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I~ODUCTION 

One of the skills that we want students in our 
Data Structures courses to acquire is the ability 
to take an implementation data structure and an 
operation or task to be performed on it and to 
produce an algorithm; this skill is illustrated in 
Figure i. 
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Figure i 

Often this is embedded in a more complex task, as 
illustrated in Figure 2. 
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Of course, there may be many successive 
implementations or mappings of one data structure 
into another. In practice, however, at the level 
of a Data Structures course, one or two such 
mappings is all that is required. Essentially, 
the sequence of mappings is bounded at both ends. 
Students in such a course need not consider, or 
can take as given, the mapplng(s) from constructs 

available in an algorithm design language or high 
level programming language down to the level of 
the machine. At the other end, students, 
predictably, have not yet been exposed to data 
structures more abstract than those that are 
presented explicitly in the course. 

The skill in Figure i. provides the focus of this 
paper. To confirm to oneself the importance of 
this skill, consider how often examination contain 
questions of the form: given a data structure X, 
write an algorithm that will Y it. 

Consider now the learning task confronting the 
student. The student is presented with a stream of 
triples (DATA STRUCTURE,OPERATION,ALGORITHM) and 
is asked to acquire a machine (function, black 
box, skill) that will take a given data structure 
and operation and produce an algorithm. In 
essence, the student is normally presented with 
examples of inputs and corresponding outputs of a 
machine llke the one that he/she is to acquire. 
The goal of this paper is to demonstrate the that 
i t  would  be  d e s i r a b l e  f o r  s t u d e n t s  t o  a c q u i r e  t h e  
k i n d  o f  k n o w l e d g e  t h a t  w o u l d  a l l o w  them t o  
a c c o m p l i s h  t h e  t a s k  r e p r e s e n t e d  i n  F i g u r e  1 by 
"plan Instantlatlon'. To use plan instantiation 
the machine would have to contain a set of 
"plans', one for each type of operation, and 
include some capability for "instantiating" plans. 
A plan can be thought of as a sequence of steps to 
accomplish a goal. Instantiating can be thought 
of as applying a plan to a given situation. 

WHY NOT ALTERNATIVE, WF~ Mk'£HODS OF PROBI~ 

SOL~rlI~C? 

The capability for instantiating plans is 
presumably used in many domains, including 
everyday life. It forms a basis for several 
recent theories of problem solving (McDermott[4] 
and Wilensky[8]). Within a theory that included a 
variety of problem solving strategies, it would be 
reasonable to assume that plan instantlation would 
he the most frequently used strategy; presumably 
the reason for this is that plan instantlation is 
the method which involves the least cognitive 
effort. Before discussing the merits of plan 
instantiation, we must consider the alternatives. 

It is clear that plan instantiation cannot be the 
sole method or technique for problem solving, 
since plan instantiation could only be applicable 
when one possessed a plan which could he used for 
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the task at hand. The other methods would include 
analogical reasoning, means-e~Ms analysis, and 
using general plans (cf. Carbonell[l]). In 
analogical reasoning a known plan for a similar 
problem is transformed so that it might be 
applicable to the problem at hand. Means-ends 
analysis is a general problem solving technique, 
which given a goal and a set of possible plan 
steps (primitive operators) with the preconditions 
and effects of each, searches for a sequence of 
steps to accomplish a goal by attempting at each 
point to take the step which maximally decreases 
the "distance" to the goal. General plans can be 
used for decomposing a complex task into subtasks, 
upon which any of the methods can be subsequently 
used. The implied division between "general" 
plans, which primarily break up a problem into 
subproblems, and "specific" plans, which can 
merely be instantlated, in actuality is more of a 
dimension. We will define below the 
characteristics of the type of plan we advocate. 

It is useful to point out that even "weaker" 
techniques than means-ends analysis are 
conceivable, for example generating in turn all 
sequences of steps and testing to see if they 
would solve the problem. Each of these search 
techniques, including means-ends analysis, 
involves trial and error. In analogical 
reasoning, the appropriate transformations are not 
known ahead of time, and thus this is also a 
matter of trial and error; in fact, it has been 
even explicitly formulated as a means-ends search 
problem, where the possible steps are plan 
transformations (Carbonell[2]). It is also clear 
that considerable effort and time can be expended 
on such trial and error methods. 

