
CH1'83 Proceedings December 1983 

WHAT DO NOVICE PROGRAMMERS KNOW ABOUT RECURSION 

Hank Kahney 
Human Cognition Research Laboratory 

The Open University 
Milton Keynes, England 

ABSTRACT 

Recent research into differences between novice and expert computer programmers has provided evidence 
that experts know more than novices, and what they know is better organized. The conclusion is only 
as interesting as it is intuitive. This paper reports an experiment which was designed to determine 
precisely what novice programmers understand about the behaviour of recursive procedures, and exactly 
how their understanding differs from an expert's understanding of the process. The results show that 
different novices understand, or misunderstand, different things. Implications of the findings are 
discussed with respect to other research into novice and expert programming performance. 

1.0 INTRODUCTION 

A course in Cognitive Psychology offered 
to students at the Open University is highly 
favourable to computer models of cognitive 
processes, and in order to familiarize students 
with computer terminology a friendly software 
environment called SOLO has been designed 
(Eisenstadt, 1978). Solo is a LOGO-like 
database manipulation language with a handful 
of primitives for searching and side-effecting 
an assertional database of associative triples. 
Students are very quickly introduced to concepts 
such as recursion. When taught about recursion 
an example program is provided and the student 
is led through several pages of detailed 
description about the way the program behaves 
when operating on a parti%ular database. 
However, analyses of more than a hundred 
recursive procedures written by our studeuts 
indicate that many have some difficulty or even 
find it impossible to design correct programs. 

The task discussed in this paper was 
designed I) to test the hypothesis that 
novices and experts differ in terms of their 
respective models of recursion as a process, 
even after a detailed introduction to the 
behaviour of a recursive procedure, and, 2) to 
try to discriminate the models of recursion 

Permission to copy without ~e  all or part of this material is granted 
provided that the copies are not made or distributed ~ r  divot 
commercial advantage, the ACM copyright notice and the title of the 
publication and i~ dam appear, and notice is given that copying is by 
permission of the Association ~ r  Computing Machinery. To copy 
otherwise, or to republish, ~quires a ~e  and/or specific permission. 

© •983 ACM0-89791-121-0/23/012/0235 .$00.75 

which novices actually do come to possess. 

The conceptual model presented to students 
in the SOLO Programming Manual defines 
recursion as a process that is capable of 
triggering new instantiations of itself, with 
control passing forward to successive 
instantiat~ons and back from terminated ones. 
This is the model of the recursive process that 
experts are hypothesized to have. 

Students, on the other hand, are 
hypothesized to have a 'looping' model of 
recursion. That is, they view a recursive 
procedure as a single object instead of a series 
of new instantiatfons, having the following 
features: I) an 'entry point', the 
constituents of which are the procedure's name 
and a parameter slot; 2) an 'action part', 
which is designed to add information to the 
database; 3) a 'propogation-mechanism' for 
generating successive database nodes and feeding 
the values of these successive nodes back to the 
'front part', or 'entry point' of the 
procedure. In this Looping model, the 
parameter '/X/' is treated like a box which 
holds a value which is displaced by 
subsequent values. 

2.0. THE BEHAVIOUR OF PROGRAMS PREDICTED BY 
THE DIFFERENT MODELS 

The hypothesis about differences between 
novice and expert models of recursion was 
tested by presenting Subjects with the 
questionnaire of Figure 1, below. As may be 
seen, the Questionnaire contains two programs, 
called SOLUTION-I, and SOLUTION-2, 

235 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800045.801618&domain=pdf&date_stamp=1983-12-12


CHI'83 Proceedings December 1983 

respectively. These programs are critical to 
determining a Subject's model of recursion. The 
text of the Questionnaire is given in Figure I. 
(The text has been minimally edited for reasons 
of lack of space. The difference is that a 
third Solution - a program that would not 
achieve the required result - has been deleted.) 

..................................... PROPAGATING INFERENCES ....... ~ ................................... 

