ON THE VERIFICATION OF
| COMPUTER ARCHITECTURES USING AN
Chaies. ARCHITECTURE DESCRIPTION LANGUAGE

Subrata Dasgupta

Department of Computer Science
University of Southwestern Louisiana
Lafayette, Louisiana

Abstract

In a previous paper [8], we had presented the
notion of a family of languages for the multilevel
design and description of computer architectures.
Details of a particular language family, currently
under development, was also described. _One of the
constituent members of this family is SA, intended
for the specifications of the outer (or exo-) and
inner (or endo-) architectures of general purpose
von Neumann style computers. In this paper we des-
cribe the formalization and application of SA to the
formal proofs of correctness of architecture designs.

1. Towards Formal Architecture Design

The design of computer architectures has tradi-
tionally suffered from two major drawbacks: firstly,
the idea of storing the design in some formal repre-
sentational form has remained Targely outside the
mainstream of architectural thought and practice.
Secondly, in the absence of a rigorous, theoretical
framework, architectural designs have conventionally
been evaluated - both with respect to its correct-
ness and its performance - only after they have been
implemented as physical systems.

These are major shortcomings of any field which
lays some claim to being called a discipline. Their
consequence is a compendium of undesirable charac-
teristics that are encountered at one time or an-
other by all involved with computer architecture -
whether as designer, teacher, or theorist. In par-
ticular, we observe that:

(a) The documentation of the design is usually a
combination of (informal) block diagrams and prose
descriptions. The design is, as a result, ill-
defined both syntactically (i.e., in respect of its
form) and semanticallv (in respect of its function
and meaning).

(b) It is extremely difficult, even in principle,
to verify the correctness of the design without
constructing and testing the physical system.

(c) It is equally difficult to manipulate or alter
the design and study the effects of alternative de-
sign choices without actually implementing the de-
sian in the form of a physical system.

Design theorists, notably Jones [15] have
pointed out that one of the characteristics of the
craft stage of design is the lack of a symbolic medi-
um in which to capture the shape of the product, and
the consequent inability for one to experiment with
the design (in contrast to experimenting with the
nroduct itself).

he evoluticnary design stage that has histori-
cally followed the craft stage is termed by .Jones,

© 1983 ACM 0149-7111/83/0600/0032$01.00

design-by-drawing, chiefly characterized by the re-
placement of the product itself by its symbolic re-
presentation as the medium of experiment and change.
In this sense, computer architecture appears to be
hasically at the more primitive craft stage of de-
sign evolution.

Clearly, an essential requirement for a transi-
tion to the design-by-drawing stage to take place is
the availability of one or more formal pictures of
the design. In the realm of computer hardware, the
need for such formal descriptions has Tong been rec-
ognized [3, 9, 11]. In the specific domain of com-
puter architecture, the pioneering work was the ISP
notation of Bell and Newell [6] which later matured
into the ISPS language [5]. Other, more recent ef-
forts include SLIDE [19] and ADL [16].

Recently, we have proposed yet another archi-
tecture description lanquage called SK [7,8]. For
our present purposes the following fundamental and
distinguishing aspects of this language must be
noted.

(1) SK is a general purpose, high level, procedural
language for the formal snecification of computer
architectures and was designed as a member of a fam-
ily of lanquages called the S* family that could be
applied to the multilevel design of computer archi-
tectures. The notion of a language family is pre-
dicated on the observation that architecture encom-
passes several levels of ahstraction of the physical
machine [8]. The design process for such a system
would then involve a succession of stages, at each
of which the system would be represented at a par-
ticular abstraction level, in the medium of the lan-
guage most suited to that level.

(2) A major goal in designing SK was to be able to
use it in the formal verification of architecture
designs. Thus, special attention was paid towards
defining primitive and structured data tvpes and
control structures for which axioms and inference
rules could bhe constructed. In fact, the semantics
of each major entity in S{ is essentially twofold:
an "informal" definition which establishes the prag-
matic interpretation of the entity (viz., what kind
of hardware interpretation should be attached to
that entity) and a "formal" definition that can be
used for purposes of design verification.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1067651.801635&domain=pdf&date_stamp=1983-06-13

The use of the S* lanaquage family in the sys-
tematic design of a multilevel architecture, called
OQM-C, was described in [8]. In this paper, we foc-
us specifically on the problem of verifying computer
architecture designs described in Sg.

