
ON THE VERIFICATION OF

COMPUTER ARCHITECTURES USING AN

ARCHITECTURE DESCRIPTION LANGUAGE

Subrata Dasgupta

Department of Computer Science
Universi ty of Southwestern Louisiana

Lafayette, Louisiana

Abstract

In a previous paper [8] , we had presented the
notion of a family of languages for the mul t i level
design and descr ipt ion of computer archi tectures.
Details of a par t i cu la r language family, current ly
under development, was also described. One of the
const i tuent members of th is family is S~, intended
for the speci f icat ions of the outer (or exo-) and
inner (or endo-) archi tectures of general purpose
von Neumann sty le computers. In th is paper ~e des-
cr ibe the formal izat ion and appl icat ion of SA to the
formal proofs 9J_correctness of archi tecture designs.

I . Towards Formal Archi tecture Design

The design of computer archi tectures has t rad i -
t i ona l l y suffered from two major drawbacks: f i r s t l y ,
the idea of stor ing the design in some formal repre-
sentational form has remained largely outside the
mainstream of arch i tectura l thought and pract ice.
Secondly, in the absence of a r igorous, theoret ica l
framework, arch i tectura l designs have conventional ly
been evaluated - both with respect to i t s correct-
ness and i ts performance - only a f te r they have been
implemented as physical systems.

These are major shortcomings of any f i e l d which
lays some claim to being cal led a d isc ip l ine . Their
consequence is a compendium of undesirable charac-
t e r i s t i c s that are encountered at one time or an-
other by a l l involved with computer archi tecture -
whether as designer, teacher, or theor is t . In par-
t i cu l a r , we observe that :
(a) The documentation of the design is usual ly a
combination of (informal) block diagrams and prose
descr ipt ions. The design is , as a resu l t , i l l -
defined both syn tac t i ca l l y (i . e . , in respect of i t s
form) and semantically (in respect of i t s funct ion
and meaning).
(b) I t is extremely d i f f i c u l t , even in p r inc ip le ,
to ve r i f y the correctness of the design without
construct ing and test ing the physical system.
(c) I t is equal ly d i f f i c u l t to manipulate or a l t e r
the design and study the ef fects of a l te rnat ive de-
sign choices without actual ly implementing the de-
sinn in the form of a physical system.

Design theor is ts , notably Jones [15] have
pointed out that one of the character is t ics of the
c ra f t s take of design is the lack of a symbolic medi-
um in w h i ~ t o capture the shape of the product, and
the consequent i n a b i l i t y for one to experiment with
the design (in contrast to experimenting with the
~ r o d u c ~ s e l f) .
~ e evolut ionary design stage that has h i s t o r i -
ca l l y followed the c ra f t stage is termed by Jones,

design-by-drawing, ch ie f l y characterized by the re-
placement of the product i t s e l f by i t s symbolic re-
presentation as the medium of experiment and change.
In th is sense, computer archi tecture appears to be
basica l ly at the more pr imi t ive c ra f t stage of de-
sign evolut ion.

Clear ly, an essential requirement for a t rans i -
t ion to the design-by-drawing stage to take place is
the a v a i l a b i l i t y of one or more formal nictures of
the design. In the realm of computer h a r d ~ , the
need for such formal descr ipt ions has long been rec-
ognized [3, 9, 11]. In the spec i f ic domain of com-
puter arch i tec ture, the pioneering work was the ISP
notation of Bell and Newell [6] which la te r matured
into the ISPS language [5] . Other, more recent ef -
fo r ts include SLIDE [19] and ADL [16] .

Recently, we have proposed yet another archi -
tecture descr ipt ion lanquaqe cal led S~ [7 ,8] . For
our present purposes the fo l lowing fundamental and
d ist inguishing aspects of th is language must be
noted.
(I) S~ is a general purpose, high leve l , procedural
language for the formal spec i f ica t ion of computer
archi tectures and was designed as a member of a fam-
i l y o.f languages cal led the S* family that could be
applied to the mul t i level design of computer archi -
tectures. The notion of a language family is pre-
dicated on the observation that archi tecture encom-
passes several levels of abstract ion of the physical
machine [8] . The design process for such a system
would then involve a succession of stages, at each
of which the system would be represented at a par-
t i cu l a r abstract ion leve l , in the medium of the lan-

