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ABSTRACT 

The architecture of the Data Flow Signal Pro- 
cessor (DFSP) is discussed with the emphasis on its 
control mechanism. It is argued that the data flow 
principle can be efficiently applied to block pro- 
cessing operations of nonrecursive DSP computa- 
tions, when shared data structures are avoided. 
Simulation results involving the optimal operand 
size and the memory use of the control section are 
presented. Due to the expandability and convenient 
programmability of the DFSP architecture, the range 
of its potential applications extends beyond signal 
processing as demonstrated by a DFSP based database 
machine. 

DATA FLOW CONTROL IN DSP TYPE COMPUTATIONS 

The data flow model of computation has been 
suggested as an attractive alternative to the yon 
Nem~ann computer architecture. The basic principles 
are: 

(I) Asynchronous execution of operations on the ba- 
sis of availability of data. 

(2) Applicative semantics allowing no side effects 
to operations. 

Programs are represented by data flow graphs, 
through which data values pass as tokens triggering 
invocations of operations. 

Data flow machines are generally composed of 
same building blocks: instruction-ready detection, 
instruction execution, and result distribution. 
Differences are introduced in the implementation of 
reentrant programs and data structures. The partic- 
ular solutions used in the DFSP architecture are 
strongly impacted by the special properties of DSP 
computations. 
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Parallelism in DSP tasks 

A real time DSP task involves processing of a 
continuous stream of incoming signal data to pro- 
duce a continuous output. The inherent parallelism 
stems from simultaneously executable operations 
within a single computation cycle and from the pos- 
sibility to overlap the computation cycles in time. 
The latter, i.e. the pipeline parallelism, is the 
major source of concurrency in many applications. 

The degree of the pipeline parallelism in a DSP 
algorithm is essentially determined by its feedback 
data dependencies. A recursive algorithm uses, by 
definition, some results of previous computation 
cycles as operands. These intercycle dependencies 
imply a theoretical upper bound to the amount of 
pipelining. For nonrecursive algorithms, no such 
limit exists. 

High utilization of a typical data flow machine 
provides for enabled operations enough to saturate 

its instruction execution pipeline I Overlapped 
execution of computation cycles is generally re- 
quired, because the concurrency within a single 
computation cycle may be insufficient. This means 
that efficient execution on a data flow machine can 
be guaranteed only for nonrecursive algorithms. 
Moreover, the reentrancy of programs is essential 
for automatic detection of the pipeline parallel- 
Jam. 

Control flow in DSP algorithms 

In the majority of DSP algorithms, the flow of 
computations is independent of data values. The op- 
timal mapping of such algorithms to any parallel 
architecture can, in principle, be solved prior to 
program execution. Hence, the runtime scheduling of 
operations performed by a data flow machine is in 
many cases redundant. However, the task of mapping 
an algorithm to a complex architecture is diffi- 
cult, and no general methods to solve the problem 

have been p r e s e n t e d  3 ' 4 .  

The overhead due to the redundant data flow 
control can be reduced by associating complex op- 
erations with the actors of the data flow graph. 
This approach has two benefits: the scheduling ef- 
fort is significantly reduced, and the a priori 
knowledge of sequencing can be utilized in the im- 

plementation of individual operations I, 2 
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Block processing techniques of DSP provide 
suitable operations for data flow control, e.g. the 
FFT, FIR filtering of a signal block, crosscorrela- 
tion of sample vectors, and deconvolution of a 
pixel array or a part thereof. Such high level sig- 
nal processing operations typically are free from 
side effects, have data value independent control 
structure, and involve a high computational com- 
plexity in terms of elementary arithmetic opera- 
tions. 

Use of data structures in DSP 

The principal data structure in real time sig- 
nal processing is the stream. A stream element may 
be a single value, an array of signal samples, or a 
2-dimensional pixel array. Block processing algo- 
rithms can usually be decomposed into high level 
operations, which have arrays as operands and com- 
pletely modified arrays as results. Successive cy- 
cles of nonrecursive computations are independent, 
when signal blocks are appropriately overlapped 
(i.e. the overlap-save technique is used). 

The implementation of data structures using a 
common memory is not suitable for a data flow sig- 
nal processor. The mechanisms used to allow sharing 
of structures (e.g. reference counts and linked 
structures) cause multiple memory references for a 
single indexed access. The high frequency of ac- 
cesses typical to DSP computations causes a severe 
memory contention problem. Furthermore, a compli- 
cated memory management system is required. 