2. 'Defining' Computer Architecture

At this point, we need to clarify what we
understand by the term "computer architecture".
Various prescriptions have been made as to what
this term means or should mean [2,12,17]. The
following characterization offers no startling new
insight on this matter; we merely attempt to unify
these different definitions in the context of the
social practice of architectural design and re-
search. In fact simply based on our observations of
the latter we may identify the following general
characteristics:

(a) An architecture is an abstraction of the hard-
ware in that it is concerned with the structure and
behavior of hardware represented as an abstract in-
formation processing system (rather than as an en-
semble of physico-electronic devices).

{b) Architectural attributes include both the ex~
ternal (i.e., functional) appearance of the computer
as well as its internal form.

The computer architect is, thus, a designer of
information processing systems of a particular kind:
those that are directly realized by a combination of
hardware and microcode. The second point above sug-
gests, in addition, the notion of architectural lev-
els. We may give more complete shape to this notion
as follows:

Exo-architecture: A computer's exo-architecture re-
fers to the logical structure and functional capa-
bilities of the hardware system as visible to the
machine programmer or compiler writer.

Endo-architecture: A computer's endo-architecture
consists of a specification of the functional capa-
bilities of its physical components, the logical
structure of their interconnections, the nature of
the information flow between components, and the
means whereby this flow of information is controlled,

To understand further, the relationship be-
tween exo- and endo- architectures we note that a
major function of exo-architecture is to hide cer-
tain kinds of information concerning the comouter's
design. These include, for example, whether or not
the instruction cycle is nipelined, the presence or
absence of a cache memory, whether memory inter-
leaving is used, whether instruction interpretation
is done in firmware or by hardware, and so on.
These are all, typical endo-architectural features.
Thus, exo-architecture is an abstraction of endo-
architecture, Conversely, the latter may be viewed
as what i1s revealed of the machine's internal logi-
cal structure and behavior when we refine the exo-
architectural description.

For our present purposes we will be concerned
with the verification of both exo- and endo-archi-
tectures.

3. On The Criterion of Correctness

The basic notion we adopt for verifying archi-
tecture designs is the Floyd-Hoare inductive-asser-
tion method [13]. Let P be an assertion specifying
the states (or relations between states) of some set
of architectural data objects,and S be a description

33

(in SK) of an architectural svstem such that P is

assumed to hold when the system is activated. Let
Q be another assertion about the states of the data
objects; following programming terminology, P,Q
will be called the precondition and postcondition
respectively of S. Then S will be deemed (par-
tially) correct with respect to P and Q if it can
be shown that given P, the activation of S leads to
the postcondition Q when S terminates. Notational-
1y this is exnressed by the formula

{pP}s{qQ} (1)
To prove total correctness requires us also to show
that S terminates.

It is important to note, however, that cases
may arise where S never terminates; for example, an
instruction fetch/decode/execute cycle. The S*A
Toop statement forever do..od allows such activi-
ties to be depicted. In such cases, what can be
shown is that every time the body of the loop is
entered, the precondition P holds, and upon exe-
cuting the body, Q is satisfied.

The proof of formulas of the above type re-
quires the use of formal axioms and rules of infer-
ence (or proof rules). Thus, the heart of this
approach to the domain of architecture verification
is the construction of proof rules and axioms for
SK (section 4).

The closest work in this context is that of
Patterson on microprogram verification [20]. We
share the common objective of showing that program
correctness techniques can be successfully adapted
to the domain of computer architecture. However
the work reported here differs from Patterson's in
the following respects:

(1) Patterson was concerned with the verification
of microprograms written in the high level lanquage
STRUM. STRUM was primarily oriented towards a par-
ticular microprogrammable computer, viz., the Bur-
roughs D machine; consequently, the only data ob-
jects defined in STRUM were those available on this

machine. In contrast SK contains a general col-

lection of data tvpes and data structuring facili-
ties by which data objects for an arbitrary archi-
tecture can be represented. The definition of SK

thus, includes an axiomatic characterization of
these data types (Section 4) and these play a criti-
cal role in architecture verification.

