
Progress Report:
Brown University Instructional Computing Laboratoryt

Marc H. Brown
Robert Sedgewick

Dept. of Computer Science
Brown University

Providence, RI 02912

Abstract: An instructional computing laboratory, consisting of about 60 high-performance,
graphics-based personal workstations connected by a high-bandwidth, resource-sharing local area
network, has recently become operational at Brown University. This hardware, coupled with an
innovative courseware/software environment, is being used in the classroom in an attempt to
radically improve the state of the art of computer science pedagogy. This paper describes the
current state of the project. The hardware and courseware/software environments are described
and their use illustrated with detailed descriptions, including sample screen images. Some com-
ments are included on our initial reactions to our experience to date with the environment and
on our future plans.

1. Introduction

Several years ago, in anticipation of rapidly
developing improvements in available hardware and
software environments, the Department of Computer
Science at Brown University embarked on a project
designed to put the best possible technology to good
use in the classroom. Projections at that time indi-
cated that it would be feasible to put a large number
of very powerful graphics-based computer systems in
a lecture hall, and we began to plan for the use of
such a system in our teaching programs.

Based on previous experience, we felt that high-
resolution graphics could be used to provide detailed
pictures of programs, data structures, and repre-
sentations of other concepts commonly taught in com-
puter science; that powerful computer systems sup-
porting the displays could be used to expose the
dynamic characteristics essential to such concepts;

tSuppor t for this research waJ provided by the E x x o n
Educat ion Foundation, and by the ONR and DARPA un-
der Contract N00014-e3-K-0146 and ARPA Order No. 4786.
Equipment support was provided by NSF Grant SER80-04974
and by Apollo Computer, Inc. Support for the second author
was provided by NSF Grant MCS-e3-08806.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM-O-89791-126-1/84/O02/O091 $00.75

and that a very high bandwidth connection among
the systems could facilitate exploration of new inter-
active teaching modes. More details on the rationale
for the development of such an environment may be
found in last year's proceedings of this conference
[Brow83].

Actually we have been able to achieve many
of the things that we planned: in the fall of 1983,
we opened an Instructional Computing Laboratory
with about 60 high-performance Apollo computer sys-
tems that is used throughout our curriculum, includ-
ing classroom use for our introductory programming
course and for our algorithms course. The purpose
of this paper is to give some details on the develop-
ment of this laboratory and on its use in classroom
teaching.

The next section describes the laboratory hard-
ware in detail. Section 4 describes our current soft-
ware/courseware environment. Section 5 presents two
typical lectures: the first one is on binary trees and is
suitable for an introductory programming course or a
course in algorithms and data structures. The second
example is on range searching, an advanced use of a
binary tree structure. It is suited for either an algo-
rithms or computational geometry course. We also
briefly outline how other courses are using the lab. In
section 6 we summarize what we've learned from the
first semester of production use. We conclude with a
description of our future plans both for the lab and
for educational computing on campus in general.

91

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952980.808630&domain=pdf&date_stamp=1984-01-01

Figure 1 - Foxboro Auditorium at Brown University

2. Foxboro Auditorium

Foxboro Auditorium, shown in Figure 1, was
designed and specially built in 1982 to house the
Department 's Instructional Computing Environment.
There are eight tiers containing seven personal
workstations each, plus the front podium containing
the instructor's machine. During class, two students
sit at each workstation; outside of the classroom, stu-
dents use machines individually.

Each personal workstation is a powerful Apollo
DN300 featuring a Motorola 68010 processor with
1.SMB of main memory. There is an additional
128KB of memory dedicated to the 1024xS00x1
resolution bit-mapped display, and a hardware "bit-
blt," capable of moving rectangular regions of
memory at the rate of 32 Mbits per second. Each
machine has a 3-buttoned mouse for graphical input.
Groups of five nodes share a 158 MB Winchester disk,
which is attached to a DN400 server. All nodes are
connected by the Apollo proprietary token-passing
ring network running at 12 MHz. The operating sys-
tem is Unix System HI, running on top of Apollo's

Aegis OS. There is a 96-bit network-wide virtual ad-
dress space with a 32-bit virtual address space for
each system object (e.g., file) built on a demand pag-
ing system. There is a completely transparent naming
space over the network, complete with both hard and
soft links.

