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Abstract 

In a previous paper [8 ] ,  we had presented the 
notion of a family of languages for  the mul t i level  
design and descr ipt ion of computer archi tectures.  
Details of a par t i cu la r  language family,  current ly  
under development, was also described. One of the 
const i tuent  members of th is family is S~, intended 
for  the speci f icat ions of the outer (or exo-) and 
inner (or endo-) archi tectures of general purpose 
von Neumann sty le computers. In th is  paper ~e des- 
cr ibe the formal izat ion and appl icat ion of SA to the 
formal proofs 9J_correctness of archi tecture designs. 

I .  Towards Formal Archi tecture Design 

The design of computer archi tectures has t rad i -  
t i ona l l y  suffered from two major drawbacks: f i r s t l y ,  
the idea of stor ing the design in some formal repre- 
sentational form has remained largely outside the 
mainstream of arch i tectura l  thought and pract ice.  
Secondly, in the absence of a r igorous, theoret ica l  
framework, arch i tectura l  designs have conventional ly 
been evaluated - both with respect to i t s  correct-  
ness and i ts  performance - only a f te r  they have been 
implemented as physical systems. 

These are major shortcomings of any f i e l d  which 
lays some claim to being cal led a d isc ip l ine .  Their 
consequence is a compendium of undesirable charac- 
t e r i s t i c s  that are encountered at one time or an- 
other by a l l  involved with computer archi tecture - 
whether as designer, teacher, or theor is t .  In par- 
t i cu l a r ,  we observe that :  
(a) The documentation of the design is usual ly a 
combination of ( informal) block diagrams and prose 
descr ipt ions.  The design is ,  as a resu l t ,  i l l -  
defined both syn tac t i ca l l y  ( i . e . ,  in respect of i t s  
form) and semantically ( in respect of i t s  funct ion 
and meaning). 
(b) I t  is extremely d i f f i c u l t ,  even in p r inc ip le ,  
to ve r i f y  the correctness of the design without 
construct ing and test ing the physical system. 
(c) I t  is equal ly d i f f i c u l t  to manipulate or a l t e r  
the design and study the ef fects  of a l te rnat ive  de- 
sign choices without actual ly  implementing the de- 
sinn in the form of a physical system. 

Design theor is ts ,  notably Jones [15] have 
pointed out that one of the character is t ics  of the 
c ra f t  s take of design is the lack of a symbolic medi- 
um in w h i ~ t o  capture the shape of the product, and 
the consequent i n a b i l i t y  for  one to experiment with 
the design ( in contrast to experimenting with the 
~ r o d u c ~ s e l f ) .  
~ e  evolut ionary design stage that has h i s t o r i -  
ca l l y  followed the c ra f t  stage is termed by Jones, 

design-by-drawing, ch ie f l y  characterized by the re- 
placement of the product i t s e l f  by i t s  symbolic re- 
presentation as the medium of experiment and change. 
In th is  sense, computer archi tecture appears to be 
basica l ly  at the more pr imi t ive  c ra f t  stage of de- 
sign evolut ion. 

Clear ly,  an essential requirement for  a t rans i -  
t ion to the design-by-drawing stage to take place is 
the a v a i l a b i l i t y  of one or more formal nictures of 
the design. In the realm of computer h a r d ~ ,  the 
need for  such formal descr ipt ions has long been rec- 
ognized [3, 9, 11]. In the spec i f ic  domain of com- 
puter arch i tec ture,  the pioneering work was the ISP 
notation of Bell and Newell [6]  which la te r  matured 
into the ISPS language [5 ] .  Other, more recent ef -  
fo r ts  include SLIDE [19] and ADL [16] .  