(2) An important application of S§ is the descrip-

tion and verification of asynchronous concurrent
architecures., This is an issue that would not usu-
ally arise in microcode verification, hence was
ignored in the STRUM effort.

4. Axiomatization of Sp

SK is similar in many respects to high level

programming languages. The basic difference lies
in the data types and data structuring capabilities,
the constructs for modularizing SK descriptions,

and in the pragmatic interpretation of constructs
in the language,
Most of the "features" in SK have been pre-

viously described [7,8] hence we will not repeat
the discussion here, However, as noted above, the
key to applying the Floyd-Hoare technique is the
axiomatization of the description language.

An axiomatic definition of SK has been com-

pleted [10]. In this section we take a very small
subset of this definition to show the nature of these
axioms and proof rules. Rather than discuss con-
structs that SK shares with other Tanguages we shall

focus on those that are rather specific to SK.

4.1 Data Types

A data types in SK conforms to the concept of

type as suggested by Hoare [14]. That is: (a) a
data type determines a particular class of values
which may be assumed by an instance (a variable, a
constant or expression) of that type; and (b) asso-
ciated with each type is a set of primitive oper-
ations which can be applied to these values.

SK contains the primitive data type bit, and

the structured type seq, array, tuple, assoc arra¥
and stack. The following paragraphs ghows typica ’
properties of some of these types.

4.1.1 (a) The data type bit consists of the values
{0,1}. Operations defined on type bit consist of
the logical operators {A,v, ,0, A, VI and the arith-
metic operators {+,-,*,/} which carry with them the
usual meaning.

{b) G&iven x,y of type bit, x/y is undefined for y=0.
(c) Given x of type bit, x represents a binary sto-
rage element.

4.1.2 Let T denote a sequence type: seq [i ..7] bit.

Then (a) 1n2i2’ where in,i are non-negative integers

L

(b) Let izizi . Then T : i ..1bit. That is,
T(i) is an element of type bit

(c) Let <bb..b>:.n denote a binary string of length
2

1n-1

(d) The logical operations {a,v, ,0, A, v} are defined

on T according to the following rule: let © denote a
logical operation and x,y be of type T such that

- in in in
2+1. Then T {<00"0>1£° <00..1>12,...,<11.J>1£}

X=<X: Xi _qeeXs; >and y=<y. Y. _qj..¥. >. Then
1n 1n 1 Ty 1n Tn 1 12
X0y = Xié)yik for all i such that 1n21k212’
(e) The arithmetic operations +,-,*,/ are defined on

T as follows: 1let +7, -7, **, /” denote ordinary
arithmetic operations (/“denotes integer quotient
division). Let x,y be of type T and max be the max-
imum value <l11,.1>ip for type T. Then +, -, *, / on
i

%
x,y are defined by:
(1) x+°y < maxoxty = X+7y
(ii) xzysx-y = x-"y
(1i1) x*”y < maxox*y = x*’y
(iv) y=<00..0>Tpox/y = x/7y

12

Note that the arithmetics are defined only for un-
sianed integers. Furthermore, no side effects re-
sult from these operations. In actual fact, a given
architecture may not only admit arithmetic oper-
ations of various types {(e.g., 2's complement) but
they may also result in side effects (such as an
‘overflow' flag being set). In S*A such arithmetic
onerators would be constructed as procedures from

34

the predefined operators. The semantics of the
newly defined operators (including side effects)
would then be inferred using the basic S*A axioms
and rules of inference.

(f) The arithmetic, logical, and shift operations
defined on type T renresent primitive (hardware de-
fined) functional logic units. ({Note that the
axioTs governing the shift operations are not shown
here).

(g) Let x be of type T. Then x represents any de-
vice capable of storing binary strings in the range
of values defined by T such that elements of the
binary string can be accessed in narallel.

