
DATA STRUCTURES THROUCH PLAN INSTANTIATION

Lee A. Becket
Department of Computer Science

Tulane University
New Orleans, Louisiana 70118

I~ODUCTION

One of the skills that we want students in our
Data Structures courses to acquire is the ability
to take an implementation data structure and an
operation or task to be performed on it and to
produce an algorithm; this skill is illustrated in
Figure i.

IMPLEMENTATION
DATA STRUCTURE >

(IDS)

OPERATION >

...... > ALGORITHM

Figure i

Often this is embedded in a more complex task, as
illustrated in Figure 2.

DATA STRUCTURE OR
DATA SPECIFICATIONS

~ " Choosing I ~------~--->ALG i
an IDS -->IDS--~I I--->ALG2

' / ~ !--->ALG3
_ _ _ ' , /~_.I~ ..~I

STORAGE & SPEED ~, ,~' ~.f//-
REQUIREMENTS OR \ / ~

PREFERENCES ~I 1
2 3

TYPES OF OPERATIONS "TO BE PERFORMED
(& RELATIVE FREQUENCIES OF EACH)

Figure 2

Of course, there may be many successive
implementations or mappings of one data structure
into another. In practice, however, at the level
of a Data Structures course, one or two such
mappings is all that is required. Essentially,
the sequence of mappings is bounded at both ends.
Students in such a course need not consider, or
can take as given, the mapplng(s) from constructs

available in an algorithm design language or high
level programming language down to the level of
the machine. At the other end, students,
predictably, have not yet been exposed to data
structures more abstract than those that are
presented explicitly in the course.

The skill in Figure i. provides the focus of this
paper. To confirm to oneself the importance of
this skill, consider how often examination contain
questions of the form: given a data structure X,
write an algorithm that will Y it.

Consider now the learning task confronting the
student. The student is presented with a stream of
triples (DATA STRUCTURE,OPERATION,ALGORITHM) and
is asked to acquire a machine (function, black
box, skill) that will take a given data structure
and operation and produce an algorithm. In
essence, the student is normally presented with
examples of inputs and corresponding outputs of a
machine llke the one that he/she is to acquire.
The goal of this paper is to demonstrate the that
i t would be d e s i r a b l e f o r s t u d e n t s t o a c q u i r e t h e
k i n d o f k n o w l e d g e t h a t w o u l d a l l o w them t o
a c c o m p l i s h t h e t a s k r e p r e s e n t e d i n F i g u r e 1 by
"plan Instantlatlon'. To use plan instantiation
the machine would have to contain a set of
"plans', one for each type of operation, and
include some capability for "instantiating" plans.
A plan can be thought of as a sequence of steps to
accomplish a goal. Instantiating can be thought
of as applying a plan to a given situation.

WHY NOT ALTERNATIVE, WF~ Mk'£HODS OF PROBI~

SOL~rlI~C?

The capability for instantiating plans is
presumably used in many domains, including
everyday life. It forms a basis for several
recent theories of problem solving (McDermott[4]
and Wilensky[8]). Within a theory that included a
variety of problem solving strategies, it would be
reasonable to assume that plan instantlation would
he the most frequently used strategy; presumably
the reason for this is that plan instantlation is
the method which involves the least cognitive
effort. Before discussing the merits of plan
instantiation, we must consider the alternatives.

It is clear that plan instantiation cannot be the
sole method or technique for problem solving,
since plan instantiation could only be applicable
when one possessed a plan which could he used for

190

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952980.808650&domain=pdf&date_stamp=1984-01-01

the task at hand. The other methods would include
analogical reasoning, means-e~Ms analysis, and
using general plans (cf. Carbonell[l]). In
analogical reasoning a known plan for a similar
problem is transformed so that it might be
applicable to the problem at hand. Means-ends
analysis is a general problem solving technique,
which given a goal and a set of possible plan
steps (primitive operators) with the preconditions
and effects of each, searches for a sequence of
steps to accomplish a goal by attempting at each
point to take the step which maximally decreases
the "distance" to the goal. General plans can be
used for decomposing a complex task into subtasks,
upon which any of the methods can be subsequently
used. The implied division between "general"
plans, which primarily break up a problem into
subproblems, and "specific" plans, which can
merely be instantlated, in actuality is more of a
dimension. We will define below the
characteristics of the type of plan we advocate.