Recently, we have proposed yet another archi -  
tecture descr ipt ion lanquaqe cal led S~ [7 ,8 ] .  For 
our present purposes the fo l lowing fundamental and 
d ist inguishing aspects of th is  language must be 
noted. 
( I )  S~ is a general purpose, high leve l ,  procedural 
language for the formal spec i f ica t ion of computer 
archi tectures and was designed as a member of a fam- 
i l y  o.f languages cal led the S* family that  could be 
applied to the mul t i level  design of computer archi -  
tectures. The notion of a language family is pre- 
dicated on the observation that archi tecture encom- 
passes several levels of abstract ion of the physical 
machine [8 ] .  The design process for  such a system 
would then involve a succession of stages, at each 
of which the system would be represented at a par- 
t i cu l a r  abstract ion leve l ,  in the medium of the lan- 

l uage most suited to that leve l .  
2) A major goal in desiqninq S~ was to be able to 

use i t  in the formal ve r i f i ca t i on  of archi tecture 
designs. Thus, special a t tent ion was paid towards 
def in ing pr imi t ive  and structured data types and 
control structures for  which axioms and inference 
rules could he constructed. In fac t ,  the semantics 
of each major en t i t y  in S~ is essent ia l l y  twofold: 
an " informal" de f i n i t i on  which establ ishes the prag- 
matic in te rpre ta t ion  of the en t i t y  ( v i z . ,  what kind 
of hardware in te rpre ta t ion  should be attached to 
that en t i t y )  and a "formal" de f i n i t i on  that can be 
used for  purposes of design ve r i f i ca t i on .  
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The use of the S* language family in the sys- 
tematic desiqn of a mul t i level  arch i tecture,  cal led 
QM-C, was described in [8 ] .  In th is paper, we foc- 
us spec i f i ca l l y  on the problem of ver i fy ing  computer 
architecture designs described in S~. 

2. 'Definin 9' Computer Architecture 

At this point, we need to c lar i fy  what we 
understand by the term "computer architecture". 
Various prescriptions have been made as to what 
this term means or should mean [2,12,17]. The 
following characterization offers no start l ing new 
insight on this matter; we merely attempt to unify 
these dif ferent definitions in the context of the 
social practice of architectural design and re- 
search. In fact simply based on our observations of 
the lat ter  we may identify the following general 
characteristics: 
(a) An architecture is an abstraction of the hard- 
ware in that i t  is concerned with the structure and 
b e ~ v i o r  of hardware represented as an abstract in-  
formation processing s s ~  (rather than as an en~ 
semble of physico 'e lectronic devices). 
(b) Archi tectural  a t t r ibu tes  include both the ex- 
ternal ( i . e . ,  funct ional)  appearance of the computer 
as well as i t s  internal form. 

The computer arch i tec t  is ,  thus, a designer of 
information processing systems of a par t icu lar  kind: 
those that are d i rec t l y  real ized by a combination of 
hardware and microcode. The second point above sug- 
gests, in addi t ion,  the notion of archi tectura l  lev- 
els.  We may give more complete shape to th is  notion 
as fol lows: 

Exo-architecture: A computer's exo-archi tecture re- 
fers to the logical  structure and functional capa- 
b i l i t i e s  of the hardware system as v i s ib le  to the 
machine programmer or compiler wr i te r .  

Endo-architecture: A computer's endo-architecture 
consists of a speci f icat ion of the functional capa- 
b i l i t i e s  of i t s  physical components, the logical  
structure of the i r  interconnections, the nature of 
the information f low between components, and the 
means whereby th is  flow of information is control led. 

To understand fu r ther ,  the re la t ionship  be- 
tween exo- and endo- archi tectures we note that a 
major function of exo-archi tecture is to hide cer- 
tain kinds of information concerning the computer's 
design. These include, for  example, whether or not 
the inst ruct ion cycle is p ipel ined, the presence or 
absence of a cache memory, whether memory in te r -  
leaving is used, whether inst ruct ion in te rp re ta t ion  
is done in firmware or by hardware, and so on. 
These are a l l ,  typical endo-architectural features. 
Thus, exo-archi tecture is an abstraction of endo- 
archi tecture.  Conversely, the l a t t e r  may be viewed 
as what is revealed of the machine's internal log i -  
cal structure and behavior when we ref ine the exo- 
archi tectura l  descr ipt ion.  

For our present purposes we w i l l  be concerned 
with the ve r i f i ca t i on  of both exo- and endo-archi- 
tectures. 