4.1.3 Let T denote either of the stack types:
stack [1] of T_or stack [1] of T with Vy,...,V

n’
where Vl...,Vn are explicitly declared stack

pointers.
a) Vi, Voseeos Vn are of type seq.
(b) Let intval (Vj) denote possible (decimal) inte-

ger values of VjE{Vl,Vz,..,Vn}. Then intval (Vj)<i

(c) T, is of type seq or tuple
(d) The standard procedures push and pop are de-

fined on the second stack type T as follows: let x
be of type T and X_ be of type T . Let Vj ¢ {Vi1,

...,Vn} be a stack pointer. Finally, let length

(x) denote the number of elements of type T_ in X.

Then: o

(i) {intval (Vi) = Vj°a length (x)=Ro:fo<iAX =X '}
push (xTVjl,x)

{xV31 = x_ = x,° A intval (V) =

(x) = 2 +1}

Vi + 1 A length

(1) Cintval (V§)=Vi’Alength (x)=£,:2 21AxV§I=x"}
pop (x[Vil, x)

{x = x° aintval (Vi) = Vj° - 1 a length (x)=2°—1}
while a type declaration "type T=T' "introduces a
class of possible objects of type T that satisfies
the properties of type T', the declaration of a
data object of a given type T denotes the ex-
7stence, in the architecture being designed or
described, of a storage device whose abstract pro-
perties are prescribed by the properties of the
data type T. Each distinct data object declared is
a specification of a distinct storage device.

4.2 Executional Statements
Executional statements in SK

simple or structured. Simple statements signify
indivisible units of action and their meanings are
usually defined formally by axioms. Structured
statements are composed of one or more elementary
statements and their meanings are formally speci-
fied by rules of inference.

Simple statements in SK include the assign-

ment, the procedure call and gg}_(activate) state-
ments, trap, await and sig, the procedure exit and
return statements, and the goto. The axiom of

assignment is as defined for Pascal [1] while the
qoto is defined according to the proof rule due to
ATagic and Arbib [1]. As specific examples of the

are basically

definition of simple statements, consider the await
and sig constructs,
The basic synchronization facilities in SK are

provided by means of the standard procedures await
and sig defined on synchronizing variables. A dec-
laration of a synchronizing variable (or "synchro-

nizer") is of the form
sync x : T
where T is of types bit or seq. The statements
await x and sig x are defined on a synchronizer ac-
cording to the following rules:
(1) {x =x_ >0} await x {x = x_-120}
{x = x_ = 0} await x {false}
(i1) {x = x_ : 0 < x_ < max} sig x {x = x_+1>0}

where max is the maximum integer valued state for x.
Intuitively, an await operation will never terminate
as long as the value of x is 0; when x>0 the await
decrements the value of x and terminates. The sig
operation is only defined if x < max. In that case
it simply increments x by 1.

The sig and await constructs are used in S*A
to establish synchronization between concurrently
executing mechanisms (e.g., the components of an
instruction pipeline). Thus, the above proof rules
can be used for proving the correctness of concur-
rent systems, using the Owicki-Gries approach [181.

In general, there are three classes of struc-
tured statements. Of these, compound statements
allow the sequential or parallel composition of
other, simpler statements while conditionals allow
actions to be taken based on specified tests of the
machine state; the third group are the repetition
statements. We give below, two examples of the
proof rules for structured statements.

(a) The parailel statement S1 0 52 specifies the

simultaneous execution of S1 and SZ' The next

statement in sequence begins execution only when
both S1 and 52 have terminated. Formally, pro-
vided S

1 and 52 are dynamically disjoint:

{P;} S: {Q4} » {P2} S, {Q.})
Py AP} S TS, {Qy ~ Q21

Two statements Sl’ 52 are said to be dynami-

cally disjoint if during the period that Sl’ S, are
both in execution, their data resource sets are dis-

Joint. Note that the above proof rule is expressed
in the usual notation
Hy s Hy seees Hn

H
which states that whenever the assertions Hl’ HZ’

...,Hn are true then H is also true.

