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Abstract 

LIPP (Link6ping Image Parallell Processor) is 
a multiprocessor system intended mainly for image 
analysis and image processing but even other 
computing tasks where large amount of data should 
be manipulated in forms of matrices, such as 
weather forecasts or other related problems namely 
systems of dif ferential  equations. The processors 
within the processor array are of bit-serial type 
with the capability of directly processing data 
with wordlengths in the range of 1 b i t  to 32 bits 
in one bit  increments without time penalty. Bit- 
serial operation gives the possibil i ty of designing 
suprisingly fast algorithms. To each processor is a 
fa i r l y  large memory (64 Kbit) associated. A 
processor can instantly reach 8 neighboring 
memories through an interconnecting network. The 
processor array whose size is thought to be 16 by 
16 i t  running in SIMD mode. In this way memory 
access collisions can be minimized. Image and 
matrix data are mapped in the memory space so that 
each memory holds a subimage. We call this mapping 
distributed processor toooloQy. Because of the 
memory mapping and interconnection network 
neighborhood operations such as two dimensional 
convolution are easily performed. 

Introduction 

Image processing is a constant challenge to 
conventional computers for reasons of speed. The 
natural answer is parallelism. As have been shown 
in [1,2], for neighborhood operations, four 
dif ferent forms of parallelism are possible: 
Operator, Image, Neighborhood and Pixel-bi t  
parallelism. Consider the fact that the size of a 
task varies from one operation up to maybe 100, 
that the neighborhood kernel size goes from one to 
maybe 100 points and that the number of bits per 
pixel varies from one (for binary images) to maybe 
100 (for complex multispectral images). We conclude 
that we shall put our money on what we call image 
parallelism only. 
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This implies a SIMD-system where several b i t -  
serial processors execute the same operation on the 
same image or images but on different neighbor- 
hoods. No pipe-lining (only one level of operation 
going on at the same time), no parallel fetch of 
neighborhoods, not even one pixel but one bit  is to 
be fetched at a time to each processor. 

Like in other contemporary designs of this 
kind, e.g. CLIP 4 [3] and MPP [4] we assume a 
central control unit that generates and broadcasts 
a global address and control word. This information 
is picked up by each unit in the two-dimensional 
array 0, that is by the memory modules (M:s) and 
the processors (P:s) respectively. 

An extremly important difference between the 
above-mentioned machines and the LIPP-proposal of 
ours concerns the image-to-memory mapping for the 
case (overwhelmingly common) that the number of 
pixels in the image is larger than the number of 
array points (M:s and P:s). In most machines this 
is done in the fashion of Figure la) which shows a 
case of an 8 x 8 image mapped on a 4 x 4 array. 
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Figure 1 The two mappings of image array 

Here the 16 M:s (A,B,C . . . . .  P) are all d is t r i -  
buted over each 4 x 4 subimage. A 5 x 5 neighbor- 
hood is covering all 16 memory modules as seen for 
the D-pixel at the encircled position. So, the 
simultaneous and direct access for all processors 
to a certain pixel in their respective neighbor- 
hoods requires that all processors are connected to 
all memory modules, or at least up to a radius 
corresponding to the neighborhood of maximum size. 
For an array size of 16 x 16 or larger and a neigh- 
borhood size of, say, 9 x 9, there would be 
required a form of 81-connectedness which is 
impossible to implement as a wiring scheme. 
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The memory mapping showed in figure lb) the 
neighborhood access problem is much more relaxed. 
Each of the 16 memory modules holds a subimage (in 
this simplistic example only 2 x 2 pixels). We call 
this mapping distributed processor topology. I t  
was f i r s t  suggested for DAP [5] but i ts processors 
are not able to access data from all nine neigh- 
boring processor memories, which is essential when 
doing neighborhood operations without need of 
copylng image data. 

The image is mapped on the memory array in 
such a way that each memory contains a subimage of 
the whole picture as shown in Figure 2. A subimage 
is marked by M in the figure and the processor 
array can be seen as being moved over the image 
plane by the global control unit. The size of 
subimages varies with memory and processor array 
slze and size of image as shown in the following 
table. 

Image Array Subimage Max-neighbor- 
slze size size hood slze 

512x512 16x16 32x32 65x65 
512x512 32x32 16x16 33x33 
512x512 64x64 8x8 17x17 
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Figure 2 Processor - Image interconnection 

The problem of large neighborhood access is 
not the only contest where distributed processor 
topology as in lb) comes out as a winner over the 
mapping of la). Even for the limited size of a 
3 x 3 neighborhood, an access problem arises in 
Figure la). In this example, the 16 processors are 
f i r s t  processing, say the top leftmost quadrant. 
The border processors D, H, L, P, O, N, M need data 
from neighboring quadrants of the image. In the 
physical array structure we therefore need to wrap 
around the plane in both directions creating a 
torus-l ike shape. Unfortunately, the global common 
address is not common anymore when the border 
processors are trying to fetch data across the 
quadrants while other processors fetch data inside 
the present quadrant. 

In contrast, the scheme of Figure lb) allow us 
to store and process images of different sizes 
quite freely. Each module stores a N/m x N/m 
subimage of each image. In each module the 
subimages from different images are mapped into one 
linear address space. The global address is a 
pointer in this space of, say, 64 Kbit. 

The necessary interconnecting data paths can 
be implemented in different ways, as was shown in 
[2]. One of these is shown in Figure 3. Note, that 
the main purpose is to make i t  possible for the 
global control unit to steer data from a memory 
module to i ts processor (the normal case) and in 
the same moment feed data from say South-East to 
the processor in North-West. This case opens up the 
dashed data-paths in Figure 3. 
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Figure 3 Two-level multiplexing of datapaths 
and the resulting global inter- 
connection scheme 

Input/output methods 

Problem statement 

All designs of processor arrays requires 
special attention when i t  comes to input and output 
of image data. 