3. On The Cr i ter ion of Correctness 

The basic notion we adopt for  ver i fy ing  archi-  
tecture designs is the Floyd-Hoare induct ive-asser- 
t ion method [13].  Let P be an assert ion specifying 
the states (or re lat ions between states) of some set 
of archi tectura l  data objects,and S be a descr ipt ion 

(in SX) of an architectural system such that P is 

assumed to hold when the system is activated. Let 
Q be another assertion about the states of the data 
objects; following programming terminology, P,Q 
wil l  be called the precondition and postcondition 
respectively of S. Then S wil l  be deemed (par- 
t ia l l y )  correct with respect to P and Q i f  i t  can 
be shown that given P, the activation of S leads to 
the postcondition Q when S terminates. Notational- 
ly this is expressed by the formula 

{P}S{Q} ( I )  
To prove tota l  correctness requires us also to show 
that S terminates. 

I t  is important to note, however, that cases 
may arise where S never terminates; for  example, an 
ins t ruct ion fetch/decode/execute cycle. The S*A 
loop statement forever do..od allows such a c t i v i -  
t ies to be depicted. In su~ 'cases,  what can be 
shown is that every time the body of the loop is 
entered, the precondit ion P holds, and upon exe- 
cuting the body, Q is sa t i s f ied .  

The proof of formulas of the above type re- 
quires the use of formal axioms and rules of i n fe r -  
ence (or proof ru les) .  Thus, the heart of th is  
approach to the domain of archi tecture ve r i f i ca t i on  
is the construction of proof rules and axioms for  
S~ (section 4). 

The closest work in th is  context is that of  
Patterson on microprogram ve r i f i ca t i on  [20] .  We 
share the common object ive of showing that program 
correctness techniques can be successful ly adapted 
to the domain of computer arch i tecture.  However 
the work reported here d i f f e rs  from Patterson's in 
the fol lowing respects: 
( I )  Patterson was concerned with the ve r i f i ca t i on  
of microprograms wr i t ten in the high level language 
STRUM. STRUM was pr imar i ly  oriented towards a par- 
t i cu la r  microprogrammable computer, v i z . ,  the Bur- 
roughs D machine; consequently, the only data ob- 
jects defined in STRUM were those avai lable on th is  
machine. In contrast SR contains a general col-  

lect ion of data types and data st ructur ing f a c i l i -  
t ies by which data objects for  an arb i t ra ry  archi-  
tecture can be represented. The de f in i t i on  of SR 

thus, includes an axiomatic character izat ion of 
these data types (Section 4) and these play a c r i t i -  
cal ro le in archi tecture ve r i f i ca t i on .  
(2) An important appl icat ion of S~ is the descrip- 

t ion and ve r i f i ca t i on  of asynchronous concurrent 
architecures. This is an issue that would not usu- 
a l l y  arise in microcode ve r i f i ca t i on ,  hence was 
ignored in the STRUM e f f o r t .  

4. Axiomatization of S~ 

SR is s imi lar  in many respects to high level 

programming languages. The basic d i f ference l ies  
in the data types and data st ructur ing capabi l i t ies ,  
the constructs for modularizing SX descr ipt ions,  

and in the pragmatic in terpre ta t ion  of constructs 
in the language° 

Most of the " features" in SR have been pre- 

viously described [7 ,8 ]  hence we w i l l  not repeat 
the discussion here. However, as noted above, the 
key to applying the Floyd-Hoare technique is the 
axiomatization of the descr ipt ion language. 

An axiomatic de f i n i t i on  of SR has been com- 
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pleted [10]. In this section we take a very small 
subset of this def in i t ion to show the nature of these 
axioms and proof rules. Rather than discuss con- 
structs that S~ shares witll other languages we shall 

focus on those that are rather specif ic to S~. 

4. ! Data Types 

A data types in SR conforms to the concept of 

type as suggested by Hoare [14]. That is :  (a) a 
data type determines a part icular  class of values 
which may be assumed by an instance (a variable, a 
constant or expression) of that type; and (b) asso- 
ciated with each type is a set of pr imit ive oper- 
ations which can be applied to these values. 