The Department owns a total of sixty-three
DN300's dedicated to the instructional environment
with almost 2 gigabytes of disk storage. The
Department is also using Apollo computers for much
of its research efforts into graphics-based workstation
environments (see [Pato83] for details). Each of the
eleven faculty members and many staff and graduate
student offices are equipped with an Apollo DN300.
These machines are more powerful than those in the
lab, as they each have 2MB of memory and a private
33MB Winchester disk. Each is equipped with either
a mouse, data tablet, or touch pad. We own about
twenty-five such research machines.

We have two full-time employees and one part-
time student who are responsible for the maintenance
and installation of all hardware. On the software
front, we have a full-time system administration

92

and four part-time student helpers. Full-backups
are done weekly, and incremental-backups are done
daily by our staff. Files to be printed are trans-
fered to the University's main computing facilities
via the Brown University Network, BRUNET, a 300
MHz broadband cable connecting all 125 buildings
on campus. The Apollo network communicates to
the Department's research computers (Vax 11/780)
by various 9600-baud serial links and an Ethernet hi-
speed link.

The laboratory is open to students daily from
9:00 am to 2:00 am, and for the entire night during
~crunch" periods. Whenever the lab is open, there is
a student consultant on duty (to answer non-course-
specific questions and to do first-level trouble shooting
of faulty hardware) and a student waitlist monitor (to
check student id badges and to administer the waiting
list). We have used a simple ~first-come, first-serve"
policy with a one hour maximum time limit rather
successfully, although we spent many days debating
the relative merits of a sundry of more complex algo-
rithms.

With the lab operating in ~production mode"
during the fall of 1983, it was used during lectures
for our two largest courses, and just about all student
programming assignments in the Computer Science
Department were done using the equipment in the
laboratory. The artificial intelligence course (about
70 students) uses a dialect of LISP called T which was
developed by Yale University. The systems program-
ming course (about 50 students) uses both Pascal and
C, in addition to much of the local software developed
for facilitating the creation of interactive graphics
programs. The operating systems course (about 60
students) use a Motorola 68000 simulator developed
locally. In addition, an advanced mathematics course
on differential geometry and the introductory neural
science course use the lab on an regular basis for in-
teractive classroom demonstrations.

The two courses which actually use the laboratory
for interactive demonstrations during the class are
the first semester introductory programming course
(about 200 students) and the third semester algo-
rithms and data structures course (about 175 stu-
dents). In the introductory course, the laboratory
is used in the majority of the lectures, and demos
cover all programming constructs and data structures
taught. In the algorithms course, the laboratory is
used integrally in all of the lectures. Both of these
courses meet in two sections of about 90-100 students.
The students in these courses also use the laboratory
for their programming assignments.

3. The Courseware/Software Environment

BALSA (Brown University Algorithm Simulator
and Animator) is our software environment for the
instructional computing laboratory. Our basic design
philosophy was to develop a system that would allow
a user to see and manipulate his programs by provid-
ing pictures of his data structures that mimic the
representation that he uses himself. Since computer
programs are inherently dynamic objects, dynamic
pictures must be used to illustrate the operational
characteristics of programs.

We set out to develop a comprehensive environ-
ment that would support the systematic animation of
programs in a classroom environment. Our primary
goals were are follows:

• It was desired that the instructor animating a
program just write code for the specific algorithm
being animated. The demo writer should not
need to write any utilities, user-interaction routines
(other than specifying a menu table to a front end
module), or even pictorial representations of com-
mon objects.

• It was desired to have one common set of familiar,
"standard" controls. Thus, once students learned
how to interact with the system in one course, they
would be able to use the system in the same way
for all other courses.

• It was desired to build a rich set of common tools for
displaying and interacting with common data. For
example, after some basic primitives are developed
for displaying a binary tree, the myriads of pro-
grams which use a binary tree data structure could
readily be animated. Primitives might include dis-
playing a static tree, pruning and moving subtrees,
and adding new nodes.

• It was desired to research various techniques for
animating algorithms. For example, what is the
best way to animate a convex hull algorithm?
matrix multiplication? file compression?

• It was desired to build a very robust front end
that would be able to accommodate all user-
interaction and program control with modern tech-
niques, exemplified by the various Xerox environ-
ments.