(b} Structured await statements are of two forms:
the first of these is "await x do S od" where x is
a synchronizer; the statement S will execute if and
only if x=1; the second form is "await B do S od"
where B is a boolean expression,

In this case, B
is continuously evaluated until it is true, at
which point S begins execution. The proof rules
for these two statements are:

{Qr s {R} , {P} await x {Q}
(P} await x do S od {R}

35

{PAB} S {Q}
{P} await B do S od {Q}

5. On The Notation For Logical Formulas

As previously noted, assertions are stated in
the form of formulas in the first order predicate
logic. Such assertions will refer to the various
data objects which, we have seen, are declared as
instances of SK types. In developing assertions we

shall find it convenient (in order to make them
more understandable) to "tag" a data object identi-
fier with its tvpe. For examnle, referring to Fig.
1 (see next section), the data object reg. so will
be designated within assertions as "reg. sp: 1s_
register"”.

We also noted in [8] that through the use of
synonyms, an object of a given type with a given
identifier may be alternatively viewed as a data
object with a different name. In specifying asser-
tions involving a data object of some given type T
with alternative names X,Y,..,Z, we shall also,
where necessary, use the notation "X|Y Z:m™
meaning "X or Y or ... or Z of type T".

Finally, in order to simplify assertions and
enhance their readability, auxiliary variables will
be introduced where necessary [18]. Auxiliary var-
iables may appear in the assertions but not in the
SK text. These will be denoted by subscripted

identifiers, e.g., Xo, Y., etc.

e

6. An Example

Consider the specification of the QM-C ma-
chine CALL instruction as previously described in
[8]. Its overall objective is to save the contents
of the QM-C registers and allocate space on a stack
prior to transferring control to the called proce-
dure.

The data objects used by CALL are defined as
synonyms of previously declared variables, and are
shown in Fig. 1 (for conciseness the original var-
iable declarations for the QM-1 data objects "Tocal
_store" and "f_store" are not shown here - they are
described in [87). Note that the name "reg" is
made synonymous with "local store" and that two
alternative data types (an array and a tuple) are
associated with this name, Some of the fields of
the tuple themselves have alternative data type
attributes - for example "reg. inst_reg" is speci-
fied as an instance of two different tuple types.

At the time the CALL instruction is to be
executed the stack (held in QM-C's main memory) is
as shown in Fig. 2 and the first word of a proce-
dure being called is a "mask" whose format is given
in Fig, 3. In addition, the following conditions
are assumed to hold:

(i) the framepointer fp points to the start of the
activation record for the calling procedure; (ii)
the program counter pc points to the CALL in-
struction in memory; (iii) eb denotes the base ad-
dress for the entire object program; and (iv) inst_
reg contains the operand of the CALL instruction
(actually, it points to a word in memory relative
to the base address specified in eb that holds the
aforementioned mask).

This is stated formally by means of the fol-
Towing assertion:

PRE_CALL:

type 1s register = seq [17,.0] bit

type f_register

csveese

syn main_output =
syn reg :

= 5€q [5..0] bit

control_store output; /* main memory output bus*/
array [0..31] of Is_register /*QM-C register file */

: tuple
dummy : array[0..11] of 1s_register /*not used by QM-C*/
temp : array[0..3] of 1s register /*temporaries*/
var : array[0..7] of Is register /*variable regs */
index : array[0..3] of 1s register /*QM-C index regs */
: tuple
fp : 1s_register /*frame pointer */
pc : Is register /*program counter */
eb : 1s_register /*ext. base reg. */
ax : 1s_register /*aux. mem index */
endtup
sp : 1s register /*stack pointer */
scrl : 1s register /*scratch reg */

scrz : 1s_register /*scratch reg */
inst_reg : tuple
opcode : seq [6..0] bit
ab : tuple
a : seq [4..0] bit
b : seq [5..07 bit
endtup
endtup
: tuple
c : f_register
a : f_register
b : f_register
endtup
endtu = local store:
syn mm_addr_seTect ~_g_[5 .01 bit = f_store.fcia;
syn rm_index_select : seq [1..0] bit = f store.fmpc[1..07;
syn mm_data_select : seq [5..0] Bit = f store.fcid.
Fig. 1
4 1
high address space allocated fp (frame pointer)
for local
low address variables sp (stack pointer)
‘ .
Fig. 2
17 12 11 0
reg. no. size

