
Software Haintenance: A Budgeting Dilemma
by Dan Hocking and Joe Celko

Army Institute for Research in Management,
Information and Computer Science

SUMMARY: There is'considerable effort to reduce the software budget devoted to
the maintenance of applications systems. This effort will have the effect of
improving productivity of development and maintenance programmers. This means
that for a given system over a given time period, the amount spent on software
maintenance can be reduced significantly. The reduction might even reach the
eighty per cent sometimes shown in the literature. We support and applaud the
efforts to improve software maintenance procedures. Despite this type of
reduction, it is not certain that organizations will spend less on maintenance
relative to development. It is likely that the opposite will occur as more
systems are being supported. This paper shows how that can happen through the
derivation of some simple cost equations.

KEYWORDS: software maintenance, budget, project management

INTRODUCTION: Systems tend to behave in a
counter intuitive fashion. When a direct
solution is applied to a problem, the
result can be the opposite of the result
intended by the people who applied the
solution. There is a belief that the high
cost of software maintenance Ran be
reduced by improving the quality of
software. It seems reasonable that if
every piece of software is easier and
cheaper to maintain, then the funds
budgeted for software maintenance can be
reduced. There is much effort to reduce
the costs of data processing in the
Federal Government and specifically within
DoD (e.g. Ada). At the 1983 Federal
Software Conference, sixty seven percent
of software costs were reported to be
software maintenance. [SOR83] In another
session, it was reported that structured

prograr~ning practices can reduce software
maintenance costs by eighty percent. The
proceedings did not identify the budgetary
implications of such an improvement. Let
us inspect the premise, granting a whole
set of optimistic and simplifying assump-
tions, and see what really happens.

BACKGROUND: James Martin and Carma McClure
have published a book titled "Software
)~intenance: The Problem and its Solu-
tions."[MAR83] In that book they portray
software maintenance as something to be
solved and indicate that some organiza-
tions have reduced their time spent on
software maintenance from eighty percent
of the time to twenty percent of their
time. That book offers several construc-
tive approaches to reducing software
maintenance. We applaud these efforts and
support them. We believe, however, that
the Data Processing budget will continue
to be heavily oriented toward software
maintenance and that to promise otherwise
is being unduly optimistic. The purpose
of this paper is to demonstrate that the
Permission to copy without ~e all or part of th~ material is granted
prodded that the copies am not made or distributed Dr divot
comme~ial advantage, the ACM copyright notice and the title of the

© 1984 ACM-0-89791-126-1/84/002/0125 $00.75
125

dramatic improvements in software mainte-
nance will not necessarily lead to dra-
matic shifts from software maintenance
activities to software development ac-
tivities for the data processing staff.
Even if such a shift is accomplished
initially, in the absence of continuing
improvements in software maintenance
procedures or in continuing increase of
progran~ning resources, the steady state
division of resources between software
development and software maintenance will
be to devote one hundred per cent of all
prograrmning resources to software mainte-
nance.

We accept the premise of Parikh &
Zvegintzov that '~laintenance is an essent-
ial element in the life of a software
system."[PAR83] Furthermore, we are using
their definition of software maintenance
which is "Software maintenance is the work

done on a software system after it becomes
operational." Specifically this includes
the activities that Martin and McClure
call Corrective Maintenance, Adaptive
Maintenance, and Enhancement Maintenance.-
[MAR83] We would even include the Support
activities that Martin and McClure identi-
fy separately.

With the above background we do believe
that for a given system you can reduce
the annual cost of maintenance dramati-
cally. If, for example, a system is
maintained traditionally and you must have
two programmers working full time, you
will have reduced software maintenance by
fifty per cent if by using new technology
you need only one programmer working full
time. If the operational life of the
system is doubled, then for the life of
the system, total maintenance costs are
the same even though annual costs of
maintenance have been reduced fifty per
cent.

publication and i~ date appear, and notice is given that copying is by
permission of the Association Dr Computing Machinery. To copy
otherwise, or to republish, requires a Be and/or specific permission.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952980.808636&domain=pdf&date_stamp=1984-01-01

For the organizations improved software
maintenance procedures free up resources
for new development. As new systems are
developed and placed into operation, more
maintenance resources are required. Two
systems requiring one programmer per year
cost the same as one system requiring two
programmers per year. It is clear that
productivity has been improved with the
improved maintenance procedures even if
total maintenance costs have not been
reduced and the percentage of costs
devoted to software maintenance has not
been reduced.