• It was desired to have a rich set of common
"utilities." Utilities include getting hardcopy of
screen, saving a snapshot of the "world," and play-
ing back a previous session.

BALSA graphically displays multiple views of
the user's program and data structures. Each view
is automatically maintained during execution to give
the user a motion picture of his program in action in

93

the terms which make it easiest to understand. The
user controls which views are active, as well as the size
and location of windows in which views are displayed.
Windows are rectangular regions of the screen that
can overlap without interference. The user can step
through a program both forward and backward at
any speed he sets, mark a point during the execution
to return to later, set and clear breakpoints, and
interrupt an executing program.

The user can both zoom and scroll through the
graphical contents of a view. In addition, it is easy
for an experienced programmer to write additional
views to provide alternative representations. Thus,
by having multiple views of a given data structure
with different panning and zooming factors, one can
simultaneously study it from both global and local
perspectives. (See Figures 5 and 6, in particular.)

One very useful utility in BALSA is the ability
for one user to "broadcast ~ his display to one or
more other users; the designated recipients then see
on their screen exactly what the broadcaster is doing
on his screen. This can be used in the laboratory in
a number of modes: first, the instructor can show his
screen to students to introduce concepts. Then, stu-
dents can continue using the screen that was broad-
cast to their station to work further on the new con-
cepts. Finally, the instructor (or teaching assistants)
can "monitor" onto students' displays, to get feed-
back on how each student is mastering the subject
matter. Other utilities include saving a replayable,
user-editable history of a user session, and making a
hardcopy bitmap of the screen.

4. Examples

In this section, we illustrate the use of the
laboratory through several examples. The first, on
binary trees, is suited for either an introductory
programming course or a course on algorithms and
data structures. The second sample lecture is on
range searching using an extension of binary trees
called 2-D trees and is geared for a beginning or ad-
vanced course on algorithms and data structures or
a graduate course on computational geometry. The
third example illustrates the computation of the tran-
sitive closure of a directed graph. It is also suited
for an algorithms or combinatorics course. These
three examples, Figures 2-9, have all been developed
in BALSA (we've deleted the logo and prompt areas
from most of the figures in order to conserve space).
The fourth example is from a course on differential
geometry, and the last example is from an introduc-

tory neural science course.

In the following descriptions, we've concentrated
on explaining what the screen images are and what
can be done with them, rather than how the displays
are actually used in the classroom. Typically, con-
cepts are introduced with each student's computer
mimicking the instructor's; then students are given
an opportunity to execute the programs at their own
pace and with their own data or preassigned data,
often including the sample data presented in the
textbook.

4.1 Sample Lecture - Binary Trees

The motivation for this lecture is to develop a
program which will maintain the information in a
phone book containing 1 million entries. One must
be able to insert new entries and search for entries
relatively efficiently. We first illustrate what e~ic/ent
means by comparing the values of N, N/2, and
log2(N) for N ---- 1,000, 000 on a computer capable
of performing 100 operations per second. We present
three algorithms: (1) maintain an unordered array,
and then search sequentially through it; (2) maintain
a sorted array, and also search it sequentially; and (3)
maintain a sorted array, but use a bisection algorithm
for the search. Figure 2 shows the computer screen

II,,,ill,lll,,nllhll,,hlll ILII!,,It,IILI L,,I, II, I
,,,,,,,,,,,,,,,,llllllllllLln lllklllllltlllllllllllllllllllllllll I [l l l l l l l + l J

EH[l l l t l ,m

m i l

it11111ili1111111111
m

Figure 2 - Array Searching Methods

94

after a simulation of the searching aspect of the three
methods.

There are three large rectangular regions on
the screen, corresponding to the three different algo-
r/thins. Each algorithm window contains a graphi-
cal view of the algorithm's data structure, the array
of keys. Each element of the array is displayed as
a stick; the larger the stick, the larger the element
of the array. Each array contains 90 elements; the
white space at the right of each view indicates tha t
the array has been defined to hold at most 105 ele-
ments. The thin box surrounding a stick indicates
that we ~probed ~ that element of the array in search-
ing for the desired key. The size of the surrounding
box indicates the value of the element for which we
are searching. We are searching for an element which
is about one-quarter of the way between the minimum
and maximum values. The bottom view, of bisection,
has some large thin vertical lines. These lines repre-
sent the left and right ~pointers ~ in the search. Each
~pointer" line has a little box at the top and at the
bottom indicating whether it is a left or right pointer.