In DSP computations, severe overhead is not 
necessarily introduced by allowing tokens to carry 
structure values. Excessive copying of data is in 
most cases avoided by proper decomposition of the 
algorithm. This approach utilizes the high locality 
of data references characteristic to many DSP 
computations. Streams can be treated as separate 
elements carrying color values to indicate the or- 
dering. The storage overhead caused by copying is 
tolerable, provided there are few data dependencies 
between computation cycles. 

THE DFSP ARCHITECTURE 

The following design goals have been taken in 
order to meet the special requirements of digital 
signal processing: 

(I) Reentrancy of programs is provided by using 

colored tokens I. Each result packet carry a 
cycle label, which uniquely names of the desti- 
nation activity template. A new activity tem- 
plate is generated, if no matching template is 
found. 

(2) Data structures are circulated along with oper- 
ration and result packets. Streams are imple- 
mented as separate colored elements. Arrays are 
conventionally represented using continuous 
data blocks and indexing. No shared structures 
are provided. 

(3) High level data flow instructions are supported 
by allowing any number of operands of any type, 
including structures. 

Building blocks of the architecture 

The block diagram of the DFSP architecture is 
shown in Fig. I. The bank of processing elements 
(PE) constitutes the execution unit, which performs 
the signal processing computations. The other parts 
of the architecture form the control section, which 
is essentially a data flow instruction execution 
pipeline. 
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Figure I. Block diagram of the DFSP. 

The double bus architecture of the DFSP sepa- 
rates the data communications physically fro~ ~he 
execution control. Signal data is transferre@ via 
the shaded buses of the figure. The unshaded buses 
are used for operation and result packets, which do 
not contain operand and result values, respective- 
ly. 

The control section 

The distribution of results to destination op- 
erations is directed on the basis of the informa- 
tion included in the result packets and the struc- 
tures of the activity store (not shown in the fig- 
ure). The update unit performs the matching of op- 
erands and allocates the data storage. The result 
transfer unit controls the transmission of data 
from the PEs to the data storage. It also detects 
executable operations. Free PEs are assigned these 
operations by the fetch unit. The data transfer 
unit deallocates the data storage upon the trans- 
mission of the operands to the executing PE. 

Operand matching is done by hashing into the 
activity store, which is a conventional linear mem- 
ory. Memory management functions are carried out 
using the list structures of the activity store. 
Hashing must be done for each arriving result 
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packet and memory must be allocated for the first 
arriving operand of each operation, so considerable 
effort is associated with the execution mechanism. 
However, this is not expected to cause a severe 
bottleneck for the following reasons: 

(I) The average rate of incoming result packets is 
expected to be relatively low due to the high 
level of data flow instructions. 

(2) The operand values are large structures, and 
they are transferred in parallel with the exe- 
cution control. Performance degradation occurs 
only, if the time required for the control 
exceeds the data transfer time. 

Processing elements 

The PEs are allowed to be functionally noniden- 
tical in order to capitalize the existing high 
speed architectures for fixed signal processing al- 
gorithms. Frequently used operations (e.g. the FFT) 
may be executed in dedicated PEs having the appro- 
priate hardware structure. 

The I/O-functions take place in special PEs 
called I/O-processors. This is convenient in signal 
processing applications, because signal sources and 
sinks tend to introduce specialized requirements. 

A host computer is required to load the appli- 
cation programs of the DFSP. Programs are coded as 
separate high level operations, which are copied 
into the local memories of the PEs. After this ini- 
tialization, the DFSP can operate in stand alone 
mode. 

THE CONTROL MECHANISM 

The communication between the control section 
and the PEs is accomplished using fixed format mes- 
sages. Initially, all the information about the 
data flow graph of the application program resides 
in the local memories of the PEs. Result packets 
carry the pieces of this information needed by the 
control section to schedule the operations. A rep- 
resentation of the currently active part of the 
data flow graph is formed in the activity store, 
which can be accessed by all the four units of the 
control section. 

Data representations 

The essential data objects manipulated by the 
control section are: result packets, activity tem- 
plates, and operation packets. Here, they are spec- 
ified as tuples of information fields. 