No. of the Towest
reg. this subroutine
uses; Osreg. nos<7

Size of the stack space
for Tocal variables
of the called procedure

Fig, 3
old value of sp fp sp
¥ ¥ ¥
space value space
allocated of allocated
for local vz}ue vglue reg 7 Towest for local
variab]gs pc value | *°° num@ered variables
of calling 0 fpo register | of called
procedure procedure
Fig. 4

36

proc CALL;
do reg.index.pc := reg.index.pc+l
O reg.scrl := reg.inst reg
D mm_index_select := 26
od;
call MAIN_MEM.READ I L ;
reg. inst_reg := main output ;
do mm_addr_select := 28

0 mm data select : 26
od;

repea
mm_data_select := mm _data select-1;
call MATN MEM,PUSH G

until mm data_select = reg.inst_reg.c+16

:

reg.index.fp := reg.sp

reg.sp := reg.sp-req.inst_reg.ab
reg.index.pc := reg.index.eb+reg.scrl+l
mm_index_select := 25;

call MAIN MEM.READ I

endproc

_reg.index.fp : 1s_register = fpo A reg.sp : 1s_reg-
ister = sp,

A reg.index.pc : 1s register = pcy A reg.index.eb :
1s_register = b0
A reg.inst reg : 1s_register = opd_addr

a main_mem [b+opd addr J[17..117 = r_lowest :
integer A 0 < r_lowest <7

A main_mem [b0+opd_pddroj[10..0] = 1oca1_§paceO
integer
A(¥] o 7,6,..., rﬂjowesto)(reg_yar[j] = reg_var, [jl

The intended postcondition of the CALL in-
struction prior to activating the next instruction
fetch phase will be such that:

(1) The state of the stack and associated pointers
should be as shown in Fig. 4, Note that the saved
value of pc must be such that it points to the in-
struction following CALL (in the calling procedure).
(i) The program counter is pointing to the first
instruction of the called procedure.

(ii1) The first instruction of the called pro-
cedure is on the main memory output bus.

The following assertion formalizes these conditions:
POST_CALL:

main_mem [spoj =pc0+1 A main_mem [spo-lj = fpo

A (V] 7,6,...,r_]owesto)(main_mem [spo—(9-j)] =

reg. varotj]

A reg. index.fp : Is register = spo-(9-r_]owest0) -1

A reg, sp : 1s register = spo—(9-r_Jowesto) -1 -Tocal _
space,
A reg. index.pc : 1s register = b0+opd_§ddr0+1
A main_output : bus = main_mem [reg.index.pc]

The actual SK code describing the CALL instruction

is shown in Fig. 5. Note that this includes invocation
of three other procedures inside another mechanism,
MAIN MEM. Thus, to fi11 in the details of the proof

37

/*pc points to next instruction */
/* save offset */

/* read mask word onto bus */
/* prepare to decode */
/* prepare to save registers */

/* save registers on stack */

/* iteratively until req. */

/* specified in inst_reg.c has */
/* been saved */

/* set new frame pointer */

/* allocate for local vars */

/* first instr. of proc */

Fig, 5

for the CALL procedure, proof outlines for these
three procedures must be constructed. Clearly, in-
side the CALL procedure, the assertions holding at
the time any of these MAIN_MEM procedures is called
must imply the precondition for the corresponding
MAIN MEM procedure. The postcondition for the lat-
ter will then become part of the postcondition of
the MAIN_MEM procedure call statement.

For lack of space we cannot elaborate on the
oroof details here. Most of the actual proof is
quite straightforward, however. The only non-triv-
ial part is to show the correctness of the iterative
statement and, as is usual in such cases, an appro-
priate loop invariant [1] must be constructed and
used to prove the desired postcondition for the
loop. The correctness of the invariant can be shown
using induction. For further details, the inter-
ested reader may refer to [10].