The reader must bear in mind that this figure,
like all the others we will show, is a static snapshot
of a dynamic processes. When the simulation is ac-
tually run, one sees the three algorithms running in
parallel. The surrounding boxes are drawn as each
corresponding element is probed. By watching these
three searching methods students get an intuitive feel
for the relative speeds of the methods.

An informal analysis of the relative running
times, for an array containing N elements, is as fol-
lows: the top algorithm (sequential search in an un-
sorted array) takes AT probes if the key is not already
in the array, and about N/2 if the key is in the array;
the middle algorithm (sequential search in a sorted
array) requires about N/2 probes for both a success-
ful and an unsuccessful search; the bottom algorithm
(bisection searching of a sorted array) takes about
log2(N) probes for both a successful and unsuccessful
search.

We next run a simulation of the insertion aspect
of these three algorithms to illustrate the amount of
data movement required. The unsorted array requires
no data movement because the new key is inserted
at the end of the array, whereas the sorted array
(bottom two algorithms) requires N/2 elements (on
the average) to be moved to the right in order to make
room for the new key.

The students quickly realize that bisection is the
appropriate searching method, but an unordered ar-
ray is best for inserting. Since linked lists were used in
a previous class to maintain order but eliminate data

Figure 3 - B inary Tree Bui l t wi th 52 Random Keys

movement, we desire a linked list type of a structure
which can supported bisection. We present Figure 3
as a solution. This diagram clearly illustrates some
of the basic properties of binary trees. Each node has
three parts: the key (the letter of the alphabet), a left
subtree (which may be null for nodes such as R and a),
and a right subtree (which may also be null for nodes
such as a and g). All nodes follow the rule that the
left son is lexicographically less than the node and the
right son is lexicographically greater than the node.

m

::ii ® ® ® ® O Q ® O @ ® ~

ilillll : :

iii:i o z

i i i i~ i~ i i i i i i i i i i i !~ i i~ i i i i i i i i i i i i i i !~ i i i i i i : i i i ! i i i i i~ i i~ i i : i i i i i i i i i i i i i l i : i : i i : : ! ! i i i i i i i : i i !

Figure 4 - His tory o f Building a Binary Tree

95

Figure 3 also illustrates the fact the binary trees are
not perfectly balanced. For example, the right son of
Z contains many more elements than its left son.

Figure 4 illustrates the history of the tree as it
is built from the letters E, A, S, Y, , E, X, A, M, P, L,
E (note the blank space following the letter Y). The
view in the upper left corner is a view of the input. As
a letter to be added to the tree is read, it is displayed
in this window. If the letter is successfully added to
the tree, it is encircled; otherwise (the letter already
appeared in the tree), the node is displayed as a filled
circle.

The next part of the lecture is to explain the
code needed to search for a node and to add a node
to a tree. In an upper level algorithms course, it
would suffice to describe the method at the pseudo-
code level; in an introductory programming course,
we would use Figure 5 to illustrate the actual Pascal
implementation.

The current line of code that is being executed
is highlighted in the large window on the left. Each
procedure is displayed in its own overlapping window.
Thus, in our example, we see that the Mainline called
procedure I n s e r t which then called the current pro-
cedure, Lookup. As each line of code is executed, the
graphical results of that line are displayed in each of

Inserting key <:L> In tree

PRO~DIJflE Nalnl Ins;

u~/~L~URE Insert (V~ root : p t r) :
F1ROCEO~E LookUp (root

keU
VM prevptr
VM found

YNi
c*rrpte: pte; (w -> ¢~,-~ ,.