l uage most suited to that leve l .
2) A major goal in desiqninq S~ was to be able to

use i t in the formal ve r i f i ca t i on of archi tecture
designs. Thus, special a t tent ion was paid towards
def in ing pr imi t ive and structured data types and
control structures for which axioms and inference
rules could he constructed. In fac t , the semantics
of each major en t i t y in S~ is essent ia l l y twofold:
an " informal" de f i n i t i on which establ ishes the prag-
matic in te rpre ta t ion of the en t i t y (v i z . , what kind
of hardware in te rpre ta t ion should be attached to
that en t i t y) and a "formal" de f i n i t i on that can be
used for purposes of design ve r i f i ca t i on .

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0149-7111/83/0600/0032501.00 32

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1067651.801635&domain=pdf&date_stamp=1983-06-13

The use of the S* language family in the sys-
tematic desiqn of a mul t i level arch i tecture, cal led
QM-C, was described in [8] . In th is paper, we foc-
us spec i f i ca l l y on the problem of ver i fy ing computer
architecture designs described in S~.

2. 'Definin 9' Computer Architecture

At this point, we need to c lar i fy what we
understand by the term "computer architecture".
Various prescriptions have been made as to what
this term means or should mean [2,12,17]. The
following characterization offers no start l ing new
insight on this matter; we merely attempt to unify
these dif ferent definitions in the context of the
social practice of architectural design and re-
search. In fact simply based on our observations of
the lat ter we may identify the following general
characteristics:
(a) An architecture is an abstraction of the hard-
ware in that i t is concerned with the structure and
b e ~ v i o r of hardware represented as an abstract in-
formation processing s s ~ (rather than as an en~
semble of physico 'e lectronic devices).
(b) Archi tectural a t t r ibu tes include both the ex-
ternal (i . e . , funct ional) appearance of the computer
as well as i t s internal form.

The computer arch i tec t is , thus, a designer of
information processing systems of a par t icu lar kind:
those that are d i rec t l y real ized by a combination of
hardware and microcode. The second point above sug-
gests, in addi t ion, the notion of archi tectura l lev-
els. We may give more complete shape to th is notion
as fol lows:

Exo-architecture: A computer's exo-archi tecture re-
fers to the logical structure and functional capa-
b i l i t i e s of the hardware system as v i s ib le to the
machine programmer or compiler wr i te r .

Endo-architecture: A computer's endo-architecture
consists of a speci f icat ion of the functional capa-
b i l i t i e s of i t s physical components, the logical
structure of the i r interconnections, the nature of
the information f low between components, and the
means whereby th is flow of information is control led.

To understand fu r ther , the re la t ionship be-
tween exo- and endo- archi tectures we note that a
major function of exo-archi tecture is to hide cer-
tain kinds of information concerning the computer's
design. These include, for example, whether or not
the inst ruct ion cycle is p ipel ined, the presence or
absence of a cache memory, whether memory in te r -
leaving is used, whether inst ruct ion in te rp re ta t ion
is done in firmware or by hardware, and so on.
These are a l l , typical endo-architectural features.
Thus, exo-archi tecture is an abstraction of endo-
archi tecture. Conversely, the l a t t e r may be viewed
as what is revealed of the machine's internal log i -
cal structure and behavior when we ref ine the exo-
archi tectura l descr ipt ion.

For our present purposes we w i l l be concerned
with the ve r i f i ca t i on of both exo- and endo-archi-
tectures.

3. On The Cr i ter ion of Correctness

The basic notion we adopt for ver i fy ing archi-
tecture designs is the Floyd-Hoare induct ive-asser-
t ion method [13]. Let P be an assert ion specifying
the states (or re lat ions between states) of some set
of archi tectura l data objects,and S be a descr ipt ion

(in SX) of an architectural system such that P is

assumed to hold when the system is activated. Let
Q be another assertion about the states of the data
objects; following programming terminology, P,Q
wil l be called the precondition and postcondition
respectively of S. Then S wil l be deemed (par-
t ia l l y) correct with respect to P and Q i f i t can
be shown that given P, the activation of S leads to
the postcondition Q when S terminates. Notational-
ly this is expressed by the formula

{P}S{Q} (I)
To prove tota l correctness requires us also to show
that S terminates.