For means-ends analysis, at least, essentially no 
use is made of previous problem solutions. There 
is an attendant tlme-space tradeoff here: while 
computation is considerable, storage for previous 
problem solutions is minimized. It is not clear, 
however, that long term memory presents any 
storage limitations (the limited capacity of short 
term storage does have significant repercussions; 
see below). Thus we will consider the other end 
of the spectrum - complete memorization. 

WHY NOT COMPLETE MEMORIZATION? 

It is clear that we do not think our students 
should Just memorize trlples. This can be 
evidenced by the advice, caution or warning we are 
always giving to our students - not to memorize, 
but to try to "understand" the algorithms. We 
know~ of course, that memorization of triples 
cannot provide the students with capabilities to 
write algorithms for unfamiliar data structures or 
not previously encountered pairings of familiar 
data structures and operations. 

We assume that one reason that simple, complete 
and linear memorization is not employed is a size 
limitation for a "psychological module'. We 
suggest that the number of steps in any plan must 
be quite small, and that it is bounded by the size 
of short term memory, roughly 7 + or - 2. One 
situation in which the limitation of short term 
memory size would manifest itself is during 

acquisition. The absolute maximum size of this 
psychological module can be contrasted with that 
of a module in a program which is generally taken 
to be one page or two pages. In the latter case 
the absolute size limitation is motivated by the 
consideration of readability; in particular, it 
allows the module to be examined in the program 
document without turning pages. In a sense the 
motivation for the size limitation of the 
psychological module is the identical, only the 
"window" is smaller. It should be noted that a 
small module size is particularly conducive to 
top-down design, and it has been my experience 
that students (at least at the lower levels) do a 
better job of problem solving (designing), if the 
size of their modules is very strongly restricted, 
for example to a maximum of four steps. 

Psychological modules or plans must be logically 
coherent, and the most important criterion for 
grouping sequences of steps into a plan is that 
they occur together often. These occurrences are 
either in plans we construct and perform or in 
sequences of actions that we observe or, in the 
case at hand, in algorithms to which we are 
exposed. As a by-product of grouping into these 
psychological modules we reduce total storage 
requirements, since the sequence of steps in the 
module is specified only a single time. Second, 
and more importantly, in this manner we acquire 
the ability to encode plans and accomplish ever 
more complex tasks while remaining within the 
constraints imposed by the limited size of short 
term memory. Thirdly, these plans can be useful 
and applicable in dealing with situations we have 
not previously encountered, limiting very 
significantly the degree to which weaker problem 
solving techniques must be employed. 

THE INSTANTIATION OF PLANS 

Having motivated the extensive use of plans, let 
us now consider in some detail how plans are 
instantlated and look more closely at the nature 
of the plans themselves. In order to use plan 
instantiation, the acquired machine must contain a 
set of plans. For the case at hand, which plan to 
use would be determined by the operation to be 
accomplished. As pointed out above, as a 
by-product of grouping steps into plans, the 
amount of long term memory used is reduced. 
Earlier we suggested that there was no lack of 
storage space in long term memory, but by using 
generalized plans the total number of plans is 
reduced, and thus the task of identifying and 
accessing the plan to instantiate is reduced. 

As noted above, the various instantiations of a 
single plan are not necessarily identical. Some 
of the steps are always instantiated identically, 
while the instantiation of other steps differs 
depending on the input parameter (here the data 
structure). What unifies each of the latter type 
of step is its function or goal. It is also only 
the latter type of step which requires any real 
cognitive effort to instantiate. In some cases 
this effort will be minimal, in others it will 
require a moment's reflection, while for others it 
might even involve a somewhat greater effort. In 
the case at hand, where the input parameter is a 
data structure, a drawing or schematic 
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representation of the data structure may be 
useful; in some cases, both before and after the 
operation, and each change could be thought of as 
a step. 