DERIVATION OF COST EQUATIONS:

We will establish some simple cost equa-
tions to discuss the effect of programm-
ing practices on costs. The first equa-
tion is:

(I) TC = DC +MC

TC is the total cost of a particular
system in personnel months. DC is t h e
d e v e l o p m e n t cost for the system in per-
sonnel months. MC is the maintelmnce cost
for the system in personnel months. The
expression for development costs can be

e x p a n d e d a s :

(2) DC = DP * DT

DP is the average number of programmers
involved in the development of a system.
DT is the number of months in the develop-
ment phase of the project. This express-
ion could be replaced with a summation of
cost for each month of the development,
b u t let us make life as simple as possi-
ble. In a similar ways the expression for
maintenance costs can be expressed as:

(3) MC = MP * MT

MP is the average number of programmers
involved in maintenance. MT is the number
of months in the operational life of the
system. There are other costs involved,
but again we are simplifying. With t h e
expansions of equations (2) and (3),
equation (I) becomes:

(4) TC = (DP * DT) + (MP * MT)

If we change software practices, then we
can affect any of the four terms. That
can be represented as:

(5) TC = ((a*DP)*(b*DT)) ÷ ((c*MP)*(d*MT))

The terms a, b, c, and d represent the
relationship of the various factors
between the original and the new improved
practices. The implication of improved
software practices is that we can reduce
the level of effort required to develop a
system (factor a). We assume that this
will be a desirable result. We might also

126

reduce the amount of elapsed time required
for developing a system (factor b). That
also is assumed to be a desirable result.
We may also reduce the level of effort
required for maintaining a system (factor
c). We assume that that would be a desir-
able result. The change in the remaining
term d must, howevers represent an in-
crease since that is what would be con-
sidered desirable. In equation (5), then,
it is desirable for a, b, and c to all be
less than one, while it is desirable for d
to be greater than one.

RATIO OF MAINTENANCE COSTS ~O TOTAL COSTS:

It is time now to change perspective.
Since we are interested in the proportion
of expenses that are required for mainte-
nance, we can set up an equivalent ex-
press ion for that term:

(6) PHC = MCITC

In this expressionj PMC stands for the
percentage of costs devoted to mainte-
nance, MC stands as before for Maintenance
costs (in personnel months) and TC stands
for Total Costs. We can expand this
equation using equation 3 and equation 5
to express PMC in the same terms that we
were using before. The resulting equation
looks like:

(7)
((c * MP) * (d * MT))

((a*DP) * (b*DT)) ÷ ((c*MP) * (d~, iT))

Every term in this equation has the same
meanlng that it had before and we can
rearrange it for our convenience and
substitute back to obtain:

(8) c * d * MC
P~C ~

(a * b * DC) ÷ (c * d * MC)

SAMPLE COST RELATION DATA:

What figures should we use for those
parameters? Let us pick the most opti-
mistic ones published to date. The
results of a Structured Programming Study
by Infotech involving 1,000 companies
worldwide was quoted at the 1983 Federal
Software Conference. [SOR83] They claimed
that Structured Programming can

a. Reduce project time (in
programmer/months) up to 50%

b. Reduce implementation time up to 30%
c. Reduce program maintenance up to 80%

Having this data, we must now interpret
what it means. In terms of the above
equations for example, the reduction of
program maintenance could be that PMC is

reduced from 67 per cent to 13.4 per cent.
An alternative explanation is that it
could be that MC is reduced and the
product c*d is equal to 0.2. A third
alternative interpretation is that d is
equal to 0.2. It is our belief that the
only valid interpretation is the last
a Iternat ive.

DISCUSSION OF ALTERNATE INTERPRETATIONS OF
SAMPLE DATA

Let us examine the alternatives. In the
first case, if we assume that develop-
ment costs remain constant, then we have:

c * d * M C
(9) PHC = 0 . 1 3 4

D C + c * d * M C

F o r t he moment, assume d ffi I s i n c e i t i s
u n l i k e l y t h a t a s h o r t e r o p e r a t i o n a l l i f e
w o u l d be c o n s i d e r e d f a v o r a b l e . We can
t h e n s o l v e f o r c.

0. 1 3 4 * DC
(1 0) c 0 . 1 5 4 * DC / MC

0. 866 * HC

With DC/MC currently equal to 0.5 the
final value of c is 0.077. Such a change
in the rate of maintenance work would
surely have some effect on the length of
the operational life. Any such effect
means that d becomes greater than one and
that c becomes even yet smaller. The
effect has not been so measurable that
this seems a valid interpretation espe-
cially when we also see the development
costs are also reduced. Taken together,
we find the initial interpretation that
the reduction in maintenance means that
the proportion of resources devoted to
maintenance is reduced by eighty per cent
to be an improbable interpretation.