I t is important to note, however, that cases
may arise where S never terminates; for example, an
ins t ruct ion fetch/decode/execute cycle. The S*A
loop statement forever do..od allows such a c t i v i -
t ies to be depicted. In su~ 'cases, what can be
shown is that every time the body of the loop is
entered, the precondit ion P holds, and upon exe-
cuting the body, Q is sa t i s f ied .

The proof of formulas of the above type re-
quires the use of formal axioms and rules of i n fe r -
ence (or proof ru les) . Thus, the heart of th is
approach to the domain of archi tecture ve r i f i ca t i on
is the construction of proof rules and axioms for
S~ (section 4).

The closest work in th is context is that of
Patterson on microprogram ve r i f i ca t i on [20] . We
share the common object ive of showing that program
correctness techniques can be successful ly adapted
to the domain of computer arch i tecture. However
the work reported here d i f f e rs from Patterson's in
the fol lowing respects:
(I) Patterson was concerned with the ve r i f i ca t i on
of microprograms wr i t ten in the high level language
STRUM. STRUM was pr imar i ly oriented towards a par-
t i cu la r microprogrammable computer, v i z . , the Bur-
roughs D machine; consequently, the only data ob-
jects defined in STRUM were those avai lable on th is
machine. In contrast SR contains a general col-

lect ion of data types and data st ructur ing f a c i l i -
t ies by which data objects for an arb i t ra ry archi-
tecture can be represented. The de f in i t i on of SR

thus, includes an axiomatic character izat ion of
these data types (Section 4) and these play a c r i t i -
cal ro le in archi tecture ve r i f i ca t i on .
(2) An important appl icat ion of S~ is the descrip-

t ion and ve r i f i ca t i on of asynchronous concurrent
architecures. This is an issue that would not usu-
a l l y arise in microcode ve r i f i ca t i on , hence was
ignored in the STRUM e f f o r t .

4. Axiomatization of S~

SR is s imi lar in many respects to high level

programming languages. The basic d i f ference l ies
in the data types and data st ructur ing capabi l i t ies ,
the constructs for modularizing SX descr ipt ions,

and in the pragmatic in terpre ta t ion of constructs
in the language°

Most of the " features" in SR have been pre-

viously described [7 ,8] hence we w i l l not repeat
the discussion here. However, as noted above, the
key to applying the Floyd-Hoare technique is the
axiomatization of the descr ipt ion language.

An axiomatic de f i n i t i on of SR has been com-

33

pleted [10]. In this section we take a very small
subset of this def in i t ion to show the nature of these
axioms and proof rules. Rather than discuss con-
structs that S~ shares witll other languages we shall

focus on those that are rather specif ic to S~.

4. ! Data Types

A data types in SR conforms to the concept of

type as suggested by Hoare [14]. That is : (a) a
data type determines a part icular class of values
which may be assumed by an instance (a variable, a
constant or expression) of that type; and (b) asso-
ciated with each type is a set of pr imit ive oper-
ations which can be applied to these values.

SR contains the pr imit ive data type hi_t, and

the structured type seA, array, tuple, assoc a f r o ,
and stack. The following paragraphs shows typical
proper~s of some of these types.

4.1.1 (a) The data type b i t consists of the values
{0,1}. Operations defined on type b i t consist of
the logical operators {A,V, ,O, ^, T a n d the ari th-
metic operators {+ , - , * , / } which carry with them the
usual meaning.
(b) Given x,y of type b i t , x/y is undefined for y=0.
(c) Given x of type bi___t., x represents a binary sto-
rage element.