MG~
prevpt~ := loot:
¢m-pt r := coot;
found := FATS(;
NHllE (©~'rpt~ 0 I1].) NID (NOT Found

(key = ¢m'rptrlLkeu) IHEN
found := IRI~

ELSE]}" (keu < cu~pb'e.keu) 1lIEN
¢urrptr := CUl~ptrlO. lertpt l ,

ELSE
cm'rptr := ©treplLell.rightpte;

ENO;
DIO: (| LookUp I)

® @ ® ® O Q ® Q @ ® L

Figure 5 - Inserting L into a Binary Tree

Figure 6 - Multiple Views of a Large Binary Tree

the other windows. The view of the tree with nodes in
rectangular boxes also displays the current values of
the two key variables, PrevPtr and CurrPtr. Below
that, there is another view of the tree in order to give
students a better perspective. The window in the up-
per left displays a status message describing the state
of the program.

When the algorithm is run, the pointers chase
down the tree, as expected. When procedure Lookup
returns, CurrFtr will disappear because it is a local
variable, and FrevPtr will change its name to the
name of the parameter used by Insert. In addition,
the window containing the code for Lookup will be
removed and the code for procedure Insert will then
be visible. The dark rectangle in the Insert proce-
dure, next to the BEGIN statement in Lookup is the
actual line in Insert which called Lookup.

The lecture concludes by running the algorithm
on a large set of data. Figure 6 shows the tree which
is build after 200 random elements are inserted into
it. The three small views at the bottom show various
levels of zooming into the the left subtree of the root's
rightmost grandchild.

4.2 Sample Lecture - Range Searching

The problem that this lecture addresses is to
develop a data structure (and appropriate algorithms)
to emciently determine which points from a set of
N points fall within an arbitrary rectangular region
in the plane. (See Chapter 26 in [Sedg83] for more
details.) The strategy we'll use is to build a binary

96

!i!!!!i!!!:i:i:iiiiiiiilsi!/:!i:iiiiii;ili!!i • ~ i!ii

{ t - ii~! !

Figure 7 - Building a 2-D Tree

tree with the following property: at the root, use the
y value to discriminate between the two sons. At the
next level, use the z value. At the next, the y value.
And so on. Figure 7 displays the resulting tree after
the first eleven points have been inserted. The view
in the middle is of the points in the plane, with thin
horizontal and vertical line indicating which points
serve to discriminate vertically and horizontally. The
bottom view is the 2-D tree as it is being built. The
top view is a history of the plane view after each point
has been considered.

This diagram illustrates dramatically the propert-
ies of a 2-D tree: the right subtree of root node A con-
tains only points above A; the left, those points which
fall below A. The horizontal line at point A shows that
it divides the plane into two horizontal slabs. There
is a vertical line through point B to indicate that it is
a horizontal separator. Nodes in the left subtree of B
correspond to points which are below A and to the left
of B (namely, points C, D, G, H, and I). After the tree
is completely built, the right subtree of F will contain
nodes corresponding to those points which are above
A, to the right of E, and above F (namely, points K,
L, and N). The nodes in the tree are horizontal and
vertical to indicate whether the corresponding point
is a horizontal or vertical separator.

The algorithm for performing the range search
is a simple extension of an elementary recursive tree

walk. The idea it to traverse the tree but prune
it judiciously along the way. We test the point at
each node in the tree against the range along the
dimension that is used to divide the plane of the node.
For example, in Figure 7, when we come to node A,
we would test whether the range to be searched is
above point A or below it. If above, we only look
at the right subtree; if below we only look at the
left subtree. If point A were inside the search range,
then we would need to look at both sons. (This
happens infrequently for reasonably small ranges in
a large set of points). Figure 8 shows the searching
algorithm after it has finished running on a larger"
set of points. Note that each node changes shape to
indicate its status. Initially, all points in the plane are
circular and all nodes in the tree are oval (see Figure
7). When a node has been visited in the traversal
it becomes rectangular in the tree and square in the
plane. Rectangles and squares are filled if the point
is within the desired range.

The view above the tree illustrates the actual
probes. Each point is drawn in the same style as in
the plane view (i.e., initially circles, and becoming
filled and hollow squares). Each point has a vertical
line sticking out: the top stick represents the value
of the z coordinate of the point; the bottom, the y
coordinate. For each point, one stick is thin and the
other stick is thick. The thick stick indicates whether

 ' !!TT!ITITIITT

Figure 8 - Range Searchin E in a 2-I) Tree

97

the point is used in the 2-D tree as a horizontal or
a vertical discriminator. The desired range is shown
as a surrounding box: the upper box indicates the
desired horizontal range; the lower, the vertical range.
The reader may be amused to compare this view with
those in Figure 2.