It is useful to point out that even "weaker"
techniques than means-ends analysis are
conceivable, for example generating in turn all
sequences of steps and testing to see if they
would solve the problem. Each of these search
techniques, including means-ends analysis,
involves trial and error. In analogical
reasoning, the appropriate transformations are not
known ahead of time, and thus this is also a
matter of trial and error; in fact, it has been
even explicitly formulated as a means-ends search
problem, where the possible steps are plan
transformations (Carbonell[2]). It is also clear
that considerable effort and time can be expended
on such trial and error methods.

For means-ends analysis, at least, essentially no
use is made of previous problem solutions. There
is an attendant tlme-space tradeoff here: while
computation is considerable, storage for previous
problem solutions is minimized. It is not clear,
however, that long term memory presents any
storage limitations (the limited capacity of short
term storage does have significant repercussions;
see below). Thus we will consider the other end
of the spectrum - complete memorization.

WHY NOT COMPLETE MEMORIZATION?

It is clear that we do not think our students
should Just memorize trlples. This can be
evidenced by the advice, caution or warning we are
always giving to our students - not to memorize,
but to try to "understand" the algorithms. We
know~ of course, that memorization of triples
cannot provide the students with capabilities to
write algorithms for unfamiliar data structures or
not previously encountered pairings of familiar
data structures and operations.

We assume that one reason that simple, complete
and linear memorization is not employed is a size
limitation for a "psychological module'. We
suggest that the number of steps in any plan must
be quite small, and that it is bounded by the size
of short term memory, roughly 7 + or - 2. One
situation in which the limitation of short term
memory size would manifest itself is during

acquisition. The absolute maximum size of this
psychological module can be contrasted with that
of a module in a program which is generally taken
to be one page or two pages. In the latter case
the absolute size limitation is motivated by the
consideration of readability; in particular, it
allows the module to be examined in the program
document without turning pages. In a sense the
motivation for the size limitation of the
psychological module is the identical, only the
"window" is smaller. It should be noted that a
small module size is particularly conducive to
top-down design, and it has been my experience
that students (at least at the lower levels) do a
better job of problem solving (designing), if the
size of their modules is very strongly restricted,
for example to a maximum of four steps.

Psychological modules or plans must be logically
coherent, and the most important criterion for
grouping sequences of steps into a plan is that
they occur together often. These occurrences are
either in plans we construct and perform or in
sequences of actions that we observe or, in the
case at hand, in algorithms to which we are
exposed. As a by-product of grouping into these
psychological modules we reduce total storage
requirements, since the sequence of steps in the
module is specified only a single time. Second,
and more importantly, in this manner we acquire
the ability to encode plans and accomplish ever
more complex tasks while remaining within the
constraints imposed by the limited size of short
term memory. Thirdly, these plans can be useful
and applicable in dealing with situations we have
not previously encountered, limiting very
significantly the degree to which weaker problem
solving techniques must be employed.

THE INSTANTIATION OF PLANS

Having motivated the extensive use of plans, let
us now consider in some detail how plans are
instantlated and look more closely at the nature
of the plans themselves. In order to use plan
instantiation, the acquired machine must contain a
set of plans. For the case at hand, which plan to
use would be determined by the operation to be
accomplished. As pointed out above, as a
by-product of grouping steps into plans, the
amount of long term memory used is reduced.
Earlier we suggested that there was no lack of
storage space in long term memory, but by using
generalized plans the total number of plans is
reduced, and thus the task of identifying and
accessing the plan to instantiate is reduced.

As noted above, the various instantiations of a
single plan are not necessarily identical. Some
of the steps are always instantiated identically,
while the instantiation of other steps differs
depending on the input parameter (here the data
structure). What unifies each of the latter type
of step is its function or goal. It is also only
the latter type of step which requires any real
cognitive effort to instantiate. In some cases
this effort will be minimal, in others it will
require a moment's reflection, while for others it
might even involve a somewhat greater effort. In
the case at hand, where the input parameter is a
data structure, a drawing or schematic

191

representation of the data structure may be
useful; in some cases, both before and after the
operation, and each change could be thought of as
a step.