7. Conclusions

The formal description and verification of
architecture designs is very similar to the process
of program design and verification. The main dis-
tinctions appear to lie in the specific nature of
data types, in the pragmatics of the constructs
used, and in the kind of information processing sys-
tems that the architect is required to design.
Keeping these caveats in mind, the idea of formally
describing architectures, and verifying their cor-
rectness at the design stage itself seems perfectly
feasible. An important question that remains to be
answered is: given an architectural design in a
language such as S%, how can we transform such a

desian to lower levels of description and demon-
strably preserve its correctness. We are currently
studying this problem within the framework of the
S* family of languages.

8. Acknowledgements

We thank Alan Wagner, Lou Hafer, and the refer-
ees for their comments on an earlier version of this
paper,

REFERENCES
[1]1 Alagic, S., and Arbib, M.A., The Design of Well

[21

[31

[4]

[51

(6]

[71

£81

[91

£10]

[112

[12]

[13]

[14]

[15]

[16]

[171]

[18]

£19]

Structured and Correct Programs, Springer Ver-
Tag, N.Y,, 1978.

Baer, J-L., Computer Systems Architecture, Com-
puter Science Press, Potomac, MD, 1980.

[20]

Barbacci, M.R., "A Comparison of register trans-
fer languages for describing computers and digit-
al systems," IEEE Trans. Comput., C-24,2, 1975.

Barbacci, M,R., and Parker, A., "Using emu-
lation to verify formal architecture descrip-
tions," Computer, May 1978, pp. 51-56.

Barbacci, M.R., Barnes, G.E., Cattell, R.G., and
Siewiorek, D.P., "The ISPS Computer description

language,” Dept. of Computer Science, Carnegie-

Mellon Univ., Pittsburgh, PA., 1978.

Bell, C.G., and Newell, A., Computer Structures:
Readings and Examples, McGraw-Hill, N.Y., 1971.

Dasgupta, S., "SK : A language for describing

computer architectures," in Computer Hardware
Description Languages and Their Applications,

M.A. Breuer & R. Hartenstein (Ed.), North-
Holland, Amsterdam 1981, pp. 65-78.

Dasgupta, S., and Olafsson, M., "Towards a
family of Tanguages for the design and imple-
mentation of machine architectures," Proc.

9th _Annual Symposium on Computer Architecture,
IEEE Computer Society Press, 1982,

Dasgupta, S., "Computer Design and Description
Languages" in Advances in Computers, M, Yovits
(Editor), Vol. 21, Academic Press, 1982,

Dasgupta, S., The Design and Description of
Computer Architectures, John Wiley & Sons
(WiTey-Interscience), Forthcoming, 1983.

Dietmeyer, D.L., and Duley, J.R., "Register
transfer languages and their translation" in
Digital Systems Design Automation, M.A.
Breuer (Ed.), Computer Science Press, 1975.

Fuller, S.H., Stone, H.S., Burr, W.E., "Ini-
tial selection and screening of the CFA can-
didate computer architectures," Proc. Natl.

Comput. Conf., 1977, Vol. 46

doare, C.A.R., "An axiomatic basis for com-

puter programming," Comm. ACM, 12, 10, 1974,
pp. 549-557,

Hoare, C.A.R., "Notes on Data Structuring,”
in 0-J Dahl, E.W. Dijkstra, & C.A.R. Hoare,
Structured Programming, Academic Press, N.Y.,
1972.

Jones, J.C., Design Methods: Seeds of Human
Future, John Wiley & Sons, London, 1970,

Leung, C.K.C., "ADL: An Architecture De-
scription Language for Packet Communication
Systems," Proc. 4th Int. Symp. on Computer
Hardware Description Languages, Palo Alto,
CA, 1979.

Myers, G.J., Advances in Computer Architecture,
John Wiley and Sons (Wiley-Interscience), N.Y,,
1981, (2nd Edition).

Owicki, S., and Gries, D.G., "An axiomatic
proof technique for parallel programs," Acta
Informatica, 6, 1976, pp. 319-340.

Parker, A.C., and Wallace, J.J., "An I/0 Hard-
ware Description Language," IEEE Trans. Comput.,

38

C-30, 6, June 1981, pp. 423-428.

Patterson, D.A., "STRUM: structured pro-
gramming system for correct firmware," IEEE
Trans. Comput,, C-25, 10, Oct. 1976, pp. 974-
985.