4.3 Sample Display - Transitive Closure

The transitive closure of graph is the matrix
which indicates whether there is a path (of any length)
between each pair of vertices. Figure 9 shows the
computation of the transitive closure of a directed
graph containing thirteen points. The view in the
lower left is of the adjacency matrix representing the
graph. A non-white space in the row for point _R
and the column for point C indicates that there is an
edge in the original graph from point R to point C.
The algorithm that is illustrated here is this: consider
each point on the graph in turn. Perform a depth first
search (DFS) of the graph, starting at the given point.
Each vertex that can be reached in the DFS belongs
in the transitive closure matrix for the given point.
The view of the graph in the top half illustrates the
DFS starting at point I. Already, points H, G, J, and
M have been visited (indicated by a thick edge and a

iii ili
!iil !iiiiiii

• ii • rA-" ; i i n t I I i i i

1".." E1 ;::

I °°'.'" I11""'": •

t ° ° ' U " ' "
"$ " " J l " -"

Figure 9 - Computing the Transitive Closure

Figure 10 - Perspective Projection of a Torus

square point rather than a circular point). The I row
in the transitive closure mat r ix view (lower right) has
a dot in the columns corresponding to points G, H, I ,
J, and M, indicating tha t these points can be reached
from I (note tha t I can be reached from H). In both
the adjacency matr ix views, points C, E, K and L are
hollow squares indicating tha t in the DFS, it hasn ' t
yet been visited, but is scheduled to be visited. This
is known as a point being in the ~fringe. ~

Of course, later in this lecture, we also include a
dynamic display of the operat ion of the well-known
Warshall algorithm for the same problem. This lec-
ture is one of a series on graph searching, so students
by this time are familiar with the basic concepts and
the various graphical artifacts. Also, as usual, the real
educational value is in the dynamics of the display,
which we are obviously unable to show.

4.4 Sample Display - Differential Geometry

Figure 10 shows a typical display in the math-
ematics course on differential geometry. This cour-
seware allows a student to define a parametric curve
or surface and to modify its parameters. For example,
while viewing the torus one can specify its two radii.
In addition, to better unders tand a curve at each
point, one can add a "tube." Typical tubes are the
normal or tangent to a curve. Other tubes have been
used which are based on the curvature or torsion at
each point. Further, in order to t ruly visualize the
3-dimensional object, one can rotate it about the z,
y, or z axes (or any combination thereof), and can

98

AUDA~E

Figure II - Brainstem and Caudate

specify either a perspective or a parallel projection.
This system has also been used to view 3-dimensional
projections of 4-dimensional objects, such as the hy-
percube.

4.5 Sample Display - Neural Science

The introductory neural science courses use dis-
plays such as Figure 11 to help students visualize the
structure of the brain. The program constructs a 3-
dimensional image of the various structures of the
brain by displaying serial cross-sections. It allows the
student to rotate, translate, and zoom the image in
order to get a better perspective of it. The user can
select which of the many parts of the brain are to be
displayed, get a brief online description of each part,
and see the hierarchy of the components. The sys-
tem has been used very successfully in introductory
neural science where before students had to construct
a mental image of the brain by studying many 2-D
slices.

5. What Have We Learned?

In the introductory programming course, the
most useful aspect of the demos was the ability
to single step through the code and see the con-
tents of the variables at each step, as well as the
input and the output. Class demos were usually
done in ~broadcast" mode, with each student's screen
mimicking the instructor's. Occasionally class demos

were done in ~real-time ~ mode, where each pair of
students executed the demo by themselves at their
own speed and with their own input data. Regardless
of the mode by which demos were presented, we found
that the students made demonstrable gains in speed
of comprehension over that of the traditional lecture-
followed-by-homework approach. Students felt that
multiple dynamic views of the same phenomenon
helped them to visualize the workings of a prograin
much better than just stepping through the code on
paper. Students enjoyed the graphical user-computer
interaction, and developed sensitivity to modern user
interface issues such as the need for prompting, self-
disclosing popup menus and the ability to undo and
redo user actions within a session.