Recently I needed a programme which would make the following inference: if somebody 'X' has 'flu~ then 
whoever 'X' kisses also has 'flu,'and whoever is infected spreads the infection to the person he or she 
kisses, and so on. Starting with the database given in Figure A, I needed a programme which would 
change the Figure A database into the Figure B database. 

JOHN---KISSES--->MARY---KISSES--->TIM---KISSES--->JOAN 

FIGURE A. 

J~HN---KISSES---> WRY---KISSES---> TIM---KISSES---> JOAN 

HAS HAS HAS HAS 

i 1 i I 
. . . . . . . . . . . .  2 - - I  . . . .  . . . .  1 - -  < -  . . . . . . . . . . .  I 

FIGURE B. 

I have been provided with two solutions to the problem, both called 'TO INFECT /X/' and these are 
labelled SOLUTION-I, SOLUTION-2, below. I want you to consider each programme in turn and say (A) 
whether or not the programme will do what I want it to do, and (B) if it will, say how it does it (in 
your own words), or, if it won't, say why it doesn't (again in your own words). 

SOLUTION-I: SOLUTION-2: 

TO INFECT /X/ 
I NOTE /X/ HAS FLU 
2 CHECK /X/ KISSES ? 
2A If Present: INFECT ~ 
2B If Absent: EXIT 
DONE 

; EXIT 

TO INFECT /X/ 
I CHECK /X/ KISSES ? 
IA If Present: INFECT * ; CONTINUE 
IB If Absent: CONTINUE 
2 NOTE / X /  HAS FLU 
DONE 

Please write your answers on the pages provided overleaf. 
Thank you for cooperating. 

........................... FIGURE I. - ................................................................... 

SOLUTION-I and SOLUTION-2 would both 
achieve the required output database. 
SOLUTiON-I works by side-effecting the database 
on the node first given as the argument to 
INFECT (= JOHN), and then generating the next 
node on the 'KISSES' list, which triggers the 
recursion. SOLUTION-2 works by creating a stack 
of bindings for /X/, ie, (JOHN MARY TIM JOAN) 
and side-effecting each on return from the 
recursive creation of the list (ie., 
side-effects the listed nodes in reverse order). 

2.1 The Effects Of Running The Programms 
Under The Copies and Loop Models. 

Call the conceptual model presented in the 
SOLO Programming Manual the 'Copies' model of 
recursion, and the model hypothesized for students 
the 'Loop' model of recursion. Programmers 
possessing the Copies model would reason that the 
programs behaved as described in the previous 

paragraph. Under the Loop model, however, a 
programmer would argue that the first Solution 
would be okay, but not the second. In 
SOLUTION-I, the parameter would be bound to 
JOHN, and at the first step of the program the 
description 'HAS FLU' would be added to that 
node in the database. 'MARY' would be 
generated by the pattern-match at Step 2, 
triggering the 'Loop'. The Infect procedure 
would then start over again with 'MARY' 
displacing 'JOHN' in the parameter slot. And 
so on. In SOLUTION-2, the parameter would be 
bound to 'JOHN'. The pattern-match at Step I 
would generate 'MARY', triggering the Loop. 
The Infect procedure would then begin again 
with 'MARY' displacing 'JOHN'. On the next 
pass through the Loop 'TIM' would displace 
'MARY'. Finally, 'JOAN' would displace 'TIM'. 
Also, because 'JOAN' is not linked to any other 
node through the 'KISSES' link, the pattern 
match would fail, and the program would proceed 

236 



C H 1 ' 8 3  P r o c e e d i n g s  D e c e m b e r  1 9 8 3  

to Step 2, with the result that the 
description 'HAS FLU' would be added to that 
node in the database. 

Strong evidence for possession of the 
Copies model, then, would be selection of both 
SOLUTION-I and SOLUTION-2 as correctly designed 
programs for the task in hand, plus some comment 
on the order in which the side-effect to the 
database occurs when SOLUTION-2 is run; since 
the side-effect occurs as the recursion unwinds, 
one would expect anyone who recognized this 
fact would also mention it. 