To understand more fully the process of
instantiation of plans, especially in the context
of producing algorithms for operations on data
structures, one should consider the "plans" in the
appendix. For presentation, the plans must be
represented in some formalism, and we have chosen
to use pseudo-code (generic procedures and
functions). Recall that in the context with which
we are concerned the output of the instantiation
process will be an algorithm. The sections of the
plans which are in bold-faced will never be part
of the output algorithms. These sections may be
thought of as embodying directives to the
instantlator; they all refer to properties of the
input data structure (prefixed with Is-). The
underlined, non-bold-faced sections will be part
of the output algorithms for some instantiations,
while the non-bold-faced, non-underlined sections
will appear in all output algorithms. In other
words, the instantiator takes a plan and a data
structure and outputs all of the non-bold-faced,
non-underlined sections and (possibly) some of the
non-bold-faced, underlined sections.

A number of assumptions have been made to simplify
these "plans'; for example, array indices have
been assumed to have a range I..NUMOFENTRY, doubly
linked list have been assumed to be circular and
traversed via RLINKs, and we have not included the
capability for deleting from a binary search tree
(BST). For clarity of presentation parameter
passing has been ignored, and one should bear in
mind that these are psychological modules and not
subprogram units.

PLAN INSTANTIATION: THE H A P P Y ~ D I U I 4

In a real sense the instantiation of generalized
plans stands between the simple complete
memorization of each individual sequence of steps
and the employment of the weaker methods. It lies
closer to the former, and the use of the latter is
localized and limited. At this point we can
specify where along the general-speclflc dimension
of plans the type of plan which is advocate here
lles:

(i) Its instantiations differ only on the basis
of an input parameter (upon which the plan
operates); the input parameter here will be the
data structure.

(2) There can be a sequence of top-down
divisions into smaller tasks (plans into
subplans), but only in the terminal plans, i.e.
those which are not further subdivided (cf. the
hierarchy chart), can there be any necessity for
the weaker problem solving methods.

This paper is not the first to suggest the
relevance of "plans" for Computer Science
Education; Soloway & Woolf[7], Mayer[3], and
Peterson[6] all recognize the value of plan-based
approaches to teaching. In this context one of
the Perlis[5](#10, p.7) epigrams can be

interpreted as advocating the use of plans:
"Get into a rut early: Do the same
processes the same way. Accumulate
idioms. Standardize. The only
difference(i) between Shakespeare and
you was the size of his idiom llst -
not the size of his vocabulary."

The vocabulary here corresponds to the primitive
possible steps. The idioms are the plans, i.e.
the psychological modules. Shakespeare was
successful (and prolific) because of the extent to
which he was able to use plan instantiation (as
opposed to, say, means-ends analysis).

This paper argues it is desirable and feasible
that students in a Data Structures course acquire
the ability to carry out the task represented in
Figure I by plan instantiation. The reason that
this approach is so well-suited to this task is
because a data structure is a very appropriate
input parameter to an instantiation process. We
do not wish to advocate the use of any particular
plans, but the sample plans are provided in the
appendix to illustrate the generality and power of
the approach. We also wish to emphasize that we
do not advocate the acquisition of such plans done
to the last detail. It is reasonable to use
weaker methods, like before and after drawings,
for some terminal suhplans, for example
NORMALINSERT. The crucial importance of acquiring
higher level plans, llke TRAVtoFINDWHERE, must be
emphasized. In fact, TRAVtoFINDWHERE itself can
be thought of as an instantiatlon of a high level
plan TRAVto(DOIT):

GETFIRST
if NOT E~TY then

repeat
[DOLT
if NOT EXIT then ADVANCE]

until EXIT or NOMORE

Here the procedure DOlT can set EXIT. Thus
TRAVto(DOIT) is llke a LISP MAP- function or
Baekus" functional form (apply to all), except
that it also provides the possibility of exiting,
for example in a ease where DOlT involves
searching.

With respect to the question of how to support or
help the students acquire the ability to do the
task represented in Figure I by plan
instantlatlon, several suggestions can be made.
In some cases plans should be presented
explicitly. Such generic procedures and functions
can often clearly illustrate important points; for
example, they illustrate the value of headers in
terms of algorithm simplicity. In other cases the
students should be forced to extract, i.e.
generalize the plans themselves. In this case the
instructor must be consistent in the algorithms
he/she presents; the instructor should formulate a
plan and follow it in each algorithm. In
particular, optlmlzations should be presented as
modifications of a "basic" algorithm, i.e. one
derived from the general plan.