SR contains the pr imit ive data type hi_t, and 

the structured type seA, array, tuple, assoc a f r o ,  
and stack. The following paragraphs shows typical 
proper~s of some of these types. 

4.1.1 (a) The data type b i t  consists of the values 
{0,1}. Operations defined on type b i t  consist of 
the logical operators {A,V, ,O, ^, T a n d  the ari th- 
metic operators {+ , - , * , / }  which carry with them the 
usual meaning. 
(b) Given x,y of type b i t ,  x/y is undefined for y=0. 
(c) Given x of type bi___t., x represents a binary sto- 
rage element. 

4.1.2 Let T denote a sequence type: seq [ i n . . i  ~] b i t .  

Then (a) in~i ~, where in , i  C are non-negative integers 

(b) Let in~i~i ~. Then T : i n . . i ~+b i t  ,. That is ,  

T( i )  is an element of type b i t  

(c) Let <bb..b>~ n denote a binary str ing of length 

in - i~+ l .  Then T ={<00 O> in- <00..1>! n, < l l . j > ~ }  "" i~ '  I~ " " '  

(d) The logical operations {^ ,v ,  ,o, ^, v} are defined 
on T according to the following rule: le t  O denote a 
logical operation and x,y be of type T such that 
x=<x i x i _ l . .X i  >and ~v:<Y. >. Then n n ~ In Y in - l " 'Y i~  

xey = x i ~  yik for a l l  i k such that inmik~i ~- 

(e) The arithmetic operations + , - , * , /  are defined on 
T as follows: le t  , - , , / denote ordinary 
ari thmetic operations (/ 'denotes integer quotient 
d iv is ion) .  Let x,y be of type T and max be the max- 
imum value < l l . . l > i n  for type T. Then +, - ,  *, / on 

x,y are defined by: 
( i )  x+~y ~ max~x+y = x+~y 
( i i )  xmy~x-y = x-~y 
( i i i )  x * ' y  ~ max~x*y = x * ' y  
( iv)  ym<OO..O>in~x/y = x / ' y  

Note that the arithmetics are defined only for un- 
signed integers. Furthermore, no side effects re- 
sul t  from these operations. In actual fact ,  a given 
architecture may not only admit arithmetic oper- 
ations of various types (e.g. ,  2's complement) but 
they may also resul t  in side effects (such as an 
'overflow' f lag being set).  In S*A such arithmetic 
operators would be constructed as procedures from 

the predefined operators. The semantics of the 
newly defined operators (includinn side effects) 
would then be inferred using the basic S*A axioms 
and rules of inference. 
( f )  The ari thmetic,  log ica l ,  and sh i f t  operations 
defined on type T represent pr imi t ive (hardware de- 
fined) functional logic units.  (Note that the 
axioms governing the sh i f t  operations are not shown 
here). 
(g) Let x be of type T. Then x represents any de- 
vice capable of storing binary str ings in the range 
of values defined by T such that elements of the 
binary str ing can be accessed in para l le l .  

4.1.3 Let T denote ei ther of the stack types: 
stack [ i ]  of T or stack [ i ]  of T with V~ . . . .  ,Vn, 

V ° where Vi . . . .  n are e x p l i c i t l ~ e c ~ a r e d  stack 
pointers. 
(a) Vl, V2 . . . . .  V n are of type seq. 

(b) Let intval (Vj) denote possible (decimal) inte- 
ger value s--~-V'j~{V1,V2 . . . .  Vn}. Then intval (Vj)~i 

(c) T O is of type seq or tuple 

(d) The standard procedures u ~ a n d  p_o_p_ are de- 
fined on the second stack type T as follows: let  x 
be of type T and Xo be of type T O . Let Vj E {V~, 

. . . .  V n} be a stack pointer. Finally, le t  l e n ~  

(x) denote the number of elements of type T O in X. 