Strong evidence for possession of the Loop 
model would be; I) selection of SOLUTION-I as 
correctly designed, and, 2) rejection of 
SOLUTION-2 on the grounds that only JOAN would be 
affected by running this program. 

In all cases, the Subject's reasons for 
selecting or rejecting one and another of the 
programs should be examined for direct evidence 
about the model possessed. 

METHOD: The full intake of students 
(approximately 90) for the first week of the 
Cognitive Psychology Summer School (July, 1981) 
were given the Questionnaire (Figure I, above) 
and asked to fill it in at their leisure and to 
return it to the experimenter. Students' 
previous experience of programming is not known. 
Nine experts also acted as Subjects in the 
experiment. The experts were Tutors in 
Artificial Intelligence at the D303 Summer School, 
with the exception of one Subject who was a 
research assistant in the psychology laboratory, 
and who had had a year of experience in writing 
Lisp, PASCAL and SOLO programs. In the remainder 
of this paper, novice Subjects who took part in 
the experiment will be referred to as 
'Respondents'. 

RESULTS: Eight of the nine experts 
selected both SOLUTION-I and SOLUTION-2, and one 
selected only SOLUTION-I as the programs that 
would achieve the required output for the 
Questionnaire task. In all cases, the comments 
of theExperts selecting SOLUTION-2 indicated 
that they had a Copies model of recursion. 

Of the 90 or so novices who were given 
the Questionnaire, 30 completed and returned it. 
The number of Respondents who chose different 
programs (or combinations of programs) as 
behaving as required is given in square brackets 
in Table I, below. 

I) None of the Programs would behave as 
intended ~4~. 

4) Only SOLUTION-I would work [I~ 
5) Only SOLUTION-2 would work ~. 
6) Both SOLUTION-1 and SOLUTION 2 would achieve 

the intended output database E3] - 

TABLE 1. 

Table 2 shows the numbers of novices (N) 
and experts (E) who chose either SOLUTION-I~ or 
both SOLUTION-1 and SOLUTION-2 as programs that 
would achieve the required effect. (The results 

include data on selection of the third program 
which was deleted from Figure I, above). All 
other responses were collapsed into the category 
named OTHER. The difference in selection 
between novices and experts is highly significant 
(chi-squared = 21.40 p .001). 

Table 3 shows the number of novices and 
experts who selected only either SOLUTION-I, or 
SOLUTION-2 as correct solutions to the problem 
(the category OTHER has been removed). Novices 
chose SOLUTION-I and SOLUTION-2 significantly 
less often than experts (chi-squared = 10.78, 
p .01). 

N E 

I ...... I ..... 4 
SOLUTION-I I 16 I 1 I 

..... I ...... I 

SOLUTION-I & 3 J 3 1 8 1 

..... i ...... I 

OTHER I 11 I O I 

chi-squared with 2 degrees of freedom 
=21.40 
contingency coeff, = .59 

TABLE 2 

N E 

SOLUTION-I I 16 I 1 I 

F . . . . .  I . . . . .  1 
SOLUTION-I & 3 I 3 I 8 I 

..... I ..... 1 

chi-squared with I degree of freedom 
= I0.78 
cont.coeff, = .52 

TABLE 3 

DISCUSSION: These results suggest that just 
over half the Respondents have adopted the Loop 
model of recursion (selected SOLUTION-I and 
rejected SOLUTION-2), and that only three of 
the 30 Respondents have acquired the Copies 
model (selected both SOLUTION-I and 
SOLUTION-2). Six of the Respondents appear to 
have understood little, if anything, about any 
of the programs (Respondents in categories 1,2, 
and 3 in Table 4.1). In order to determine 
more precisely how the different Respondents 
thought the programs behaved, an examination 
of their reasons for selecting and rejecting 
programs were examined. Limitations of space 
preclude examination of the protocols in this 
paper, but any interested reader can find a 
detailed discussion of this data in Kahney 
(1982). However, the findings from the 
analysis of the protocols will be briefly 
summarized in the next few sections of the 
paper. 