192

APPENDIX

* * * procedure INSERTifNOTFOUND * * *
TRAVtoFINDWHERE
if NOT POUND then

[GETROOMFORNEW
COPYDATAFIELDSIN
if NOT IsARRAY t h e n INSERTNEWNODE]

* * * procedure TRAVtoFINDWHERE * * *
FOUND <- FALSE
GETFIRST
if NOT EMPTY then

repeat
[if IS(INKEY,EQUAL) then

[FOUND <- TRUE
exit]

i f IsORDERED t h e n if IS(IN"KEY,GREATER) then exit
ADVANCE]

until NOMORE

* * * procedure GETFIRST * * *
if IeA~Y t h e n COUNTER <- i

else [if NOT IsDBLYLL then TRL <- INPTR
if HasHEADER then if isSINGLYLL then PTR <- LINK(INPTR)

else if IsDBLYLL then PTR <- RLINK(INPTR)
else {IsBST] PTR <- LCHILD (INPTR)

else PTR <- INPTR]

* * * BOOLEAN function EMPTY * * *
if IsARRAY then EMPTY <- NUMOPENTRY = 0

else if HasHEADEEAND IsCIRCULAR then EMPTY <- PTR = INPTR
else EMPTY <- PTR = NIL

* * * BOOLEAN function IS (INKEY,F) * * *
if IsARRAY then IS <- F(INKEY,KEY(A[COUNTER]))

else IS' <- F(INKEY,KEY(PTR))

* * * BOOLEAN function EQUAL(X,Y) * * *
EQUAL <- X = Y

* * * BOOLEAN function GREATER(X,Y) * * *
GREATER <- X > Y

* * * p r o c e d u r e ADVANCE * * *
if IsARRAY t h e n COUNTER <- COUNTER + 1

else
Ill NOT IsDBLYLL then TRL <- PTR
if IsSINCLYLL then PTR <- LINK(PTR)
else if IsDBLYLL then PTR <- RLINK(PTR)
else {IsBST} if IS(INKEY,GREATER) then PTR <- RCHILD(PTR)

else PTR <- LCHILD(PTR)

* * * BOOLEAN function NOMORE * * *
If IsARRAY then NOMORE <- COUNTER > NUMOFENTRY

else if IsCireular then NOMORE <- PTR = INPTR
else NOMORE <- PTR = NIL

* * * procedure GETROOMFORNEW * * *
if IsARRA¥ t h e n

[for i <- COUNTER to NUMOFENTRY do A[i+iJ <- A[i]
NUMOFENTRY <- NUMOFENTRY + i]

else GETNEWNODE(NEW)

* * * procedure CoPYDATAFIELDSIN * * *
if IeARR&y then DATAFIELDS(A[COUNTERJ) <- DATAFIELDS(INRECORD)

else DATAFIELDS(NEW) <- DATAFIELDS(INRECORD)

193

* * * procedure INSERTNEWNODE * * *
if NOT HasHEADER then if INPTR = NIL then PREVlOUSLYEMPTY

else if PTR=INPTR then NEWFIRSTIN
else NORMALINSERT

else NORMALINSERT

* * * procedure PREVIOUSLYEMPTY * * *
INPTR <- NEW
if IsSINGLYI2~ ~ NOT IsCIRCULAR then LINK(NEW) <- NIL
else if IsSINGLYLL {AND IsCIRCDLAR} then LINK(NEW) <- NEW
else if IsDBLYLL then LLINK(NEW),RLINK(NEW) <- NEW
else {IsBST} LCHILD(NEW),RCHILD(NEW) <- NIL