Result packet. The tokens flowing between ac- 
tors of the data flow graph are represented by the 
result packets. Each result packet specifies one 
token by the following fields: 

<OPERATION, CONTEXT, TOTALSIZE, RESULT> 

The OPERATION field identifies the destination ac- 
tor of the data flow graph and the CONTEXT field 
identifies the environment of the invocation. The 
TOTAL SIZE field contains the c~nulative physical 
size of operands of the destination operation. This 
value is used for both the memory management and 

the detection of executable operations. The RESULT 
field specifies the position and type of the par- 
ticular operand represented by the result packet. 

Activity template. The specifications of desti- 
nation operations are placed into fixed format rec- 
ords called the activity templates, which reside in 
the activity store. The record format has the fol- 
lowing fields: 

<LINKAGE, OPERATION, CONTEXT, 
TOTALSIZE, TRIGGER, LOCATION> 

The LINKAGE field contains pointers, which build up 
the structures of the activity store. The TRIGGER 
and LOCATION fields are used for detecting execut- 
able operations and for memory management purposes, 
respectively. 

Operation packet. A portion of the activity 
template of an executable operation is sent to the 
executing PE in order to identify the computing 
task. It has only two fields: 

<OPERATION, CONTEXT> 

The operation code, which resides in the local mem- 
ory of the PE, specifies the interconnections of 
the operation in the data flow graph. 

Organization of the activity store 

The activity store contains the activity tem- 
plates of those operations, which have received at 
least one of the operands, but which are not sched- 
uled for execution. Conceptually, the activity 
store contains a representation of the active part 
of the data flow graph. 

The organization of the activity store is shown 
in Fig. 2. The structures support the three major 
functions of the control section: 

(I) Matching of operands. 

(2) Management of memory for operand values. 

(3) Detection of executable operations. 

Operand matching. The associative matching 
function is based on hashing. A hash index is gen- 
erated for each arriving result packet using the 
OPERATION and CONTEXT fields specifying the desti- 
nation operation. This index refers to a bucket of 
activity templates. 

Buckets are implemented using linked list 
structures instead of fixed size blocks. The bene- 
fits of this organization are the savings in memory 
space and avoiding special treatment of bucket 
overflows. The additional list search effort is ex- 
pected to be tolerable due to short average list 
lengths. 

Memory management. Both the activity store and 
the data storage are allocated dynamically. The ac- 
tivity store is treated as a pool of fixed size 
templates. Available templates are marked free and 
the allocation routine examines templates starting 
from the most recently allocated. The commonly used 
list organization for the pool of available records 
has been rejected due to the feasibility of the 
circulating allocator in this application. 
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Figure 2. List structures for hash buckets (B) and data storage allocation (D). 

A continuos block of data storage is associated 
with each activity template to store the operand 
values. All the activity templates are linked 
together in a circular list, so that the ordering 
of templates in this list corresponds to the 
ordering of their data blocks in the data storage. 
The allocation routine travels around this circular 
list and uses the first fit principle for selecting 
the memory block. The starting address of the allo- 
cated block is stored in the LOCATION field of the 
activity template. 

Twoway lists are exclusively used in the orga- 
nization of the activity store in order to aid the 
memory deallocation. The memory areas of the ac- 
tivity store and the data storage associated with 
an activity template are made available for reuse 
by first removing the activity template from both 
the hash bucket list and the allocation list, and 
then marking the template free. 

The free storage is expected to concentrate 
after the most recently allocated block due to the 
uniform and continuous nature of DSP computations. 
This makes the proposed circulating allocator rou- 
tines feasible. The DFSP architecture does not in- 
elude any secondary storage nor does its memory 
management system recover fragmented storage, be- 
cause the strict timing constraints of real time 
DSP prevent from using techniques like virtual mem- 
ory or garbage collection. 

Ready-detection. The TRIGGER field of an ac- 
tivity template is initialized to the value of the 
TOTAL SIZE field. After each result transfer, the 
TRIGGER value is decremented by the physical size 
of the transferred operand. An operation is enabled 
for execution, when the resulting TRIGGER value 
equals to zero. 

The detection mechanism allows unlimited number 
of operands of variable size for each operation. 
This is considered an essential feature, because 
the operations are supposed to be complex. The 
flexibility of operation interfaces supports a 

functional programming method, where the user de- 
fined operations are interconnected by a data flow 
graph. 

