
procedure is displayed in its own overlapping window. 
Thus, in our example, we see that the Mainline called 
procedure I n s e r t  which then called the current pro- 
cedure, Lookup. As each line of code is executed, the 
graphical results of that  line are displayed in each of 
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Figure 5 - Inserting L into a Binary Tree 

Figure 6 - Multiple Views of  a Large Binary Tree 

the other windows. The view of the tree with nodes in 
rectangular boxes also displays the current values of 
the two key variables, PrevPtr and CurrPtr. Below 
that, there is another view of the tree in order to give 
students a better perspective. The window in the up- 
per left displays a status message describing the state 
of the program. 

When the algorithm is run, the pointers chase 
down the tree, as expected. When procedure Lookup 
returns, CurrFtr will disappear because it is a local 
variable, and FrevPtr will change its name to the 
name of the parameter used by Insert. In addition, 
the window containing the code for Lookup will be 
removed and the code for procedure Insert will then 
be visible. The dark rectangle in the Insert proce- 
dure, next to the BEGIN statement in Lookup is the 
actual line in Insert which called Lookup. 

The lecture concludes by running the algorithm 
on a large set of data. Figure 6 shows the tree which 
is build after 200 random elements are inserted into 
it. The three small views at the bottom show various 
levels of zooming into the the left subtree of the root's 
rightmost grandchild. 

4.2 Sample Lecture - Range Searching 

The problem that this lecture addresses is to 
develop a data structure (and appropriate algorithms) 
to emciently determine which points from a set of 
N points fall within an arbitrary rectangular region 
in the plane. (See Chapter 26 in [Sedg83] for more 
details.) The strategy we'll use is to build a binary 
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Figure 7 - Building a 2-D Tree 

tree with the following property: at the root, use the 
y value to discriminate between the two sons. At the 
next level, use the z value. At the next, the y value. 
And so on. Figure 7 displays the resulting tree after 
the first eleven points have been inserted. The view 
in the middle is of the points in the plane, with thin 
horizontal and vertical line indicating which points 
serve to discriminate vertically and horizontally. The 
bottom view is the 2-D tree as it is being built. The 
top view is a history of the plane view after each point 
has been considered. 

This diagram illustrates dramatically the propert- 
ies of a 2-D tree: the right subtree of root node A con- 
tains only points above A; the left, those points which 
fall below A. The horizontal line at point A shows that 
it divides the plane into two horizontal slabs. There 
is a vertical line through point B to indicate that it is 
a horizontal separator. Nodes in the left subtree of B 
correspond to points which are below A and to the left 
of B (namely, points C, D, G, H, and I). After the tree 
is completely built, the right subtree of F will contain 
nodes corresponding to those points which are above 
A, to the right of E, and above F (namely, points K, 
L, and N). The nodes in the tree are horizontal and 
vertical to indicate whether the corresponding point 
is a horizontal or vertical separator. 

The algorithm for performing the range search 
is a simple extension of an elementary recursive tree 

walk. The idea it to traverse the tree but prune 
it judiciously along the way. We test the point at 
each node in the tree against the range along the 
dimension that is used to divide the plane of the node. 
For example, in Figure 7, when we come to node A, 
we would test whether the range to be searched is 
above point A or below it. If above, we only look 
at the right subtree; if below we only look at the 
left subtree. If point A were inside the search range, 
then we would need to look at both sons. (This 
happens infrequently for reasonably small ranges in 
a large set of points). Figure 8 shows the searching 
algorithm after it has finished running on a larger" 
set of points. Note that each node changes shape to 
indicate its status. Initially, all points in the plane are 
circular and all nodes in the tree are oval (see Figure 
7). When a node has been visited in the traversal 
it becomes rectangular in the tree and square in the 
plane. Rectangles and squares are filled if the point 
is within the desired range. 

The view above the tree illustrates the actual 
probes. Each point is drawn in the same style as in 
the plane view (i.e., initially circles, and becoming 
filled and hollow squares). Each point has a vertical 
line sticking out: the top stick represents the value 
of the z coordinate of the point; the bottom, the y 
coordinate. For each point, one stick is thin and the 
other stick is thick. The thick stick indicates whether 
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Figure 8 - Range Searchin E in a 2-I) Tree 

97 



the point is used in the 2-D tree as a horizontal or 
a vertical discriminator. The desired range is shown 
as a surrounding box: the upper box indicates the 
desired horizontal range; the lower, the vertical range. 
The reader may be amused to compare this view with 
those in Figure 2. 