* * * procedure NEWFIRSTIN * * *
if IsSINGLYLL t h e n

[LINK(NEW) <- PTR
if IsCIKCULAR t h e n

[while LINK(PTR) <> INPTR do PTR <- LINK(PTR)
LINK(PTR) <- NEW

else if IsDBLYLL then
[RLINK(NEW) <- PTR
LLINK(NEW) <- LLINK(PTR)
LLINK(RLINK(NEW)),RLINK(LLINK(NEW)) <- NEW]

else {IsBST} LCHILD(NEW),RCHILD(NEW) <- NIL

* * * procedure NORMALINSERT * * *
if IsSINGLYLL then

[LINK(NEW) <- LINK(TRL)
LINK(TRL) <- NEW]

else if IsDBLYLL t h e n
[RLINK(NEW) <- PTR
LLINK(NEW) <- LLINK(PTR)
LLINK(RLINK(NEW)),RLINK(LLINK(NEW)) <- PTR]

else {IsBST}
[LCHILD(NEW),RCHILD(NEW) <- NIL
if IS(INKEY,GREATER) then RCHILD(TRL) <- NEW

else LCHILD(TRL) <- NEW]

* * * procedure DELETEifFOUND * * *
TRAVtoFINDWHERE
if NOT FOUND then

[if NOT IsARRAY then DELETEOLDNODE
COPYDATAFIELDSOUT
RETURNROOMFOROLD

* * * DELETEOLDNODE * * *
if NOT HasHEADER then if PTR = INPTR then OLDFIRSTOUT

else NORMALDELETE
else NORMALDELETE

* * * OLDFIRSTOUT * * *
if IsSINGLYLL AND NOT IsCIRCULAR t h e n INPTR <- LINK(PTR)
else if IsSINCLYLL {AND IsCIRC~,AR} then

if LINK(PTR) = PTR then INPTR <- NIL {Newly Empty}
else [INPTR <- LINK(PTR)

Y <- INPTR
while LINK(Y) <> PTR do Y <- LINK(Y)
LINK(Y) <- INPTR]

else if IsDBLYLL t h e n
if RLINK(PTR) = PTR then INPTR <- NIL {Newly Empty}

else [INPTR <- RLINK(PTR)
LLINK(RLINK(PTR) <- LLINK(PTR)
RLINK(LLINK(PTR) <-RLINK(PTR)]

else {IsBST} ...

* * * NORMALDELETE * * *
if IsSI~LYLL then LINK(TRL) <- LINK(PTR)
else if IsDBLYLL t h e n [RLINK(LLINK(PTR) <- RLINK(PTR)

LLINK(RLINK(PTE) <- LLINK(PTR)]
else {IsBST} ...

194

* * * COPYDATAFIELDSOUT * * *
if IsAIIRAY then DATAFIELDS(OUTRECORD) <- DATAFIELDS(A[COUNTER])

else DATAFIELDS(OUTRECORD) <- DATAFIELDS(PTR)

* * * R E T U R N R O O M F O R O L D * * *

i f IsARRAY t h e n
[for I <- COUNTER + i to NUMOFENTRY do All-I] <- All]
NUMOFENTRY <- NUMOFENTRY - I]

else RETURNNODE(PTR)

INSERTifNOTFOUND DELETEifFOUND

TRAVt oFINDWHERE

G E T F ~ O M O R E

PREVIOUSLYEMPTY EQUAL//G~GREATER I

NEWFIRSTIN OLDFIRSTOUT NORMALDELETE

NORMALINSERT

REFERENCES

[i] Carbonell, Jaime, "Derivational Analogy in Problem Solving and Knowledge
Acquisition," Proc. of the International Machine Learning Workshop(ML-83), pp.
12-18.

[2] Carbonell, Jaime, "Learning by Analogy: Formulating and Generalizing Plans
from Past Experience," in Machine Learning, An Artificial Intelligence
Approach, R.S. Miehalski, J.G. Carbonell and T.M. Mitchell, eds., Tioga Press,
Palo Alto, CA, 1983.

[3] Mayer, R.E., "The Psychology of How Novices Learn Computer Programs," ACM
Computing Surveys, 13:1 1981.

[4] McDermott, D.V., "Planning and Acting," Cognitive Science, 2:2 1977.

[5] Perlis, Alan, "Epigrams on Programming," ACM SIGPLAN, 17:9 1982.

[6] Peterson, Gerald, "Using Generalized Programs in the Teaching of Computer
Science," ACM SIGCSE Bulletin, 15:1 1983.

[7] Soloway, E. and Woolf, B., "Problems, Plans, and Programs," ACM SIGCSE
Bulletin, 12:1 1981.

[8] Wilensky, R., Planning and Understanding, Addison Wesley, Reading, MA,
1983.

195