Then: . o  o 

( i) {intval (Vj) = Vj A length (x)=~o:~o<i^Xo=Xo } 

push (x[Vj],Xo) 

{x[Vj] = Xo = Xo ^ intval (Vj) = Vj ° + I ^ lenpth 

(x) : ~ +I} 

( i i )  { intVal ( V j ) = V j ° A l e n ~  (X)=~o:Co~iAX[Vj ]=x°} 

pop (x [V j ] ,  Xo) 
o , o  

{Xo = x Aintval (Vj) = Vj - 1A length (x)=~o-l}  

While a type declaration "type T=T' "introduces a 
class of possible objects Of type T that sat is f ies  
the properties of type T ' ,  the declaration of a 
data object of a given type T denotes the ex- 
istence, in the architecture being designed or 
described, of a storage device whose abstract pro- 
perties are prescribed by the properties of the 
data type T. Each d i s t i nc t  data object declared is 
a specif icat ion of a d is t inc t  storage device. 

4.2 Executional Statements 

Executional statements in SR are basical ly 

simple or structured. S im~s ta tements  s igni fy  
ind iv is ib le  units of action and the i r  meanings are 
usually defined formally by axioms. Structured 
statements are composed of one or more elementary 
statements and the i r  meanings are formally speci- 
f ied by rules of inference. 

Simple statements in SR include the assifln- 

ment, the procedure cal l  and act (act ivate) state- 
ments, trap, await a n ~ i ~ ,  the procedure ex i t  and 
return statements, and the 9oto. The axiom of 
assignment is as defined for Pascal [1] while the 
Qoto is defined according to the proof rule due to 
Alagic and Arbib [ I ] .  As sDecific examples of the 
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de f in i t i on  of simple statements, consider the await 
and sig constructs. 

The basic synchronization # a c i l i t i e s  in SR are 

provided by means of the standard procedures await 
and si 9 defined on synchronizin 9 var iables.  A dec- 
larat ion of a synchronizing var iable (or "synchro- 
n izer")  is of the form 

sync x : T 
where T is of types b i t  or seq. The statements 
await x and sip x are'~'efined on a synchronizer ac- 
cording to the fol lowing rules: 
( i )  {x = Xo > O} await x {x = Xo-l~O} 

{x = x = O} await x { fa lse}  
o 

( i i )  {x = Xo : 0 ~ Xo < max} sig x {x = Xo + 1 > O} 

where max is the maximum integer valued state for  x. 
I n t u i t i v e l y ,  an await operation w i l l  never terminate 
as long as the value of x is O; when x>O the await 
decrements the value of x and terminates. The si 9 
operation is only defined i f  x < max. In that case 
i t  simply increments x by I .  

The si 9 and await constructs are used in S*A 
to establ ish synchronization between concurrently 
executing mechanisms (e.g. ,  the components of an 
inst ruct ion p ipe l ine) .  Thus, the above proof rules 
can be used for proving the correctness of concur- 
rent systems, using the Owicki-Gries approach ~8] .  

In general, there are three classes of struc- 
tured statements. Of these, compound statements 
allow the sequential or para l le l  Composition of 
other, simpler statements while condit ionals allow 
actions to be taken based on specif ied tests of the 
machine state;  the th i rd  group are the repet i t ion  
statements. We give below, two examples of the 
proof rules for  structured statements. 
(a) The para l le l  statement S 1D S 2 specif ies the 

simultaneous execution of S 1 and S 2. The next 

statement in sequence begins execution only when 
both S 1 and S 2 have terminated. Formally, pro- 

vided S I and S 2 are dynamically d i s j o i n t :  

{Pi}  Si {q l }  , {P2} S2 {q2} 
{Pi ^ P2} si D s2 {QI ^ Q2} 

Two statements S 1, S 2 are said to be dynami- 

ca l l y  d i s j o in t  i f  during the period that S I ,  S 2 are 

both in execution, the i r  data resource sets are d is-  
j ~ t .  Note that the above proof rule is expressed 
in the usual notation 

H I , H 2 . . . . .  H n 
H 

which states that whenever the assertions H 1, H 2, 

. . . .  H n are true then H is also true. 