4.3 Sample Display - Transitive Closure 

The transitive closure of graph is the matrix 
which indicates whether there is a path (of any length) 
between each pair of vertices. Figure 9 shows the 
computation of the transitive closure of a directed 
graph containing thirteen points. The view in the 
lower left is of the adjacency matrix representing the 
graph. A non-white space in the row for point _R 
and the column for point C indicates that there is an 
edge in the original graph from point R to point C. 
The algorithm that is illustrated here is this: consider 
each point on the graph in turn. Perform a depth first 
search (DFS) of the graph, starting at the given point. 
Each vertex that can be reached in the DFS belongs 
in the transitive closure matrix for the given point. 
The view of the graph in the top half illustrates the 
DFS starting at point I. Already, points H, G, J, and 
M have been visited (indicated by a thick edge and a 
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Figure 9 - Computing the Transitive Closure 

Figure 10 - Perspective Projection of a Torus 

square point rather than  a circular point). The I row 
in the transitive closure mat r ix  view (lower right) has 
a dot  in the columns corresponding to points G, H, I ,  
J, and M, indicating tha t  these points can be reached 
from I (note tha t  I can be reached from H). In both  
the adjacency matr ix  views, points C, E, K and L are 
hollow squares indicating tha t  in the DFS, it hasn ' t  
yet been visited, but  is scheduled to  be visited. This 
is known as a point being in the ~fringe. ~ 

Of course, later in this lecture, we also include a 
dynamic display of the operat ion of the well-known 
Warshall algorithm for the same problem. This lec- 
ture is one of a series on graph searching, so students 
by this time are familiar with the basic concepts and 
the various graphical artifacts. Also, as usual, the real 
educational value is in the dynamics of the display, 
which we are obviously unable to show. 

4.4 Sample Display - Differential Geometry 

Figure 10 shows a typical display in the math-  
ematics course on differential geometry.  This cour- 
seware allows a student to define a parametric curve 
or surface and to modify its parameters.  For example, 
while viewing the torus one can specify its two radii. 
In addition, to better unders tand a curve at each 
point, one can add a "tube." Typical tubes are the 
normal or tangent  to a curve. Other  tubes have been 
used which are based on the curvature or torsion at 
each point. Further, in order to t ruly visualize the 
3-dimensional object, one can rotate it about  the z, 
y, or z axes (or any combination thereof), and can 
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Figure II - Brainstem and Caudate 

specify either a perspective or a parallel projection. 
This system has also been used to view 3-dimensional 
projections of 4-dimensional objects, such as the hy- 
percube. 

4.5 Sample Display - Neural Science 

The introductory neural science courses use dis- 
plays such as Figure 11 to help students visualize the 
structure of the brain. The program constructs a 3- 
dimensional image of the various structures of the 
brain by displaying serial cross-sections. It allows the 
student to rotate, translate, and zoom the image in 
order to get a better perspective of it. The user can 
select which of the many parts of the brain are to be 
displayed, get a brief online description of each part, 
and see the hierarchy of the components. The sys- 
tem has been used very successfully in introductory 
neural science where before students had to construct 
a mental image of the brain by studying many 2-D 
slices. 

5. What Have We Learned? 

In the introductory programming course, the 
most useful aspect of the demos was the ability 
to single step through the code and see the con- 
tents of the variables at each step, as well as the 
input and the output. Class demos were usually 
done in ~broadcast" mode, with each student's screen 
mimicking the instructor's. Occasionally class demos 

were done in ~real-time ~ mode, where each pair of 
students executed the demo by themselves at their 
own speed and with their own input data. Regardless 
of the mode by which demos were presented, we found 
that the students made demonstrable gains in speed 
of comprehension over that of the traditional lecture- 
followed-by-homework approach. Students felt that 
multiple dynamic views of the same phenomenon 
helped them to visualize the workings of a prograin 
much better than just stepping through the code on 
paper. Students enjoyed the graphical user-computer 
interaction, and developed sensitivity to modern user 
interface issues such as the need for prompting, self- 
disclosing popup menus and the ability to undo and 
redo user actions within a session. 

In the algorithms and data structures course, 
the demos emphasized graphical displays of the 
data structures and the dynamics of the algorithm 
manipulating the displays. The class ran demos in 
~playback ~ mode, where each student replayed a 
script of keystrokes that the instructor had previously 
saved. The scripts had pauses at key points so that 
students would be able to keep up with the instruc- 
tor. This method has the advantage that students 
can, during their free time, playback the exact pic- 
tures that they saw during class. In addition, during 
class, students can pause to consider a particular dis- 
play and then ~catch-up ~ (or even go ahead slightly, 
if they so desire). 

