
CH1'83 Proceedings December 1983

AESTHETICS AND PROGRAMMING

Prof. Dr. Peter Molzberger

University of the German Armed Forces, Munich

Abstract

The paper at hand is based on interviews with a

total of eight so-called "superprogrsmmers",

software people, who show exceptional performance

quantitatively as well as qualitatively. It becomes

apparent that these people do not experience

programming as a purely rational activity, hut that

for them it possesses strong intuitive components.

Programs are visualized wholistically as

three-dimensional structures. In this, aesthetics

plays a special part: the structure must please

optically, be elegant -- then it is functionally

acceptable. Logical mistakes manifest themselves as

interfering with this aesthetics.

The author suggests that in the area of software as

well there is something llke the absolute beautiful:

perfect solutions with a maximum of transparence

beyond all rivaling design parameters. He has a

feeling that the faculties described in this paper

are widespread and may open up a totally new

dimension in programming.

A Philosophical Introduction: What is Aesthetics?

The word aesthetics comes from the Greek language

and means "perception". In the initial sense, a

plastic (spatial) perception is meant by that. In a

very simllar way the word "to grasp" contains a

reference to something wieldy, therefore spatial.

In his work, "Critique of Pure Reason" /1781/, Kant

states in the end that pure reason is

"architectonic", that y is, three-dimensional,

plastic. Our thinking seems to take place in

three-dimensional (four-dimensional, if you add

time) pictures. As a rule, this is not conscious to

us, that is, we do not know what our thoughts look
like.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To qopy

otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-121-0/83/012/0247 $00.75

247

We are used to giving the attribute "beautiful" to a

program, if we like it (and by that we do not at all

mean the optic impression of its printout on a piece

of paper). Is this purely a subjective judgment?

Without doubt our aesthetic feeling is individually

different and to a large extent dependent on

culture. On the other hand, like a red thread the

idea runs through the occidental tradition of

thinking -- starting with Plato and Aristotle --

that beyond this, there had to be something like the

"absolute beautiful": there is an original ability

of all people to spontaneously differentiate between

"beautiful" and "ugly". Why should this not be true

for software as well? Is there not beyond all

programming languages, individual styles and fashion

trends, something like the absolute beauty or

elegance in programming? And the beautiful is --

according to another philosophical idea -- at the

same time the good, the true. This age-old thesis

as well seems to prove itself surprisingly, as we

will see, within the framework of our modern

software development.

i. "Strange People Doing Strange Things."

In his guest speech, at the first conference of this

kind in Gaithersburg ~ Weinberg urged the

participants: "There are strange people somewhere,

doing strange things. Look for them." The

following true story popped up into my mind:

In 1977/78 my company, a software house, had an

order to develop a complicated real time system

which had to be written for the most part in

assembly language. When the tasks of specification

and design were completed, the project had fallen

far behind in time. A catastrophe was threatening.

Among the five assembler programmers of the project

team there was one who one night sat down at the

terminal, got glassy eyes, and slipped into a mental

state in which he could not be talked to any more.

The next morning he had completed a difficult piece

of code. This event happened repeatedly and within

six months the man wrote 45.000 assembler statements

and i0.000 macros! Among his colleagues the man was

called the "trance programmer". He once commented

to me: "You could fire a cannon next to me and it

would not bother me." His coding was written

adhering strictly to the rules negotiated in the

team: an exemplary, that is, a well-balanced,
.

*Conference on Human Factors in Computing Systems,

March 15-17, 1982, Gaitherburg, MD.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800045.801620&domain=pdf&date_stamp=1983-12-12

CH1'83 Proceedings December 1983

cleanly and efficiently constructed product. What
was the most amazing, however, was that the system
with more than a hundred terminals kept operating at
full capacity for months without a breakdown.

Weinberg strongly encouraged me in a private talk to
follow up on the incident of the "trance
programmer". That motivated me to do a study
interviewing programmers I had noticed in the last
ten years of my vocational practise as being
extremely efficient. What came out of it was
fascinating for me, because it contradicts the
current concept of programming in every way
/MOLZBERGER 1983/. In the following paragraphs I
will especially concern myself with one aspect,
which turned up in the interviews time and again,
the role of aesthetics in programming. The
reproduced dialogues are excerpts from original
notes (in German).