To understand more fully the process of 
instantiation of plans, especially in the context 
of producing algorithms for operations on data 
structures, one should consider the "plans" in the 
appendix. For presentation, the plans must be 
represented in some formalism, and we have chosen 
to use pseudo-code (generic procedures and 
functions). Recall that in the context with which 
we are concerned the output of the instantiation 
process will be an algorithm. The sections of the 
plans which are in bold-faced will never be part 
of the output algorithms. These sections may be 
thought of as embodying directives to the 
instantlator; they all refer to properties of the 
input data structure (prefixed with Is-). The 
underlined, non-bold-faced sections will be part 
of the output algorithms for some instantiations, 
while the non-bold-faced, non-underlined sections 
will appear in all output algorithms. In other 
words, the instantiator takes a plan and a data 
structure and outputs all of the non-bold-faced, 
non-underlined sections and (possibly) some of the 
non-bold-faced, underlined sections. 

A number of assumptions have been made to simplify 
these "plans'; for example, array indices have 
been assumed to have a range I..NUMOFENTRY, doubly 
linked list have been assumed to be circular and 
traversed via RLINKs, and we have not included the 
capability for deleting from a binary search tree 
(BST). For clarity of presentation parameter 
passing has been ignored, and one should bear in 
mind that these are psychological modules and not 
subprogram units. 

PLAN INSTANTIATION: THE H A P P Y ~ D I U I 4  

In a real sense the instantiation of generalized 
plans stands between the simple complete 
memorization of each individual sequence of steps 
and the employment of the weaker methods. It lies 
closer to the former, and the use of the latter is 
localized and limited. At this point we can 
specify where along the general-speclflc dimension 
of plans the type of plan which is advocate here 
lles: 

(i) Its instantiations differ only on the basis 
of an input parameter (upon which the plan 
operates); the input parameter here will be the 
data structure. 

(2) There can be a sequence of top-down 
divisions into smaller tasks (plans into 
subplans), but only in the terminal plans, i.e. 
those which are not further subdivided (cf. the 
hierarchy chart), can there be any necessity for 
the weaker problem solving methods. 

This paper is not the first to suggest the 
relevance of "plans" for Computer Science 
Education; Soloway & Woolf[7], Mayer[3], and 
Peterson[6] all recognize the value of plan-based 
approaches to teaching. In this context one of 
the Perlis[5](#10, p.7) epigrams can be 

interpreted as advocating the use of plans: 
"Get into a rut early: Do the same 
processes the same way. Accumulate 
idioms. Standardize. The only 
difference(i) between Shakespeare and 
you was the size of his idiom llst - 
not the size of his vocabulary." 

The vocabulary here corresponds to the primitive 
possible steps. The idioms are the plans, i.e. 
the psychological modules. Shakespeare was 
successful (and prolific) because of the extent to 
which he was able to use plan instantiation (as 
opposed to, say, means-ends analysis). 

This paper argues it is desirable and feasible 
that students in a Data Structures course acquire 
the ability to carry out the task represented in 
Figure I by plan instantiation. The reason that 
this approach is so well-suited to this task is 
because a data structure is a very appropriate 
input parameter to an instantiation process. We 
do not wish to advocate the use of any particular 
plans, but the sample plans are provided in the 
appendix to illustrate the generality and power of 
the approach. We also wish to emphasize that we 
do not advocate the acquisition of such plans done 
to the last detail. It is reasonable to use 
weaker methods, like before and after drawings, 
for some terminal suhplans, for example 
NORMALINSERT. The crucial importance of acquiring 
higher level plans, llke TRAVtoFINDWHERE, must be 
emphasized. In fact, TRAVtoFINDWHERE itself can 
be thought of as an instantiatlon of a high level 
plan TRAVto(DOIT): 

GETFIRST 
if NOT E~TY then 

repeat 
[DOLT 
if NOT EXIT then ADVANCE] 

until EXIT or NOMORE 

Here the procedure DOlT can set EXIT. Thus 
TRAVto(DOIT) is llke a LISP MAP- function or 
Baekus" functional form (apply to all), except 
that it also provides the possibility of exiting, 
for example in a ease where DOlT involves 
searching. 