Some simulation results 

The properties of the DFSP architecture have 
been investigated by carrying out simulation exper- 
iments. The developed discrete event simulator is 
based on a two-level model of the DFSP. The control 
section is simulated up to individual accesses to 
the shared memories, while the PEs are treated at a 
gross functional level. A more detailed description 

of the simulation system can be found in 5 

The results given here are obtained from the 

two examples discussed in 6 i.e. a three sensor 
tracking task and a real time image processing ap- 
plication. The simulated hardware configuration in 
both examples has: 64 PEs for I/O and DSP computa- 
tions; 64 kwords of buffer memory for the data 
storage; and I kword multi-port RAM for the activi- 
ty store. The control section is assumed to be im- 
plemented using commercial microprocessors and 
other standard components. 

Optimal operator granularity. The control sec- 
tion has basically two distinct tasks - the opera- 
tion scheduling and the data communications. The 
load distribution among the control units and the 
data transfer devices is largely determined by the 
decomposition of the application program into indi- 
vidual operations. Here, the physical size of the 
result data blocks is used as a measure of the op- 
erator granularity. 

The update unit has been the major bottleneck 
of the control mechanism in the simulated micropro- 
cessor implementation of the control section. Its 
average execution time for one result packet has 
been around 200 ~s. However, considerably uniform 
utilization of the four processors has generally 

been achieved 5 . 
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For the 4 MHz bandwidth (words) of the data 
transfer buses, the optimal size of result data 
blocks has been around 800 words. This value de- 
pends linearly on the bandwidth of the buses and 
inversely on the throughput of the control mecha- 
niem. It is also affected by the data flow graph of 
the application program, because the number of op- 
erands widely varies among the scheduled opera- 
tions. 

An average block size below and above the opti- 
mem may cause performance degradation due to a bot- 
tleneck at the update unit and at the result trans- 
fer bus, respectively. Considerably large variation 
around this average value is allowed without de- 
stroying the balanced utilization, because queue 
modules are used as buffers between the units of 
the control section (only the template queues are 
shown in Fig. I). 

The fetch unit is less critical for the perfor- 
mance, because several result packets are generally 
needed to enable a single operation. The control 
processors for the DMA devices cause no potential 
bottlenecks. Moreover, provided the data buses have 
equal capacity, the overall performance is not lim- 
ited by operand transfers, because the data trans- 
ferred as operands to the PEs must first be trans- 
ferred as results from the PEs. 

The optimal level of granularity may be incon- 
veniently coarse for some applications. Considera- 
bly finer level is, however, achieved by replacing 
the standard components of the control section by 
special hardware. A proposed VLSI implementation is 

7 reported in 

Memory space requirements. Relatively small 
memory area is reserved for the activity templates 
compared to the size of the data storage (the hash 
index table occupies one quarter of the activity 
store). The space requirements for the activity 
store are moderate, because the high level of oper- 
ations implies small amount of actors in the data 
flow graph. The wide variations in the data inten- 
siveness of DSP tasks is reflected in considerable 
differences in the use of the data storage. 

The queues have been empty most of the time in 
the course of the simulations of the examples dis- 
cussed. No overflows have occurred in spite of the 
small module sizes (20 cells for the template and 
result queues, and 10 cells for the data queues). 
The utilization of the memories in the two examples 
is displayed in Table I. The control of nonidenti- 

cal PEs is accomplished using sets of parallel 
queues, out of which only the busiest are tabulat- 
ed. 

The first fit allocation strategy for the data 
storage performs well in the applications discuss- 
ed. The memory space is kept unfragmented, which 
gives short execution time for the allocation rou- 
tine. However, in multitasking applications, where 
the lifetime of the activity templates varies con- 
siderably, fragmentation may cause problems. 

PROPOSED APPLICATIONS 

The DFSP is developed to meet the specialized 
requirements of a class of DSP computations. How- 
ever, the DFSP architecture is potentially applica- 
ble to other fields of data processing satisfying 
the following provisions: 

(I) The application task is continuous and a fixed 
set of programs is used throughout the task. 

(2) The use of data structures is highly local and 
intensive justifying the transfer of whole 
structures into the PEs. 

(3) The application program can conveniently be de- 
composed into high level operations. 

Signal processing 

Many signal processing applications introduce 
the conflicting requirements of high computational 
capacity and flexibility. The former is generally 
satisfied by directly mapping the algorithm onto 
the hardware (e.g. FFT-processors), while the lat- 
ter implies a programmable architecture. 