4.1.2 Let T denote a sequence type: seq [i n . . i ~] b i t .

Then (a) in~i ~, where in , i C are non-negative integers

(b) Let in~i~i ~. Then T : i n . . i ~+b i t ,. That is ,

T(i) is an element of type b i t

(c) Let <bb..b>~ n denote a binary str ing of length

in - i~+ l . Then T ={<00 O> in- <00..1>! n, < l l . j > ~ } "" i~ ' I~ " " '

(d) The logical operations {^ ,v , ,o, ^, v} are defined
on T according to the following rule: le t O denote a
logical operation and x,y be of type T such that
x=<x i x i _ l . .X i >and ~v:<Y. >. Then n n ~ In Y in - l " 'Y i~

xey = x i ~ yik for a l l i k such that inmik~i ~-

(e) The arithmetic operations + , - , * , / are defined on
T as follows: le t , - , , / denote ordinary
ari thmetic operations (/ 'denotes integer quotient
d iv is ion) . Let x,y be of type T and max be the max-
imum value < l l . . l > i n for type T. Then +, - , *, / on

x,y are defined by:
(i) x+~y ~ max~x+y = x+~y
(i i) xmy~x-y = x-~y
(i i i) x * ' y ~ max~x*y = x * ' y
(iv) ym<OO..O>in~x/y = x / ' y

Note that the arithmetics are defined only for un-
signed integers. Furthermore, no side effects re-
sul t from these operations. In actual fact , a given
architecture may not only admit arithmetic oper-
ations of various types (e.g. , 2's complement) but
they may also resul t in side effects (such as an
'overflow' f lag being set). In S*A such arithmetic
operators would be constructed as procedures from

the predefined operators. The semantics of the
newly defined operators (includinn side effects)
would then be inferred using the basic S*A axioms
and rules of inference.
(f) The ari thmetic, log ica l , and sh i f t operations
defined on type T represent pr imi t ive (hardware de-
fined) functional logic units. (Note that the
axioms governing the sh i f t operations are not shown
here).
(g) Let x be of type T. Then x represents any de-
vice capable of storing binary str ings in the range
of values defined by T such that elements of the
binary str ing can be accessed in para l le l .

4.1.3 Let T denote ei ther of the stack types:
stack [i] of T or stack [i] of T with V~ ,Vn,

V ° where Vi n are e x p l i c i t l ~ e c ~ a r e d stack
pointers.
(a) Vl, V2 V n are of type seq.

(b) Let intval (Vj) denote possible (decimal) inte-
ger value s--~-V'j~{V1,V2 Vn}. Then intval (Vj)~i

(c) T O is of type seq or tuple

(d) The standard procedures u ~ a n d p_o_p_ are de-
fined on the second stack type T as follows: let x
be of type T and Xo be of type T O . Let Vj E {V~,

. . . . V n} be a stack pointer. Finally, le t l e n ~

(x) denote the number of elements of type T O in X.

Then: . o o

(i) {intval (Vj) = Vj A length (x)=~o:~o<i^Xo=Xo }

push (x[Vj],Xo)

{x[Vj] = Xo = Xo ^ intval (Vj) = Vj ° + I ^ lenpth

(x) : ~ +I}

(i i) { intVal (V j) = V j ° A l e n ~ (X)=~o:Co~iAX[Vj]=x°}

pop (x [V j] , Xo)
o , o

{Xo = x Aintval (Vj) = Vj - 1A length (x)=~o-l}

While a type declaration "type T=T' "introduces a
class of possible objects Of type T that sat is f ies
the properties of type T ' , the declaration of a
data object of a given type T denotes the ex-
istence, in the architecture being designed or
described, of a storage device whose abstract pro-
perties are prescribed by the properties of the
data type T. Each d i s t i nc t data object declared is
a specif icat ion of a d is t inc t storage device.

4.2 Executional Statements

Executional statements in SR are basical ly

simple or structured. S im~s ta tements s igni fy
ind iv is ib le units of action and the i r meanings are
usually defined formally by axioms. Structured
statements are composed of one or more elementary
statements and the i r meanings are formally speci-
f ied by rules of inference.

Simple statements in SR include the assifln-

ment, the procedure cal l and act (act ivate) state-
ments, trap, await a n ~ i ~ , the procedure ex i t and
return statements, and the 9oto. The axiom of
assignment is as defined for Pascal [1] while the
Qoto is defined according to the proof rule due to
Alagic and Arbib [I] . As sDecific examples of the

34

de f in i t i on of simple statements, consider the await
and sig constructs.