With respect to the question of how to support or 
help the students acquire the ability to do the 
task represented in Figure I by plan 
instantlatlon, several suggestions can be made. 
In some cases plans should be presented 
explicitly. Such generic procedures and functions 
can often clearly illustrate important points; for 
example, they illustrate the value of headers in 
terms of algorithm simplicity. In other cases the 
students should be forced to extract, i.e. 
generalize the plans themselves. In this case the 
instructor must be consistent in the algorithms 
he/she presents; the instructor should formulate a 
plan and follow it in each algorithm. In 
particular, optlmlzations should be presented as 
modifications of a "basic" algorithm, i.e. one 
derived from the general plan. 
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APPENDIX 

* * * procedure INSERTifNOTFOUND * * * 
TRAVtoFINDWHERE 
if NOT POUND then 

[GETROOMFORNEW 
COPYDATAFIELDSIN 
if NOT IsARRAY t h e n  INSERTNEWNODE] 

* * * procedure TRAVtoFINDWHERE * * * 
FOUND <- FALSE 
GETFIRST 
if NOT EMPTY then 

repeat 
[if IS(INKEY,EQUAL) then 

[FOUND <- TRUE 
exit] 

i f  IsORDERED t h e n  if IS(IN"KEY,GREATER) then exit 
ADVANCE] 

until NOMORE 

* * * procedure GETFIRST * * * 
if IeA~Y t h e n  COUNTER <- i 

else [if NOT IsDBLYLL then TRL <- INPTR 
if HasHEADER then if isSINGLYLL then PTR <- LINK(INPTR) 

else if IsDBLYLL then PTR <- RLINK(INPTR) 
else {IsBST] PTR <- LCHILD (INPTR) 

else PTR <- INPTR] 

* * * BOOLEAN function EMPTY * * * 
if IsARRAY then EMPTY <- NUMOPENTRY = 0 

else if HasHEADEEAND IsCIRCULAR then EMPTY <- PTR = INPTR 
else EMPTY <- PTR = NIL 

* * * BOOLEAN function IS (INKEY,F) * * * 
if IsARRAY then IS <- F(INKEY,KEY(A[COUNTER])) 

else IS' <- F(INKEY,KEY(PTR)) 

* * * BOOLEAN function EQUAL(X,Y) * * * 
EQUAL <- X = Y 

* * * BOOLEAN function GREATER(X,Y) * * * 
GREATER <- X > Y 

* * * p r o c e d u r e  ADVANCE * * * 
if IsARRAY t h e n  COUNTER <- COUNTER + 1 

else 
Ill NOT IsDBLYLL then TRL <- PTR 
if IsSINCLYLL then PTR <- LINK(PTR) 
else if IsDBLYLL then PTR <- RLINK(PTR) 
else {IsBST} if IS(INKEY,GREATER) then PTR <- RCHILD(PTR) 

else PTR <- LCHILD(PTR) 

* * * BOOLEAN function NOMORE * * * 
If IsARRAY then NOMORE <- COUNTER > NUMOFENTRY 

else if IsCireular then NOMORE <- PTR = INPTR 
else NOMORE <- PTR = NIL 

* * * procedure GETROOMFORNEW * * * 
if IsARRA¥ t h e n  

[for i <- COUNTER to NUMOFENTRY do A[i+iJ <- A[i] 
NUMOFENTRY <- NUMOFENTRY + i] 

else GETNEWNODE(NEW) 

* * * procedure CoPYDATAFIELDSIN * * * 
if IeARR&y then DATAFIELDS(A[COUNTERJ) <- DATAFIELDS(INRECORD) 

else DATAFIELDS(NEW) <- DATAFIELDS(INRECORD) 
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* * * procedure INSERTNEWNODE * * * 
if NOT HasHEADER then if INPTR = NIL then PREVlOUSLYEMPTY 

else if PTR=INPTR then NEWFIRSTIN 
else NORMALINSERT 

else NORMALINSERT 

* * * procedure PREVIOUSLYEMPTY * * * 
INPTR <- NEW 
if IsSINGLYI2~ ~ NOT IsCIRCULAR then LINK(NEW) <- NIL 
else if IsSINGLYLL {AND IsCIRCDLAR} then LINK(NEW) <- NEW 
else if IsDBLYLL then LLINK(NEW),RLINK(NEW) <- NEW 
else {IsBST} LCHILD(NEW),RCHILD(NEW) <- NIL 