2. What Does a Program in the Programmer's Mind
Look Like?

What does a program look llke, which we can imagine
so clearly that we can find mistakes in it? 'This
question, asked in a circle of students, caused
confusion. Some believed to have seen strings of
characters, which caused hilarity in others. Others
made use of their hands to draw loops in the air.
Nobody knew for certain! Even our mental images,
which we work with daily, are not conscious to us!
From top programmers, I got the answers to the
question of what they were visualizing in the
designing of a program, llke:

Edwin: "For me, a program is a three-dimensional
structure of stairs around which I can walk
and into which I can enter." (Figure I)

i r

Figure i: Representation of "IF - THEN - ELSE" as a
three-dlmensional structure structure

Edwin can do even more with his three-dimensional
structures: He can test them by moving through them.
He claims to "exist twice at the same time":

(a) in a position outside the program which allows
for keeping the general view.

(b) in a movable position inside the coding. "I
myself am the processor. I become a point.
That is how I run through the program: through
loops, jumps, etc. I execute the program.
Afterwards I am completely sure that the program
is correct. I cannot he wrong, because it has
been carried out correctly!"

Another very good programmer spoke of a symphony
that he composes when he designs a program. Plastic
impressions has Georg, when he says:
Georg: "I am like a sculptor or a potter. I design

something! But I cannot see any pots.
Conceptualizing a program is not an
intellectual, but an emotional performance
for me. My difficulty is to express in words
what I design. I have problems furnishing an
understandable description."

Question: "Do you see statements perhaps?"
Georg: "No. There are no statements. Statements

only irritate me. The program is a whole!
When you think In statements you lack
continuity."

3. Artistic "State of Consciousness"

Phases of extreme creativity and concentration were
marked in the interview partners by symptoms, which
deviated distinctly from the normal state. Rather
uniformly reported were:

- strongly reduced need for sleep and food
- changed subjective concept of time (up to the
factor ten)

On the other hand, there occurred marked differences
in regard to the times necessary for reaching the
state and in the reactions to interruptions. Thus
Georg says:

"Interruptions can he unfortunate. It can take
hours after a telephone call! When I am
interrupted at an unfavorable point where many
threads run together and I am not completely
finished yet, I have to start all over. I
don't believe that it has anything to do with a
trance. It is simply extreme concentration. It
is true that I am in another state of
consciousness in doing this. I call this state
"programming'."

Contrary to this, Hans, a freelance consultant,
claims:

"When I am interrupted during work I need only a
few seconds to switch my state of consciousness
around. For this activity I use the expression
"push to stack." Indeed this activity has a
baffling similarity with the interrupt-handling
of the microprocessor 8080."

The duration of the state seems to be varied as
well; for all ages, too. Thus the 40-year-old Georg
reports:

"Today I hold the state for 12-15 hours, in
earlier times up to 36 hours, in which I do not
burn myself out."

248

CH1'83 Proceedings December 1983

Obviously, there is a need for all those interviewed
to get into such a creative phase from time to time.
The state seems to be something that has a very
positive effect on the general contentedness with
life.
Michael: "I have to like the solution, it has to be

aesthetic. I cannot describe what that
means. A feeling inside of me has to be
satisfied. That is also why I do all that,
not for money in the first place."

About feelings during work, however, quotes like
this one are more likely:
Question: "Is this state pleasant?"
Georg: "It is nothing at all! Emotions are switched

off! I like to do this type of thing,
because I see the success. The depth of that
state depends on my interest. I become the

problem and machine at the same time! I am
both simultaneously."

4. Mistakes as Disruption of the Aesthetic Feeling

Logical errors in programs are experienced time and
again as a disruption of the aesthetic harmony.
Logical correctness and good solutions manifest
themselves in aesthetic elegance.

Edwin: "It has to result in an aesthetic picture.
If I don't like it aesthetically, I know that
the program will not run. The emerging
structure is perfect then. I know that it is
completely free of mistakes. I do not write
the program down until it is perfect."

Georg: "Before I find a mistake I become aware that
something is wrong with the aesthetics. I
work very essentially with aesthetics."

It was also remarkable that with several programmers
the sleeping phase and their dreams play a role.
For instance:

Paul: "When I have been looking in vain for a while
for a mistake, the thing takes possession of
me. If I don't find the mistake there is a
point at which I know I should stop the thing.
When I sleep afterwards and wake up, I have
found the mistake. It is simply there!"