The basic synchronization # a c i l i t i e s in SR are

provided by means of the standard procedures await
and si 9 defined on synchronizin 9 var iables. A dec-
larat ion of a synchronizing var iable (or "synchro-
n izer") is of the form

sync x : T
where T is of types b i t or seq. The statements
await x and sip x are'~'efined on a synchronizer ac-
cording to the fol lowing rules:
(i) {x = Xo > O} await x {x = Xo-l~O}

{x = x = O} await x { fa lse}
o

(i i) {x = Xo : 0 ~ Xo < max} sig x {x = Xo + 1 > O}

where max is the maximum integer valued state for x.
I n t u i t i v e l y , an await operation w i l l never terminate
as long as the value of x is O; when x>O the await
decrements the value of x and terminates. The si 9
operation is only defined i f x < max. In that case
i t simply increments x by I .

The si 9 and await constructs are used in S*A
to establ ish synchronization between concurrently
executing mechanisms (e.g. , the components of an
inst ruct ion p ipe l ine) . Thus, the above proof rules
can be used for proving the correctness of concur-
rent systems, using the Owicki-Gries approach ~8] .

In general, there are three classes of struc-
tured statements. Of these, compound statements
allow the sequential or para l le l Composition of
other, simpler statements while condit ionals allow
actions to be taken based on specif ied tests of the
machine state; the th i rd group are the repet i t ion
statements. We give below, two examples of the
proof rules for structured statements.
(a) The para l le l statement S 1D S 2 specif ies the

simultaneous execution of S 1 and S 2. The next

statement in sequence begins execution only when
both S 1 and S 2 have terminated. Formally, pro-

vided S I and S 2 are dynamically d i s j o i n t :

{Pi} Si {q l } , {P2} S2 {q2}
{Pi ^ P2} si D s2 {QI ^ Q2}

Two statements S 1, S 2 are said to be dynami-

ca l l y d i s j o in t i f during the period that S I , S 2 are

both in execution, the i r data resource sets are d is-
j ~ t . Note that the above proof rule is expressed
in the usual notation

H I , H 2 H n
H

which states that whenever the assertions H 1, H 2,

. . . . H n are true then H is also true.

(b) Structured await statements are of two forms:
the f i r s t of these is "await x do Sod" where x is
a synchronizer; the statement S w i l l execute i f and
only i f x~l ; the second form is "await B do Sod"
where B is a boolean expression. I n ' t h i s case, B
is continuously evaluated unt i l i t is t rue, at
which point S begins execution. The proof rules
for these two statements are:

{Q} s {R} , {P} await x {Q}

{P} await X do Sod {R}

5.

{P^B} S {Q}
{P} await B do Sod {Q}

On The Notation For Logical Formulas

As previously noted, assertions are stated in
the form of formulas in the f i r s t order predicate
log ic . Such assertions w i l l re fer to the various
data objects which, we have seen, are declared as
instances of SR types. In developing assertions we

shall f ind i t convenient (in order to make them
more understandable) to "tag" a data object i den t i -
f i e r with i t s type. For example, re fer r ing to Fig.
I (see next sect ion), the data object reg. SD w i l l
be designated within assertions as "reg. sp: I s
reg is te r " .

We also noted in [8] that through the use of
synonyms, an object of a given type with a given
i d e n t i f i e r may be a l t e rna t i ve l y viewed as a data
object with a d i f f e ren t name. In specifying asser-
t ions involv ing a data object of some given type T
with a l te rna t i ve names X,Y Z, we shall also,
where necessary, use the notation "X IY I . . . IZ :T "
meaning "X or Y or . . . or Z of type T".

F ina l l y , in order to s impl i fy assertions and
enhance the i r readab i l i t y , aux i l i a r y variables w i l l
be introduced where necessary [18]. Aux i l ia ry var-
iables may appear in the assertions but not in the
SR tex t . These w i l l be denoted by subscripted

i d e n t i f i e r s , e .g. , X , Yi , etc.
o

6. An Example

Consider the speci f icat ion of the QM-C ma-
chine CALL inst ruct ion as previously described in
[8] . I t s overal l object ive is to save the contents
of the QM-C registers and al locate space on a stack
pr ior to t ransfer r ing control to the cal led proce-
dure.