The second alternative was that MC was
reduced by eighty per cent. This would

mean the product c*d would equal 0.2. In
this case, assuming the operational life
is not changed for the moment xesults in a
value of c equal to 0.2. With this change
in ~he ra~ of ~.~¢ntenance work applied to
a system, we would expect a longer opera-
tional life. If we apply this expectation
of a longer operational life, the value
of c becomes smaller again. We reject
this interpretation as being at variance
with current experience.

Although it is not the focus of this paper
we have a similar ambiguity with the data
for project time. We can assume that the
data represents the product of a*b or the
factor a. Since we have ~ :iue for b ~:c
the referenced stu i ~es no, c ~ear ly
state the meaning, we will here assume
that project time represents the factor a.
Although the numbers will change if we
make the alternative assumption it does
not affect the main conclusion that we
cannot expect improved programming prac-

rices to significantly change the propor-
tion of people involved in software
maintenance.

EFFECTS OF CHANGES IN SOFTWARE DEVELOPMENT
AND MAINTENANCE PRACTICES

The remainder of the paper will use the
third interpretation to show the effect
of improved programming practices on the
proportion of people involved in software
maintenance. We make the assumption that
the above reductions in software develop-
ment costs and software maintenance costs
are accomplished at the same time. We
can substitute into equation (5), using
project time as the rate of resource
expenditures during development, a = 0.50.
We will use implementation time as the
length of the development project, b =
0.70. And finally, we will use the figure
for program maintenance as the rate
maintenance resources are used, c = 0.20.
Since no figures are given for the length
of the operational life, that will be left

as d. The result is that the total cost
equation becomes:

(11)

TC = (0.50*DP)*(0.70*DT)+(0.20*MP)*(d*MT)

This reduces t o :

(12) TC = (0.35*DP*DT) + (0.20*d*MP*MT)

From the substitutions in equation (12) we
can see that total personnel costs have
been reduced so long as the increase in
the operational life is not enough to
overcome the decrease in the other fac-
tors. This is in line with expectations
and can be labeled "good".

Let us now change focus again back to
percentage relationships. If we use the
same values for a, b, and c that we used
before (0.5, 0.7, and 0.2 respectively)
and multiply out the constants we have:

(13) 0.2 * d * MC
PMC

(.35 * DC) + (0.2 * d * MC)

Other data reported at the 1983 Federal
Software Conference suggest that sixty

seven percent (67%) [SOR83] of current
software costs are maintenance costs, or

(14) MC = 0.67 * TC

we then have:

(15). (0.20 * d * 0.67 * TC)
PMC =

(0.3 5*0.33"TC) +(0.20*d*0.67"TC)

by multiplying the constants together we
can then obtain the expression

(16) (0.134" d * TC)
PMC

(0.1155 * TC) + (.134 * TC * d)

Since the term TC appears in each part of
the equation on the right, we can cancel
it out and thus obtain:

(17) 0.134 * d
PMC

0.1155 + (0.134" d)

If we assume for the moment that t h e r e is
no effect on the operational life of the
software then d = 1 and equation (19)
becomes:

(18) 0.134
PMC = = 0.537

0.1155 + 0.134

This means that about 54% of software
costs are software maintenance under the
new environment instead of the 67%
currently experienced.

Using the values of a and c in equation II
(.5 and .2) results in software develop-

ment becoming two and one half times more
expensive relative to software maintenance
than under traditional practices. This
would indicate a probable lengthening of
the operational life of the system. If we
assu~e optimistically that the operational
life were to be doubled then equation (18)
becomes:

(19) (0 . 1 3 4 * 2) 0 . 2 6 8
1~C . 0 . 70

0 .1155 + (0 . 1 3 4 *2) 0 .~835

Thus, an eighty percent reduction in the
rate of expense for software maintenance
can result in a change in the proportion
of software maintenance. That change,
however, can be either a reduction to
about fifty percent or a slight increase
to about seventy percent. ,Neither of
these figures results in anything near an
eighty percent reduction in software
maintenance resources at the budgetary
level. Other examples do reduce the
proportion of expenses devoted to software
maintenance more dramatically than does
this example, but the most extreme example
assumes no change in development costs,
project length or the operational life
of the system. If we plug those figures
into equation (16) we get:

(20) 0 . 1 3 4
PMC 0.288

0.33 + 0.134

This substitution gives a PMC of 2&~.
An eighty per cent reduction in software
maintenance at the budgetary level means
that of one hundred dollars currently
spent on software, if sixty seven are now
spent on maintenance, under the new
c i r c u m s t a n c e s , o n l y 13 .4 d o l l a r s would be
spent on maintenance. In those cir-
cumstances, however , t he p e r c e n t a g e of
s o f t w a r e c o s t s due to m a i n t e n a n c e i s s t i l l
2 ~ 8 p e r c e n t . Even t h i s mos t f a v o r a b l e
example does no t r e s u l t i n a b u d g e t a r y

improvement a s l a r g e a s m i g h t be a s su med ,
s i n c e t h i s i s a r a t e o f e x p e n s e 44% h i g h e r
t h a n a d i r e c t r e a d i n g o f t h e above f i g u r e s
would i n d i c a t e . I t a l s o i s no t r e a l i s t i c ,
a s a r e none of o u r e x a m p l e s , s i n c e a l l
a ssumed v a l u e s were e x t r e m e s . The i m p l i e d
a s s u m p t i o n t h a t t he r e s u l t s a r e compar -
a b l e be twee n s y s t e m s i s a l s o u n r e a l i s t i c .
The r e a s o n i s t h a t t he s i z e o f t h e s y s t e m
i s no t i n v o l v e d in t h e s e c o s t e q u a t i o n s .

The i n t e r e s t i n g r e s u l t i s t he e f f e c t o f
t he improved programming p r a c t i c e s on the
t o t a l e n v i r o n m e n t . The b a c k l o g o f new
s y s t e m r e q u e s t s i s a l l t oo w e l l known i n
t he t r a d e . Let us assume t h a t t he im-
p r ove d methods of p r o g r a m p r o d u c t i o n w i l l
make i t p o s s i b l e to f i l l more of t h a t
b a c k l o g . The same amount o f e f f o r t w i l l
be s p e n t p e r y e a r , b u t , a s we have s e e n , a
g r e a t e r p e r c e n t a g e w i l l be in m a i n t e n a n c e .
T h e r e f o r e , more new s y s t e m s w i l l mean more
staff doing maintenance programming on
them. The counter intuitive result is
t h a t maintenance programming increases,
instead of decreasing, as a total budget
item.

An example of this effect follows. If we
assume a constant development staff of
twelve programmers that can simultaneously
develop three systems over three years
(average one per year), and an operational
life of ten years with a maintenance staff
of two progra~ers per system, the twelve
programmers will supply enough systems to
occupy twenty maintenance programmers. If
under the improved practices they can
develop six systems over two years (an
average of three per year) and the new
systems have an operational life of twenty
years with a maintenance staff of two
programmers for every five systems they
will provide work for twenty four mainte-
nance programmers. The same number of
development programmers have had a six
fold increase in productivity (granting
our assumptions and constant size systems)
while having a five fold increase in the
productivity of the maintenance effort.
Under those circumstances, the proportion
of maintenance to total effort has changed
from about sixty per cent to about sixty
seven per c e n t .

128

By way of an analogy, consider automo-
biles. The cost of maintenance on an early
hand built car was very high compared to
the purchase price. But people owned few
cars in those days, so the total cost was
re%atively small. There were no full time
auto mechanics because no one could earn a
living at it. Instead, the work was done
by machinists who knew how to machine
custom parts. When assembly line cars
were produced the cost per unit went down
considerably, and the availability of mass
produced parts saved the high cost of
custom machined parts. The use of mass
produced parts also reduced the cost of
automobile maintenance. This turned a
semi-skilled, every day activity asso-
ciated with automobile operation into a
separately identified, skilled, periodic
activity. On a societal level, automobile
maintenance became a much bigger activity
because of the increased use of the
automobile.

CONCLUSION:
We have developed simple cost expressions
for development and maintenance costs.
We've used these expressions and data from
published reports to show that the propor-
tion of software costs devoted to nminte-
nance will not necessarily change as a
result of improved programming practices.
Efforts to improve software maintenance
are good. Until the backlog of activities
to automate is exhausted~ however, no
reduction in total costs should be anti-
cipated. Moreover, budget planners should
not use the promise of more reliable and
easier to change software to reduce the
budget for their software maintenance
staff and their activities.

I.

2.

3.

References

[MAR83] James Martin and Carma
McClure, Software Maintenance: The
Problem and Its Solutions, Prentice-
Hall, Inc., Englewood Cliffs, New
Jersey, 1983.

[PAR83] Girish Parikh and Nicholas
Zvegintsov, Tutorial on Software
Maintenance, IEEE Computer Society
Press, Sivler Spring, Maryland, 1983.

[SOR83] Alfred R. Sorkowitz, Software
Quality Assurance - A Practical
Approach, U. S. Professional Develop-
ment Institute, Fairfax Virginia,
1 983.

129