In the algorithms course, each lecture required 
about fifteen hours of programming (by very ex- 
perienced hackers), and about two hours for develop- 
ing a ~script. ~ As the courseware writers became 
more familiar with the system, many lectures were 
programmed in less five hours. Even this amount of 
time is too high, and we believe that as BALSA ma- 
tures, this time will go down dramatically. 

Our environment is not designed as a CAI sys- 
tem. We do not have tools to measure student com- 
prehension nor do we expect students to run the lec- 
tures for self-learning. The dynamic graphics is a tool 
for explaining and understanding complex, abstract, 
and dynamic concepts. We are able to show stu- 
dents things not possible before: they learn more than 
before and they learn it more effectively. Student 
response in the algorithms course to the question 
What do you think of the demos f was uniformly posi- 
tive. We have not done a bona fide controlled experi- 
ment to measure the advantages of the laboratory set- 
ting, but our feelings are that  the interactive graphics 
in the classroom is a significant advance over other 
pedagogical models. 
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6. Where Do We Go From Here? 

The main area in which we plan to expand on our 
use of the system is in the exploration of new modes 
of interaction in the classroom environment which ex- 
ploit the technical facilities that  we have available. 
Most of our lectures are based on ~broadcast" mode 
or on a ~playback" mode where students "keep up" 
with the instructor through simple keystroke com- 
mands. There are capabilities in BALSA to allow us 
to do much more: for example, a five-minute period 
could be allotted in the lecture to allow each student 
to enter her own data, or to rerun complicated algo- 
rithms at her own pace or on a case that  is of par- 
ticular interest to her. 

Now that  we have a significant amount of cour- 
seware and a year 's experience living in the environ- 
ment, we expect to make significant progress in this 
area on our next pass through the courses. 

Another thing that  we would like is to be able 
to have students actually write or modify small pro- 
grams in the class, and have their programs visually 
animated, as the demo programs are. We are cur- 
rently interfacing BALSA with the PECAN program 
development system [Brow84]. PECAN represents 
programs as abstract syntax trees, uses a syntax- 
directed editor to manipulate pieces of the tree, 
and displays multiple views of the tree both graphi- 
cally (e.g., as Nasi-Sneiderman diagrams, flow-graphs, 
parse trees) and textually [Reis83]. 

In the algorithms course, we have an interac- 
tive demonstration of each of the forty chapters in 
[Sedg83]. The areas we have covered include arith- 
metic algorithms (e.g., random numbers, Gaussian 
elimination, and curve fitting); sorting; searching; 
string processing (e.g., pattern matching, parsing, 
and cryptology); geometric algorithms (e.g., convex 
hull, range searching, and closest point); graph al- 
gorithms (e.g., breadth- and depth-first searching, 
weighted and directed graphs, connectivity); and ad- 
vanced topics (e.g., algorithm machines, linear and 
dynamic programming, and NP-complete problems). 
We would like to use color and extended processor 
power to further improve the presentation of the in- 
formation. This also involves significant research 
efforts into ways to display information never before 
seen. Already, we have used the courseware environ- 
ment in research to develop and analyze new algo- 
rithms [Sedg84]. 

Another area that we'd like to improve on, al- 
though we might be limited by the hardware, is the 
speed needed to display the objects in say, the math 
and neural science environments. 

Unfortunately, the cost of a laboratory such as 
the one we have described is still prohibitive for most 
universities. The list price of each workstation is 
about $20,000 (including the cost of the disk pro 
rated). All indications are that  these prices will 
drop significantly in the next few years. In order 
to disseminate our courseware to other universities, 
we are preparing a videotape with guide. In addi- 
tion, commercial companies are considering develop- 
ing products modeled after our environment for the 
personal- and home-computer marketplaces. 

This laboratory has been the impetus to establish 
Brown's new Institute for Research in Information 
and Scholarship (IRIS), an ambitious plan to equip 
the 10,000 members of the Brown community with 
workstations by the end of the decade [Ship83]. 
Within the next year, we expect to establish a 
number of similar laboratories devoted to other dis- 
ciplines. Although all of the courseware which we 
will describe has been developed for the Apollo's, it 
has a layered design, and can be readily ported to 
other graphics-based personal workstations running a 
Unix-like operating system, such as Suns and PERQs. 
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