The data objects used by CALL are defined as
synonyms of previously declared var iables, and are
shown in Fig. I (for conciseness the or ig ina l var-
iable declarations for the QM-1 data objects " local
store" and " f store" are not shown here - they are

described in [8]) . Note that the name "reg" is
made synonymous with " local store" and that two
a l te rna t ive data types (an array and a t u ~) are
associated with th is name. Some of the f i e lds of
the t u ~ t h e m s e l v e s have a l te rna t i ve data type
a t t r ibu tes - for example "reg. inst_reg" is speci-
f ied as an instance of two d i f f e ren t tuple types.

At the time the CALL inst ruct ion is to be
executed the stack (held in QM-C's main memory) is
as shown in Fig. 2 and the f i r s t word of a proce-
dure being cal led is a "mask" whose format is given
in Fig. 3. In addi t ion, the fol lowing conditions
are assumed to hold:
(i) the framepointer fp points to the s ta r t of the
act ivat ion record for the ca l l ing procedure; (i i)
the program counter pc points to the CALL in-
struct ion in memory; (i i i) eb denotes the base ad-
dress for the ent i re object program; and (i v) ins t_
reg contains the operand of the CALL inst ruct ion
(ac tua l ly , i t points to a word in memory re la t i ve
to the base address specif ied in eb that holds the
aforementioned mask).

This is stated formal ly by means of the f o l -
lowing assert ion:
PRE CALL:

35

type Is_register = seq [17. .0] bi__.t;
type f_register = s eq [5 . .0] b i t ;
. 0

sy n main output = control store output; / * main memory output bus*/
s)in reg : arrajz [0. .31] o_~ Is_register /*QM-C register f i l e * /

aummy : a r ray [O . . l l] of Is register /*not used by QM-C*/
temp : array[O..3] ~ " Is - reg is ter /*temporaries*/
var : array[O..7] of Is register / *var iable regs * /

index : array[O..3] ~ I s - - r e g i s t e r /*QM-C index regs * /
: tuple

fp : Is_register /*frame pointer * /
pc : Is_register /*program counter * /
eb : Is_register / *ex t . base reg. * /
ax : Is_register /*aux. mem index * /

endtup

sp : Is_register /*stack pointer * /
scrl : Is_register /*scratch reg * /
scr2 : Is register /*scratch reg * /

inst reg : tuple
,pc,de : sseq [6 . .0] b i t

ab tu~p e
a : seq [4 . .0] b i t
b : seq [5 , .0] b i t

endtup
endtup

: tup1 e
c : f_register
a : f_register
b : f_register

endtup
e n d s = local store:

syn mm addr select : seq [5 . .0] ~'it = f s tore . fc ia ;
syn mm-inde~select : seq [I . . 0] b i t = fZstore. fmpc[l . .O];
sy n mm~data_~elect : seq [5 . .0] b i t = f s tore . fc id .

Fig. 1

space a l l o c a t e d
f o r l oca l
v a r i a b l e s

Fig. 2

÷
high address

low address

fp (frame pointer)

p (stack pointer)

17 12 11

I reg . no. I s i ze

No. of the lowest
reg. th is subroutine
uses; O~rego no~7

Size of the stack space
for local variables
of the called procedure

Fig. 3

old value of sp

space
allocated value value reg 7
for local
variables of of value " ' "
of cal l ing PC, fPo
procedure

Fi 9 . 4

value
of
lowest
numbered
register

fp
+

space
allocated
for local
variables
of called
p r o c e ~

sp

36

~ _ C A L L ;
d_£ reg. index.pc := reg . index .pc+ l
[] reg .sc r l := r e g . i n s t reg

mm index se lec t := 26

od;
c ~ l MAIN MEM.READ I L ;
reg. inst~reg := ma-i~output ;
do mm addr se lec t := 28
[] mm da ta -se lec t : 26

o__d;
repeat

mm data se lec t := mm da ta_se lec t - i ;
caTl MATN MEM,PUSH G-

un t i l mm d a t ~ s e l e c t - reg. ins t_reg.c+16

reg . i ndex . fp := reg.sp
reg.sp := r e g . s p - r e q . i n s t reg.ab
reg. index.pc := reg~indexTeb+reg.scr l+ l
mm index se lec t := 25;
caTl MAIN MEM.READ I

endproc Fig.