2 3 7  



CH1'83 Proceedings December 1983 

2.2. The Strong Evidence For The Copies Model. 

Three Respondents out of thirty selected 
both SOLUTION-I and SOLUTION-2 as correct 
programs, which was argued to be strong evidence 
for possession of a Copies model of recursion. 
However, the comments made by two of the three 
Respondents cast doubts on their level of 
understanding of either of these solutions. In 
the end the data suggest that only one in thirty 
Respondents after their initial training in 
SOLO programming, has acquired an expert's 
understanding of recursion, the Copies model. 

2.3. The Strong Evidence For The Loop Model. 

Of the sixteen Respondents who selected 
SOLUTION-I, four rejected SOLUTION-2 on the 
grounds that only JOAN would get 'flu.' Since 
it has been argued that this is the strong 
evidence for possession of the Loop model, the 
figures indicate that just 13% of all 
Respondents have this model of recursion. Three 
other Respondents selected SOLUTION-I, and 
rejected SOLUTION-2 on the grounds that 'only' 
one person would get 'flu', but the 'person' was 
'JOHN', not 'JOAN' These Respondents seem to 
have a 'matching bias'. They may believe that 
the original value of the parameter ' /X/' is 
saved rather than displaced by subsequent values 
generated by the pattern match. 

2.4. The Weak Evidence For The Loop Model. 

Most of the Respondents chose SOLUTION-q 
as the only program that behaved as required, which 
is considered to be only weak evidence that the 
Loop model has been acquired by just over half 
(53%) of those who filled in the Questionnaire. 
Unfortunately, most of the comments made by 
these Respondents are less informative than 
necessary to work out their model in detail. 
Only one Respondent made specific reference to 
looping as a mechanism of recursion. (This alone, 
of course, does not by itself mean that this 
Respondent actually has the Loop model). While 
it is reasonable to assume that some of these 
Respondents have the Loop model (if their 
comments had been elaborated) there is good 
evidence that many have rather idiosyncratic 
models of the behaviour of recursive 
procedures. 

3.0. OTHER MODELS OF RECURSION. 

A possibility not yet considered, of 
course, is that students (or some of them) have no 
model of recursion, or a model different from 
either the Copies or the Loop model. Some of the 
Respondents clearly do not understand recursion 
at all. 

3.1. The 'Null' Model. 

In this class would fall thos Respondents 
who said that none of the programs would work. 
Typical of the comments made by these Respondents 
was this: 

"Won't work. This is because as 
a definition of the procedure 
'infect', it can hardly use that 
very procedure as part of the 
initial definition. This would 
probably be refused by the 
computer." 

3.2. The 'Odd' Model. 

Several Respondents had acquired the 
notion that the flow of control statement, 
rather than the results of pattern matching, 
acts as the stopping rule for recursion. (Such 
notions may be quite common. In experiments 
in which we have videotaped programming 
sessions by six novice programmers we have one 
who thought that the flow of control 
statement 'EXIT' caused a recursive procedure 
to terminate too soon, one who thought it 
would never stop if the flow of control 
statement 'CONTINUE' was present, and one who 
believed that recursion could only work if 
there was some sort of 'active' relationship 
between database nodes used in pattern 
matching). 

3-3- The 'Syntactic', 'Magic', Model. 

Hints that some students base their 
judgements about the behaviour of programs in 
the syntactic structure of the program come 
from many of the comments made by different 
Respondents. These Respondents appear to be 
sensitive to the position of the different 
program segments, and make their predictions 
about the behaviour of programs on this basis 
rather than on a model of the way the program 
actually behaves. 

SUMMARY: The Copies model is not a viable 
candidate for what our students know about 
recursion. Only three out of thirty 
Respondents on the Questionnaire showed 
evidence for the Copies model, and two thirds 
of this evidence did not stand up to scrutiny. 
On the other hand, only four of the Respondents 
appear definitely to have the Loop model, on 
the evidence of the strong indicants of that 
model. Thus, what the Respondents know about 
recursion can be accounted in terms of either 
the Copies or the Loop model in only five out 
of thirty cases. The comments of many of the 
Respondents who have been classified as 
providing only weak evidence for the Loop model 
suggest that they have acquired something other 
than either the Loop or the Copies models. 