In the algorithms and data structures course,
the demos emphasized graphical displays of the
data structures and the dynamics of the algorithm
manipulating the displays. The class ran demos in
~playback ~ mode, where each student replayed a
script of keystrokes that the instructor had previously
saved. The scripts had pauses at key points so that
students would be able to keep up with the instruc-
tor. This method has the advantage that students
can, during their free time, playback the exact pic-
tures that they saw during class. In addition, during
class, students can pause to consider a particular dis-
play and then ~catch-up ~ (or even go ahead slightly,
if they so desire).

In the algorithms course, each lecture required
about fifteen hours of programming (by very ex-
perienced hackers), and about two hours for develop-
ing a ~script. ~ As the courseware writers became
more familiar with the system, many lectures were
programmed in less five hours. Even this amount of
time is too high, and we believe that as BALSA ma-
tures, this time will go down dramatically.

Our environment is not designed as a CAI sys-
tem. We do not have tools to measure student com-
prehension nor do we expect students to run the lec-
tures for self-learning. The dynamic graphics is a tool
for explaining and understanding complex, abstract,
and dynamic concepts. We are able to show stu-
dents things not possible before: they learn more than
before and they learn it more effectively. Student
response in the algorithms course to the question
What do you think of the demos f was uniformly posi-
tive. We have not done a bona fide controlled experi-
ment to measure the advantages of the laboratory set-
ting, but our feelings are that the interactive graphics
in the classroom is a significant advance over other
pedagogical models.

99

6. Where Do We Go From Here?

The main area in which we plan to expand on our
use of the system is in the exploration of new modes
of interaction in the classroom environment which ex-
ploit the technical facilities that we have available.
Most of our lectures are based on ~broadcast" mode
or on a ~playback" mode where students "keep up"
with the instructor through simple keystroke com-
mands. There are capabilities in BALSA to allow us
to do much more: for example, a five-minute period
could be allotted in the lecture to allow each student
to enter her own data, or to rerun complicated algo-
rithms at her own pace or on a case that is of par-
ticular interest to her.

Now that we have a significant amount of cour-
seware and a year 's experience living in the environ-
ment, we expect to make significant progress in this
area on our next pass through the courses.

Another thing that we would like is to be able
to have students actually write or modify small pro-
grams in the class, and have their programs visually
animated, as the demo programs are. We are cur-
rently interfacing BALSA with the PECAN program
development system [Brow84]. PECAN represents
programs as abstract syntax trees, uses a syntax-
directed editor to manipulate pieces of the tree,
and displays multiple views of the tree both graphi-
cally (e.g., as Nasi-Sneiderman diagrams, flow-graphs,
parse trees) and textually [Reis83].

In the algorithms course, we have an interac-
tive demonstration of each of the forty chapters in
[Sedg83]. The areas we have covered include arith-
metic algorithms (e.g., random numbers, Gaussian
elimination, and curve fitting); sorting; searching;
string processing (e.g., pattern matching, parsing,
and cryptology); geometric algorithms (e.g., convex
hull, range searching, and closest point); graph al-
gorithms (e.g., breadth- and depth-first searching,
weighted and directed graphs, connectivity); and ad-
vanced topics (e.g., algorithm machines, linear and
dynamic programming, and NP-complete problems).
We would like to use color and extended processor
power to further improve the presentation of the in-
formation. This also involves significant research
efforts into ways to display information never before
seen. Already, we have used the courseware environ-
ment in research to develop and analyze new algo-
rithms [Sedg84].

Another area that we'd like to improve on, al-
though we might be limited by the hardware, is the
speed needed to display the objects in say, the math
and neural science environments.

Unfortunately, the cost of a laboratory such as
the one we have described is still prohibitive for most
universities. The list price of each workstation is
about $20,000 (including the cost of the disk pro
rated). All indications are that these prices will
drop significantly in the next few years. In order
to disseminate our courseware to other universities,
we are preparing a videotape with guide. In addi-
tion, commercial companies are considering develop-
ing products modeled after our environment for the
personal- and home-computer marketplaces.