reg . i ndex . fp : Is r e g i s t e r = fPo A reg.sp : Is reg-
i s t e r = SPo

A reg. index.pc : Is r e g i s t e r = pc ° A reg. index.eb :

Is r eg i s t e r = b o

A reg . ins t_ reg : Is r e g i s t e r = opd addr °

A main_mem [bo+opd_addro] [17 . . l l] = r_lowest o :

in teger A 0 ~ r lowest ~7
- - o

A main mem [bo+opd_addro][lO..O] = local_space ° :

in teger

A (Vj : 7,6 r lowesto)(reg v a t [j] = reg var 0 [j])

The intended postcondi t ion of the CALL in -
s t ruc t ion p r i o r to ac t i va t i ng the next i ns t ruc t i on
fe tch phase w i l l be such tha t :
(i) The state of the stack and associated pointers
should be as shown in Fig. 4. Note that the saved
value of pc must be such that i t points to the in -
s t ruc t ion fo l lowing CALL (in the ca l l i ng procedure).
(i i) The program counter is po in t ing to the f i r s t
i ns t ruc t i on of the ca l led procedure.
(i i i) The f i r s t i ns t ruc t i on of the ca l led pro-
cedure is on the main memory output bus.

The fo l lowing asser t ion formal izes these condi t ions:

POST CALL:

main_mem [SPo] =PCo+l ^ main mem [SPo- l] = fPo

^ (Vj : 7,6 r jowesto) (mainmem [SPo-(9- j)] =

reg. Varo[J]

A reg. index. fp : I s_ reg i s te r = SPo-(9-r_lowesto) - I

A reg. sp : Is r e g i s t e r = SPo-(9-r_lowesto) - I - l o c a l _

space o

A r e g . index.pc : Is r e g i s t e r = bo+opd addro+l

^ main_output : bus = main_mem [reg . i ndex .pc]

The actual SR code descr ib ing the CALL ins t ruc t i on

is shown in Fig. 5. Note that th i s includes invocat ion
of three other procedures ins ide another mechanism,
MAIN~MEM. Thus, to f i l l in the de ta i l s of the proof

/*pc points to next i ns t ruc t i on * /
/ * save o f f s e t * /

/ * read mask word onto bus * /
/ * prepare to decode * /
/ * prepare to save reg i s te rs * /

/ * save reg is te rs on stack * /
/ * i t e r a t i v e l y un t i l reg. * /
/ * spec i f ied in ins t_ reg .c has * /
/ * been saved * /
/ * set new frame po in ter * /
/ * a l l oca te fo r local vars * /
/ * f i r s t i n s t r , of proc * /

fo r the CALL procedure, proof ou t l ines fo r these
three procedures must be constructed. C lear ly , in -
side the CALL procedure, the asser t ions holding at
the time any of these MAIN MEM procedures is ca l led
must imply the precondi t ion fo r the corresponding
MAIN MEM procedure. The postcondi t ion fo r the l a t -
t e r F i l l then become par t of the postcondi t ion of
the MAIN MEM procedure ca l l statement.

For lack of space we cannot e laborate on the
proof de ta i l s here. Most of the actual proof is
qu i te s t ra igh t fo rward , however. The only non - t r i v -
ia l par t is to show the correctness of the i t e r a t i v e
statement and, as is usual in such cases, an appro-
p r ia te loop invar ian t [1] must be constructed and
used to prove the desired postcondi t ion fo r the
loop. The correctness of the i nva r ian t can be shown
using induct ion. For f u r t he r d e t a i l s , the i n t e r -
ested reader may r e f e r to [i 0] .

7. Conclusions

The formal descr ip t ion and v e r i f i c a t i o n of
a rch i tec tu re designs is very s im i la r to the process
of program desiqn and v e r i f i c a t i o n . The main d is -
t i n c t i ons appear to l i e in the spec i f i c nature of
data types, in the pragmatics of the constructs
used, and in the kind of informat ion processing sys-
tems that the a r c h i t e c t is requi red to design.
Keeping these caveats in mind, the idea of formal ly
descr ib ing a rch i t ec tu res , and v e r i f y i n g t h e i r cor-
rectness at the design stage i t s e l f seems pe r f ec t l y
feas ib le . An important quest ion that remains to be
answered is : given an a rch i t ec tu ra l design in a
language such as S~, how can we transform such a

design to lower leve ls of descr ip t ion and demon-
s t rab ly preserve i t s correctness. We are cu r ren t l y
studying th is problem w i th in the framework of the
S* fami ly of languages.