* * * procedure NEWFIRSTIN * * * 
if IsSINGLYLL t h e n  

[LINK(NEW) <- PTR 
if IsCIKCULAR t h e n  

[while LINK(PTR) <> INPTR do PTR <- LINK(PTR) 
LINK(PTR) <- NEW 

else if IsDBLYLL then 
[RLINK(NEW) <- PTR 
LLINK(NEW) <- LLINK(PTR) 
LLINK(RLINK(NEW)),RLINK(LLINK(NEW)) <- NEW] 

else {IsBST} LCHILD(NEW),RCHILD(NEW) <- NIL 

* * * procedure NORMALINSERT * * * 
if IsSINGLYLL then 

[LINK(NEW) <- LINK(TRL) 
LINK(TRL) <- NEW] 

else if IsDBLYLL t h e n  
[RLINK(NEW) <- PTR 
LLINK(NEW) <- LLINK(PTR) 
LLINK(RLINK(NEW)),RLINK(LLINK(NEW)) <- PTR] 

else {IsBST} 
[LCHILD(NEW),RCHILD(NEW) <- NIL 
if IS(INKEY,GREATER) then RCHILD(TRL) <- NEW 

else LCHILD(TRL) <- NEW] 

* * * procedure DELETEifFOUND * * * 
TRAVtoFINDWHERE 
if NOT FOUND then 

[if NOT IsARRAY then DELETEOLDNODE 
COPYDATAFIELDSOUT 
RETURNROOMFOROLD 

* * * DELETEOLDNODE * * * 
if NOT HasHEADER then if PTR = INPTR then OLDFIRSTOUT 

else NORMALDELETE 
else NORMALDELETE 

* * * OLDFIRSTOUT * * * 
if IsSINGLYLL AND NOT IsCIRCULAR t h e n  INPTR <- LINK(PTR) 
else if IsSINCLYLL {AND IsCIRC~,AR} then 

if LINK(PTR) = PTR then INPTR <- NIL {Newly Empty} 
else [INPTR <- LINK(PTR) 

Y <- INPTR 
while LINK(Y) <> PTR do Y <- LINK(Y) 
LINK(Y) <- INPTR] 

else if IsDBLYLL t h e n  
if RLINK(PTR) = PTR then INPTR <- NIL {Newly Empty} 

else [INPTR <- RLINK(PTR) 
LLINK(RLINK(PTR) <- LLINK(PTR) 
RLINK(LLINK(PTR) <-RLINK(PTR)] 

else {IsBST} ... 

* * * NORMALDELETE * * * 
if IsSI~LYLL then LINK(TRL) <- LINK(PTR) 
else if IsDBLYLL t h e n  [RLINK(LLINK(PTR) <- RLINK(PTR) 

LLINK(RLINK(PTE) <- LLINK(PTR)] 
else {IsBST} ... 
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* * * COPYDATAFIELDSOUT * * * 
if IsAIIRAY then DATAFIELDS(OUTRECORD) <- DATAFIELDS(A[COUNTER]) 

else DATAFIELDS(OUTRECORD) <- DATAFIELDS(PTR) 

* * * R E T U R N R O O M F O R O L D  * * * 

i f  IsARRAY t h e n  
[for I <- COUNTER + i to NUMOFENTRY do All-I] <- All] 
NUMOFENTRY <- NUMOFENTRY - I] 

else RETURNNODE(PTR) 

INSERTifNOTFOUND DELETEifFOUND 

TRAVt oFINDWHERE 

G E T F ~ O M O R E  

PREVIOUSLYEMPTY EQUAL//G~GREATER I 

NEWFIRSTIN OLDFIRSTOUT NORMALDELETE 

NORMALINSERT 
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