This laboratory has been the impetus to establish
Brown's new Institute for Research in Information
and Scholarship (IRIS), an ambitious plan to equip
the 10,000 members of the Brown community with
workstations by the end of the decade [Ship83].
Within the next year, we expect to establish a
number of similar laboratories devoted to other dis-
ciplines. Although all of the courseware which we
will describe has been developed for the Apollo's, it
has a layered design, and can be readily ported to
other graphics-based personal workstations running a
Unix-like operating system, such as Suns and PERQs.

7. Acknowledgements

Many people have helped to make the laboratory
successful. In particular, Andy van Dam's tireless
efforts have made the physical environment far more
impressive than it otherwise would have been; he has
also contributed to the project as the instructor of the
introductory programming course. Tom Doeppner
was also instrumental in procuring initial funding for
the project.

David Durfee and Jeff Coady have been the men
behind the scenes, ensuring that all hardware and
vendor-supplied software is working correctly. Steve
Reiss, Joe Pato, and Dave Nanian wrote significant
pieces of the underlying software. Mike Strickman
has been a key implementor of the courseware en-
vironment.

The mathematics viewing system was imple-
mented by Eddie Grove and Rich Hawkes; the neural
science viewing system by Steve Drucker. Both
of these systems started as final projects for the
graduate graphics course and were converted into
production quality during the summer of 1983. Perry
Busalacchi, Karen Smith and Liz Waymire ran ex-
perimental versions of the introductory programming
course in the spring of 1983 (with 20 students) and
in the summer of 1983 (with 60 students) under
Andy van Dam's supervision, and wrote much of the

100

courseware that is still being used in the introduc-
tory programming course. Kate Smith Greenfield
has helped out in developing courseware for, the al-
gorithms course.

Special thanks goes to Janet Incerpi whose help
in the preparation of this paper was invaluable.

[Brow84]

[Brow83]

[Pato83]

[Reis83]

[Ship83]

[Sedg84]

[Sedg83]

8. References

Brown, Marc H. and Reiss, Steven P., =To-
ward a Computer Science Environment for
Powerful Personal Machines," in Prec. of
the 17th Hawaii International Conference
on System Sciences, January 1984.
Brown, Marc H., Meyrowitz, Norman and
van Dam, Andries, =Personal Computer
Networks and Graphical Animation: Rat-
ionale and Practice for Education," ACM
SIGCSE Bulletin 15, 1 (February 1983),
296-307.
Pato, Joseph N., Reiss, Steven P., and
Brown, Marc H., =Brown University Work-
station Environment Summary Paper, ~
Technical Report, Brown University,
Providence, RI, 1983.
Reiss, Steven P.,=PECAN: A Program
Development System that Supports Mult-
iple Views," Technical Report, Brown
University, Providence, RI, 1983.
Shipp, William S., Meyrowitz, Norman
and van Dam, Andries,=Networks of
Scholar's Workstations in a University
Community," in Proc. of the IEEE
Compcon Fall 1983.

Sedgewick, Robert and Vitter, Jeffrey
S.,=Shortest Paths in Euclidean Graphs,"
Technical Report, Brown University,
Providence, RI, 1984.
Sedgewick, Robert, Algorithms, Addison-
Wesley, Reading, MA, 1983.

The following references were not cited directly.
However, they are very good background reading and
viewing for program visualization and animation.

[Baec75]

[Baec81]

[Hero82]

[Know66]

[MyerS0]

[Plat81]

Baecker, Ronald, =Two System Which
Produce Animated Representations of the
Execution of Computer Programs," ACM
$1GCSE Bulletin 7, 1 (February 1975),
158-167.

Baecker, Ronald,=Sorting out Sorting,"
16ram color sound file, 25 minutes, 1981.

Herot, C., et. al.,=An Integrated
Environment for Program Visualization,"
in Automated Tools for Information
Systems Design, H.J. Schneider and
A.I. Wasserman, Ed., North Holland
Publishing Co., 1982, pp. 237-259.

Knowlton, Ken,"L6: Bell Telephone
Laboratories Low-Level Linked List Lang-
uage," two black and white sound films,
1966.

Myers, Brad,=Displaying Data Structures
for Interactive Debugging," CSL-80-7,
Xerox PARC, Pale Alto, CA, 1980.

Plattner, Bernhard and Nievergelt, ffurg,
=Monitoring Program" Execution: A
Survey," Computer 14 (November 1981),
76-93.

101