8. Acknowledgements

We thank Alan Wagner, Lou Hafer, and the r e f e r -
ees fo r t h e i r comments on an e a r l i e r version of t h i s
paper.

REFERENCES

[I] A lag ic , S., and Arbib, M.A., The Design of Well

37

Structured and Correct Programs , Springer Ver-
lag, N.Y., 1978.

[2] Baer, J-L., Computer Systems Architecture, Com-
puter Science Press, Potomac, MD, 1980.

[3] Barbacci, M.R., "A Comparison of register trans-
fer languages for describing computers and d ig i t -
al systems," IEEE Trans. Comput., C-24,2, 1975.

[4] Barbacci, M.R., and Parker, A., "Using emu-
lation to ver i fy formal architecture descrip-
tions,"Computer, May 1978, pp. 51-56.

[5] Barbacci, M.R., Barnes, G.E., Cattel l , R.G., and
Siewiorek, D.P., "The ISPS Computer description
language," Dept. of Computer Science, Carnegie-
Mellon Univ., Pittsburgh, PA., 1978.

[6] Bell, C.G., and Newell, A., Computer Structures:
Readings and Examples, McGraw~Hi11, N.Y., 1971.

[7] Dasgupta, S., "S~ : A language for describing

computer architectures," in Computer Hardware
Description Languages and Their Applications,
M.A. Breuer & R. Hartenstein (Ed.), North-
Holland, Amsterdam 1981, pp. 65-78.

[8] Dasgupta, S., and Olafsson, M., "Towards a
family of languages for the design and imple-
mentation of machine architectures," Proc.
9th Annual Symposium on Computer Architecture,
IEEE Computer Society Press, 1982.

[9] Dasgupta, S., "Computer Design and Description
Languages" in Advances in Computers, M. Yovits
(Editor), Vol. 21, Academic Press, 1982.

[10] Dasgupta, S., The Design and Description of
Computer Architectures, John Wiley & Sons
(Wiley-lnterscience), Forthcoming, 1983.

[11] Dietmeyer, D.L., and Duley, J.R., "Register
transfer languages and their translation" in
Digital Systems Design Automation, M.A.
Breuer (Ed.), Computer Science Press, 1975.

[12] Fuller, S.H., Stone, H.S., Burr, W.E., " In i -
t ia l selection and screening of the CFA can-
didate computer architectures," Proc. Natl.
Comput. Conf., 1977, Vol. 46

[13] Hoare, C.A.R., "An axiomatic basis for com-
puter programming," Comm. ACM, 12, 10, 1974,
pp. 549-557.

[14] Hoare, C.A.R., "Notes on Data Structuring,"
in O-J Dahl, E.W. Dijkstra, & C.A.R. Hoare,
Structured Programming, Academic Press, N.Y.,
1972.

[15] Jones, J.C., Design Methods: Seeds of Human
Future., John Wiley & Sons, London, 1970.

[16] Leung, C.K.C., "ADL: An Architecture De-
scription Language for Packet Communication
Systems," Proc. 4th Int. Symp. on Computer
Hardware Description Languages, Palo Alto,
CA, 1979.

[17] Myers, G.J., Advances in Computer Architecture,
John Wiley and Sons (Wiley-lnterscience), N.Y.,
1981, (2nd Edition).

[18] Owicki, S., and Gries, D.G., "An axiomatic
proof technique for parallel programs," Acta
Informatica, 6, 1976, pp. 319-340.

[19] Parker, A.C., and Wallace, J.J. , "An I/0 Hard-
ware Description Language," IEEE Trans. ComDut.,

[20]
C-30, 6, June 1981, pp. 423-428.

Patterson, D.A., "STRUM: structured pro-
gramming system for correct firmware," IEEE
Trans. Comput., C-25, 10, Oct. 1976, pp. 974-
985.

38