(b) Structured await statements are of two forms: 
the f i r s t  of these is "await x do Sod" where x is 
a synchronizer; the statement S w i l l  execute i f  and 
only i f  x~l ;  the second form is "await B do Sod" 
where B is a boolean expression. I n ' t h i s  case, B 
is continuously evaluated unt i l  i t  is t rue, at 
which point S begins execution. The proof rules 
for  these two statements are: 

{Q} s {R} , {P} await x {Q} 

{P} await X do Sod {R} 

5. 

{P^B} S {Q} 
{P} await B do Sod {Q} 

On The Notation For Logical Formulas 

As previously noted, assertions are stated in 
the form of formulas in the f i r s t  order predicate 
log ic .  Such assertions w i l l  re fer  to the various 
data objects which, we have seen, are declared as 
instances of SR types. In developing assertions we 

shall f ind i t  convenient ( in order to make them 
more understandable) to "tag" a data object i den t i -  
f i e r  with i t s  type. For example, re fer r ing to Fig. 
I (see next sect ion),  the data object reg. SD w i l l  
be designated within assertions as "reg. sp: I s  
reg is te r " .  

We also noted in [8]  that through the use of 
synonyms, an object of a given type with a given 
i d e n t i f i e r  may be a l t e rna t i ve l y  viewed as a data 
object with a d i f f e ren t  name. In specifying asser- 
t ions involv ing a data object of some given type T 
with a l te rna t i ve  names X,Y . . . .  Z, we shall also, 
where necessary, use the notation "X IY I . . . IZ :T "  
meaning "X or Y or . . .  or Z of type T". 

F ina l l y ,  in order to s impl i fy  assertions and 
enhance the i r  readab i l i t y ,  aux i l i a r y  variables w i l l  
be introduced where necessary [18].  Aux i l ia ry  var- 
iables may appear in the assertions but not in the 
SR tex t .  These w i l l  be denoted by subscripted 

i d e n t i f i e r s ,  e .g. ,  X , Yi ,  etc. 
o 

6. An Example 

Consider the speci f icat ion of the QM-C ma- 
chine CALL inst ruct ion as previously described in 
[8 ] .  I t s  overal l  object ive is to save the contents 
of the QM-C registers and al locate space on a stack 
pr ior  to t ransfer r ing control to the cal led proce- 
dure. 

The data objects used by CALL are defined as 
synonyms of previously declared var iables,  and are 
shown in Fig. I ( for  conciseness the or ig ina l  var- 
iable declarations for  the QM-1 data objects " local 
store" and " f  store" are not shown here - they are 

described in [ 8 ] ) .  Note that the name "reg" is 
made synonymous with " local store" and that two 
a l te rna t ive  data types (an array and a t u ~ )  are 
associated with th is  name. Some of the f i e lds  of 
the t u ~ t h e m s e l v e s  have a l te rna t i ve  data type 
a t t r ibu tes  - for  example "reg. inst_reg" is speci- 
f ied as an instance of two d i f f e ren t  tuple types. 

At the time the CALL inst ruct ion is to be 
executed the stack (held in QM-C's main memory) is 
as shown in Fig. 2 and the f i r s t  word of a proce- 
dure being cal led is a "mask" whose format is given 
in Fig. 3. In addi t ion,  the fol lowing conditions 
are assumed to hold: 
( i )  the framepointer fp points to the s ta r t  of the 
act ivat ion record for  the ca l l ing  procedure; ( i i )  
the program counter pc points to the CALL in-  
struct ion in memory; ( i i i )  eb denotes the base ad- 
dress for  the ent i re object program; and ( i v )  ins t_  
reg contains the operand of the CALL inst ruct ion 
(ac tua l ly ,  i t  points to a word in memory re la t i ve  
to the base address specif ied in eb that holds the 
aforementioned mask). 