Georg, too, uses his aesthetic feeling in a
calculated way to test programs, when he says:

"What is, well-designed is, at once aesthetical,
that Is, elegant, optimal and intelligible.
When I see such a program I simply know that it
is "waterproof'. The feeling of familiarity
does not only hold true for one's own programs,
but generally when a program is well-written.
There are programs which give me stomach aches
at first sight. They appear unfamiliar,
although they may be correct. I rely heavily on
my emotions! There are programs which
practically cannot be tested (for instance
interrupt control on SPL). There I simply have
to look at them and know that they are o.k.
When I see that, I'm convinced of their
correctness."

The notion that the program is perfect in the mind
was voiced by several programmers. Mistakes come
about in the translation into the statements of a

programming language, in destroying the wholeness.
This ability was labeled by Georg first as
"spooling out".
Question: "Do you mean that it is pure routine
work?"
Georg: "What I have called spooling out of a program

is not dumping off, but a highly
concentrated, creative occupation. It is
true that I have completely finished the
basic structure of the program beforehand.
But the flesh has to be put in still."

5. Programming is Beautiful

The key question is whether there is such a thing as
the "absolute beautiful" in software as well:
programs which (respecting rivaling parameters of
interpretation and fully fulfilling the desired
functions) unite two demands which seem paradoxical:

- the absolute maximum of clarity (and with it
the possibility of maintenance)
- the unmistakably personal flair of a great
artistic creation

I believe that such a thing is indeed possible. Let
us remember Georg's statement: "The feeling of
familiarity does not only hold true for one's own
programs, but generally when a program is
well-written."

There is certainly something that a person familiar
with art intuitively understands as a statement in a
work of art, independent of the individuality of the
artist. I claim that the same thing is true for a
really good program: It contains elements, beyond
the individual style, which allow the expert to
grasp essential parts intuitively.

I found remarkable parallels in an old neighboring
field, mathematics. It is reported again and again
that after someone's long and intensive concern with
the subject, the theorem is there first -- at times
in geometrical shape and as an aesthetically
faultless structure. And only then the hard work of
proving begins. According to Hamming /1980/ the
speculation exists that more than half of the
200.000 theorems published annually are
substantially correct, although their proofs are
wrong!

In his article published as early as 1914,
"Mathematical Invention", Poincare describes many of
the elements which turn up in my interviews:
"intuition", "feelings of absolute certainty",
"sudden illumination", "feelings for mathematical
beauty." The process -- stated in a lecture at the
Societe de Psychologic in Paris -- is quoted by
Arthur Koestler /1960/ in his documentation "The Art
of Creation". In the same source, references to
similar experiences by Hadamard, Ampere, Polya, and
Gauss can also be found.

Conclusion

In discussing a great number of topics, especially
the results of the interviews, with software people,
I could markedly differentiate three different kinds
of reactions:

249

CH1'83 Proceedings December 1983

I. Positive: great interest up to enthusiasm.
Recommendations for a utilization of the results,
especially in education.

2. Negative: "Cases like those are, if they are true
at all, exceptional. Our problems lie not with
the top man, but with the average programmer."

3. "So what": Surprisingly I met a series of
software people for whom the statements were
completely self-evldent throughout the
interviews. They could not imagine at all, how
someone could program well without commanding
such abilities.

This arouses the suspicion in me that the abilities
are by no means commanded only by some strange
people, but that they are -- similar to the ones of
mathematicians -- widely spread and perhaps easily
learned (or activated) by many people. Because they
oppose the current paradigm of software engineering,
(to get rid of the artist), these capabilities have
not been discussed openly until now. The strong
emotions accompanying these reactions make me feel
that the time has come to open up the non-rational
side of programming as a source of effectiveness and
reliability.

References

Hamming, R.W.: The Unreasonable Effectiveness of
Mathematics. The American Mathematical Monthly.
Vol. 87, 1980.

Kant, I.: Kritik der reinen Vernunft. K~nigsberg
1781.

Koestler, A.: The Act of Creation. New York 1966.

Molzberger, P.: Und Progra=~ieren ist doch elne
Kunst, in: Schelle, H.; Molzberger, P.:
Psychologische Aspekte der Software-Entwicklung.
Oldenbourg, Munich 1983.

Poincar~, H.: Die mathematische Erfindung. Leipzig
1914, reprinted in: Ulman, G. (ed.):
Kreativitatsforschung. K~n 1973.

250