4.0. CONCLUSION. 

A range of abilities is demonstrated in 
these results. Novices can be distributed into 
different classes according to the internal 
structure of the individual concepts they have 
acquired. Previous studies have attempted to 
show that novices and experts differ in the 
amount and organization of knowledge possessed 
by the different groups. Such effects are 
usually demonstrated in tasks which bear no 
relationship to the usual activities of 

238 



CH1'83 Proceedings December 1983 

programmers (e.g., Adelson, 1981). McKeithen 
et al. (1981) have provided evidence that novices 
and experts differ in the extent to which they 
conceive of particular computing constructs as 
being related. A major problem with the analysis 
is that once the beginners and novices learn 
which concepts 'go together' their performance 
on tasks such as that devised by McKeithen et al, 
will be indistinguishable from the performance of 
experts. But this will not mean that they know 
what experts know. A task such as that reported 
in this paper is designed to get at the 
knowledge novices and experts have about 
individual computing constructs, their process 
knowledge. 

The data show that at least some novices - 
probably a quarter - can, after a fairly brief 
training period in SOLO programming, identify and 
mentally simulate the behaviour of recursive 
procedures. If a person has a mental model of 
a process, even if it is at variance with the 
conceptual model of the process, he will be able 
to make predictions about the behaviour of the 
process, although perhaps not all the behaviour, 
and perhaps inaccurately (Norman, 1982; Collins 
& Gentner, 1982). That is, students who are 
able to develop a Loop model of recursion will 
be able to design procedures in terms of the 
model and understand unfamiliar programs by 
mentally simulating their behaviour in terms of 
the model. More importantly, possession of a 
model provides a person with a basis for debugging 
the model when confronted with a counterexample 
(Jeffries, 1982). 

An important implication of the findings is 
that different novices, with different models of 
recursion, may produce exactly the same programmed 
solution to particular problems. These solutions 
would be the same solutions devised by experts. 
On the surface there would be no differences in 
the programs, suggesting, wrongly, that there are 
no important differences in the knowledge 
underlying the performances. We have seen this 
occur in our own laboratory, with students who 
have been videotaped solving programming 
problems for us. The result casts doubt on the 
assumption that particular knowledge is 
needed in order to solve certain problems, and 
that, if a certain problem is solved~the solver 
has particular knowledge (as in Ehrlich & 
Soloway, 1982). 

Ehrlich, K. & Soloway, E. An empirical 
investigation of the tacit plan 
knowledge in programming. New Haven, 
Conn.: Technical Report 82-236, 
Department of Computer Science, 
Yale University, 1982. 

Eisenstadt, M. Artificial Intelligence Project. 
Units 3 and 4 of Cognitive Psychology 
a third level course. Milton Keynes: 
Open University Press, 1978. 

Jeffries~ R. A comparison of the debugging 
behaviour of expert and novice 
programmers. Paper presented at 
the AERA annual meeting, March,1982. 

Kahney, A. An in-depth study of the cognitive 
behaviour of novice programmers. 
Technical Report No.5. Human 
Cognition Research Laboratory, The 
Open University, Milton Keynes, 
England, 1982. 

McKeithen, K.B. Reitman, J.S. Rueter, H.H. & 
Hirtle, S.C. Knowledge organization and skill 

differences in computer programmers. 
Cognitive Psychology, 1981, 13. 

Norman, D.A. Some observations on mental models. 
In D. Gentner & A Stevens (Eds.), 
Mental Models. Hillsdale, N.J.: 
Lawrence Erlbaum Associates, 1982. 

REFERENCES: 

Adelson, B. Problem solving and the development 
of abstract categories in programming 
languages. Memory and Cognition, 
1981, 9, 422-433. 

Collins, A. & Gentner, D. Constructing runnable 
mental models. Proceedings of the 
Fourth Annual Conference of the 
Cognitive Science Society, Ann Arbor, 
Michigan, 1982. 

239 