This is stated formal ly by means of the f o l -  
lowing assert ion: 
PRE CALL: 
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type Is_register = seq [17. .0]  bi__.t; 
type f_register  = s eq [5 . .0 ]  b i t ;  
. . . . . 0  

sy n main output = control store output; / *  main memory output bus*/ 
s)in reg : arrajz [0. .31]  o_~ Is_register /*QM-C register  f i l e  * /  

aummy : a r ray [O . . l l ]  of Is register  /*not used by QM-C*/ 
temp : array[O..3] ~ "  Is - reg is ter  /*temporaries*/ 
var : array[O..7] of Is register / *var iable regs * /  

index : array[O..3] ~ I s - - r e g i s t e r  /*QM-C index regs * /  
: tuple 

fp : Is_register /*frame pointer * /  
pc : Is_register /*program counter * /  
eb : Is_register / *ex t .  base reg. * /  
ax : Is_register /*aux. mem index * /  

endtup 

sp : Is_register /*stack pointer * /  
scrl : Is_register /*scratch reg * /  
scr2 : Is register  /*scratch reg * /  

inst  reg : tuple 
,pc,de : sseq [6 . .0 ]  b i t  

ab tu~p e 
a : seq [4 . .0 ]  b i t  
b : seq [5 , .0 ]  b i t  

endtup 
endtup 

: tup1 e 
c : f_register  
a : f_register  
b : f_register  

endtup 
e n d s  = local store: 

syn mm addr select : seq [5 . .0 ]  ~'it = f s tore . fc ia ;  
syn mm-inde~select : seq [ I . . 0 ]  b i t  = fZstore. fmpc[ l . .O];  
sy n mm~data_~elect : seq [5 . .0 ]  b i t  = f s tore . fc id .  

Fig. 1 

space a l l o c a t e d  
f o r  l oca l  
v a r i a b l e s  

Fig. 2 

÷ 
high address 

low address 
# 

fp (frame pointer) 

p (stack pointer) 

17 12 11 

I reg .  no. I s i ze  

No. of the lowest 
reg. th is subroutine 
uses; O~rego no~7 

Size of the stack space 
for local variables 
of the called procedure 

Fig. 3 

old value of sp 

space 
allocated value value reg 7 
for  local 
variables of of value " ' "  
of cal l ing PC, fPo 
procedure 

Fi 9 . 4 

value 
of 
lowest 
numbered 
register  

fp 
+ 

space 
allocated 
for local 
variables 
of called 
p r o c e ~  

sp 
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~ _ C A L L ;  
d_£ reg. index.pc  := reg . index .pc+ l  
[] reg .sc r l  := r e g . i n s t  reg 

mm index se lec t  := 26 

od; 
c ~ l  MAIN MEM.READ I L ; 
reg. inst~reg := ma-i~output ; 
do mm addr se lec t  := 28 
[] mm da ta -se lec t  : 26 

o__d; 
repeat 

mm data se lec t  := mm da ta_se lec t - i ;  
caTl MATN MEM,PUSH G- 

un t i l  mm d a t ~ s e l e c t -  reg. ins t_reg.c+16 

reg . i ndex . fp  := reg.sp 
reg.sp := r e g . s p - r e q . i n s t  reg.ab 
reg. index.pc  := reg~indexTeb+reg.scr l+ l  
mm index se lec t  := 25; 
caTl MAIN MEM.READ I 

endproc Fig. 

reg . i ndex . fp  : Is r e g i s t e r  = fPo A reg.sp : Is reg- 
i s t e r  = SPo 

A reg. index.pc : Is r e g i s t e r  = pc ° A reg. index.eb : 

Is r eg i s t e r  = b o 

A reg . ins t_ reg  : Is r e g i s t e r  = opd addr ° 

A main_mem [bo+opd_addro ] [17 . . l l  ] = r_lowest o : 

in teger  A 0 ~ r lowest ~7 
- -  o 

A main mem [bo+opd_addro][ lO..O] = local_space ° : 

in teger  

A (Vj : 7,6 . . . . .  r lowesto)( reg v a t [ j ]  = reg var 0 [ j ] )  

The intended postcondi t ion of the CALL in -  
s t ruc t ion  p r i o r  to ac t i va t i ng  the next i ns t ruc t i on  
fe tch phase w i l l  be such tha t :  
( i )  The state of the stack and associated pointers 
should be as shown in Fig. 4. Note that  the saved 
value of pc must be such that  i t  points to the in -  
s t ruc t ion  fo l lowing CALL ( in the ca l l i ng  procedure).  
( i i )  The program counter is po in t ing to the f i r s t  
i ns t ruc t i on  of the ca l led  procedure. 
( i i i )  The f i r s t  i ns t ruc t i on  of the ca l led  pro- 
cedure is on the main memory output bus. 