The processing capabilities of the DFSP can be 
tailored to meet the requirements of the applica- 
tion, because its architecture does not limit the 
amount and type of PEs. The shared bus structure 
establishes a fully general interconnection between 
the PEs. Thus, new algorithms can be implemented 
without hardware reconfiguration provided that the 
total processing capacity is sufficient. 

The DFSP architecture provides many advantages 
for software development. The programmer does not 
need to bother about synchronisation of parallel 
activities, because the data flow principle pro- 
vides implicit synchronisation. This is particular- 
ly convenient in multi-input signal applicatios, 

Three sensor tracking task Real time image processing 

Min. Max. Aver. Min. Max. Aver. 

Activity store 13.0 18.8 16.0 2.9 5.8 4.3 

Data storage 24.6 36.9 29.7 3.1 7.0 5.4 

Template queue 0.0 5.0 0.2 0.0 5.0 0.5 

Result queue 0.0 5.0 1.2 0.0 5.0 0.2 

Data queue 0.0 10.0 2.0 0.0 10.0 0.4 

Table I. The utilization percentages of the control section memory areas. 
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such as correlation computations. The architecture 
also supports structural programming, because pro- 
grams must be decomposed into modules having well 
defined interfaces. 

Potential applications of the DFSP include 
transform oriented signal processing (e.g. spectral 
analysis), image processing, and pattern recogni- 
tion. Recursive algorithms are generally not effi- 
cient for the DFSP, because they do not always de- 
compose into a data flow graph providing a suffi- 
cient level of parallelism and operator complexity 
Therefore FIR-algorithms should be preferred, if 
filtering is needed as a preprocessing stage in the 
application. 

Database query processing 

Processing of relational database queries has 
many similarities to real time DSP computations. 
The continuous input stream is operated by fixed 
programs and pipeline processing can generally be 
employed. Typical operators of relational algebra 
queries (e.g. restrict, project, and join) involve 
all the tuples of the arg~ent relations implying 
intensive access to data structures. Because of 
these computational features of database process- 
ing, the applicability of the DFSP architecture to 
a database has been investigated. 

Physical database. The database is distributed 
into several mass storage subsystems. The bank of 
PEs is divided into classes so that one class is 
attached to each storage system. This approach uti- 
lizes the locality of queries by allowing parallel 
access to distinct parts of the database. 

Representation of relations. Relations are im- 
plemented as streams of pages, which are colored 
according to their ordering. The DFSP architecture 
supports the page-level operator granularity for 
actors of the data flow graph. This level is con- 
sidered appropriate for data flow database ma- 

chines 8 . 

Concurrency control and resource allocation. 
The control of concurrent queries can readily be 
implemented in the system, because all the opera- 
tions accessing the physical database are scheduled 
by a single centralized control section. The con- 
trol scheme is used both to assure security and in- 
tegrity for the database and to provide priorities 
for the users. The PE class concept is extended to 
a resource allocation scheme, which dedicates dis- 
tinct subsets of PEs for each query priority class. 

Query execution. I/O-processors receive user 
queries, parse the query tree, and perform the nec- 
essary optimization. The produced result packets 
specify the context (user) of the query. They are 
destined to the starting operations of the data 
flow graph, which correspond to the leave nodes of 
the query tree. Executable operations are sent to 
those PEs attached to the appropriate mass storage 
subsystem. The execution of an operation generates 
a stream of result packets carrying page-level op- 
erands. Pipeline processing is applied to succes- 
sive nodes of the query tree. The result of the 
query - a message in the case of database modifica- 
tion - is sent back to the I/O-processor performing 
the query output. 

The expandability of the DFSP architecture per- 
mits the evolution of the database system to meet 
changing requirements. The bank of parallel PEs 
provides also fault tolerance, although the single 
control section is in series with it in the reli- 
ability model. The architecture supports the simul- 
taneous execution of multiple queries from several 
users by allowing reentrant programs and context 
identification. Multitasking is essential in a 
database environment, if system resources are to be 
efficiently utilized. 

In conclusion, the DFSP architecture seems to 
have attractive properties for relative database 
processing. However, there are some unsatisfactory 
features that require further research. The shared 
buses for the data communications may cause a bot- 
tleneck. The locality of queries could be better 
utilized using a hierarchical bus structure with 
distributed buffering of intermediate results. In 
addition, secondary backup storages are required 
due to the large physical size of relations. 
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