The fo l lowing asser t ion formal izes these condi t ions:  

POST CALL: 

main_mem [SPo] =PCo+l ^ main mem [SPo- l ]  = fPo 

^ (Vj : 7,6 . . . . .  r jowesto) (mainmem [SPo-(9- j )  ] = 

reg. Varo[J]  

A reg. index. fp  : I s_ reg i s te r  = SPo-(9-r_lowesto) - I  

A reg. sp : Is r e g i s t e r  = SPo-(9-r_lowesto) - I  - l o c a l _  

space o 

A r e g .  index.pc : Is r e g i s t e r  = bo+opd addro+l 

^ main_output : bus = main_mem [ reg . i ndex .pc ]  

The actual SR code descr ib ing the CALL ins t ruc t i on  

is shown in Fig. 5. Note that  th i s  includes invocat ion 
of  three other  procedures ins ide another mechanism, 
MAIN~MEM. Thus, to f i l l  in the de ta i l s  of  the proof 

/*pc points to  next i ns t ruc t i on  * /  
/ *  save o f f s e t  * /  

/ *  read mask word onto bus * /  
/ *  prepare to decode * /  
/ *  prepare to save reg i s te rs  * /  

/ *  save reg is te rs  on stack * /  
/ *  i t e r a t i v e l y  un t i l  reg. * /  
/ *  spec i f ied  in ins t_ reg .c  has * /  
/ *  been saved * /  
/ *  set new frame po in ter  * /  
/ *  a l l oca te  fo r  local  vars * /  
/ *  f i r s t  i n s t r ,  of  proc * /  

fo r  the CALL procedure, proof ou t l ines  fo r  these 
three procedures must be constructed.  C lear ly ,  in -  
side the CALL procedure, the asser t ions holding at 
the time any of these MAIN MEM procedures is ca l led  
must imply the precondi t ion fo r  the corresponding 
MAIN MEM procedure. The postcondi t ion fo r  the l a t -  
t e r  F i l l  then become par t  of  the postcondi t ion of  
the MAIN MEM procedure ca l l  statement. 

For lack of  space we cannot e laborate on the 
proof de ta i l s  here. Most of  the actual proof is 
qu i te  s t ra igh t fo rward ,  however. The only non - t r i v -  
ia l  par t  is to show the correctness of  the i t e r a t i v e  
statement and, as is usual in such cases, an appro- 
p r ia te  loop invar ian t  [1 ]  must be constructed and 
used to prove the desired postcondi t ion fo r  the 
loop. The correctness of the i nva r ian t  can be shown 
using induct ion.  For f u r t he r  d e t a i l s ,  the i n t e r -  
ested reader may r e f e r  to [ i 0 ] .  

7. Conclusions 

The formal descr ip t ion  and v e r i f i c a t i o n  of  
a rch i tec tu re  designs is very s im i la r  to the process 
of program desiqn and v e r i f i c a t i o n .  The main d is -  
t i n c t i ons  appear to l i e  in the spec i f i c  nature of 
data types,  in the pragmatics of the constructs 
used, and in the kind of  informat ion processing sys- 
tems that  the a r c h i t e c t  is requi red to design. 
Keeping these caveats in mind, the idea of formal ly  
descr ib ing a rch i t ec tu res ,  and v e r i f y i n g  t h e i r  cor-  
rectness at the design stage i t s e l f  seems pe r f ec t l y  
feas ib le .  An important quest ion that  remains to be 
answered is :  given an a rch i t ec tu ra l  design in a 
language such as S~, how can we transform such a 

design to lower leve ls  of descr ip t ion  and demon- 
s t rab ly  preserve i t s  correctness.  We are cu r ren t l y  
studying th is  problem w i th in  the framework of the 
S* fami ly  of  languages. 
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