The problem we have to solve in LIPP arises 
from the fact that image data outside the array 
appears in raster scanned serial format. Assume 
that an image arrives in TV-fashion, r igh t - le f t ,  
top-down. Then, with our image to array mapping of 
Figure lb) all the leftmost pixels of the f i r s t  
lines shall be stored in module A. Without precau- 
tions the I/O datarate would be limited by the 
small bandwidth of a single bi t /ser ial  memory 
module. Input/output to the parallel array would be 
a s t r ic t ly  bi t-serial  procedure. 

For LIPP we wil l  see at least three 
alternative solutions: 

horizontal/vertical unscrambling 
orthogonal memory with f l ip  network 
orthogonal memory with word- and bi t  
access.  

In this paper we only discuss the f i r s t  
alternative. 

Horizontal/vertical unscrambling 

Let us assume that our array has vertical and 
horizontal one-bit wide buses (H- and V-buses 
respectively) (highways in DAP [5]) and a control 
mechanism that allow us to transport data from the 
edge to a selected row of memory modules (using the 
V-buses) or a selected column (using the H-buses). 
A traditional serial-to-paral lel converting buffer 
register is connected to the horizontal as well as 
the vertical edge. 

Assume a binary 16 x 16 image, a 4 x 4 array 
and that the horizontal buffer register of four 
pixels has been loaded with input data. Then, we 
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could transport the set of four contiguous pixels 
(= four bits in this case) over the V-buses and l e t  
the whole image be stored in the way of Figure 4a). 
Each line of data, e.g. the f i r s t  l ine O, 1, 2, 
• . . ,  15 is stored in the correct row of modules. 
However, compared to the final de~i-nation, shown 
in Figure 4b) the bits are heavily scrambled within 
each l ine. 

Fortunately, the scrambling pattern is identi- 
cal in each l ine. Therefore, by u t i l i z ing  the H- 
buses we could do one read column-wise of four 
pixels and store them in the vertical edge buffer. 
Then we store them back in their final destination. 
To avoid over-writing we have to make an i n i t i a l  
move of each line to a buffer area in the memory 
modules. However, these moves can be made with fu l l  
m x m parallelism and consequently with negligible 
time consumpti on. 

I I  I I  I I I I I I I  I I I I  I I I I I  

a) 
Figure 4 

b) 
Vertical input, horizontal 
unsc rambl i ng 

The great advantage of this method is that no 
extra hardware has to be introduced. For a 16 x 16 
array an 512 x 512 x 8 bi t  image would require 40 
ms which is exactly the frame time in European TV- 
standard. 

An extension of the idea is to use 8 bi t  wide 
V- and H-buses. To save lines and IC-pins we also 
intend to use the buses for global address d i s t r i -  
bution. In this case the time for transferring the 
picture mentioned above is 8.3 ms. 

The over-all architecture of LIPP 

With the adoption of the f i r s t  Input/Output 
alternative of previous section a overview of LIPP 
takes the form of Figure 5. 

In the center is the m x m array with memory- 
processor arrangements in principle organized as in 
Figure 3. The edge registers are to right and 
bottom of the array. Some but not al l  of the global 
control is shown. Global addresses and constants 
are issued over the V- and H-buses. One of these 
lines is used for gating. When the whole array is 
activated both decoders enable al l  their m control 
lines. However, when one row or one column of M/P- 
units are to be activated only one of the corres- 
ponding decoder outputs is enabled. 

Each processor can deliver a data-dependent 
interrupt signal as wi l l  be shown in the next 
section. These are OR-ed together in each row and 
independently in each column. An m-bit flag 
register for both coordinates can be set and 
delivered to the hostcomputer. I f  only one 
processor has delivered an interrupt i t  can be 
identif ied immediately, addressed by proper column 
and row select and data delivered at the feature 
output. I f  more than one processor signals an 
interrupt a more elaborate search process has to 
take place. 

The horizontal bus lines combines to the r ight 
in an adder tree. Hereby fast accumulation of 
counts can be obtained, most typical ly histograms. 
Histogramming is extremely common in most image 
processing applications. I t  consists of collecting 
the distribution of gray levels throughout the 
image. In LIPP each M/P-unit is f i r s t  creating a 
local histogram for the subimage of i ts  own, 
u t i l i z ing the table look-up function to be explai- 
ned in the next section. Second, corresponding 
table entries from the local histograms are accumu- 
lated over the adder tree. The speed is i l lustrated 
by the following example. 
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Figure 5 The over-all architecture of LIPP 

An image of 512 x 512 x 8 b i t  processed with a 
16 x 16 array requires a 256 x 11 bi t  table for 
each local histogram. These are accumulated in 
parallel over each subimage in (32 x 32) x 
(8 + 11 + 11) cycles (subimage size is 32 x 32 8 
cycles for serial read out of a pixel, 11 + 11' 
cycles for serial read-out and storing back of a 
table entry). The local histogram entries are then 
byte-wise transported to the merging tree in 
256 x 4 x 16 cycles. The total amounts to 
30.000 + 16.000 cycles or 4.6 ms assuming a 10 MHz 
cycle rate. 

The control unit is invisible in Figure 5. I t  
generates the common addresses to processor memory 
array and issues the current ALU function and other 
control signals essential to al l  processors. 
Needless to say, the proper design of this unit is 
crucial to the success of LIPP. One p i t - f a l l  would 
be to design fast operations in the array that 
depend on a massive microprogram support. The 
compilation of the microprogram the fetching of i t  
and f ina l ly  i ts  interpretation (address and control 
vector generation) must be fa i r l y  swift and simple. 
Otherwise we might have an unbalanced system that 
is mostly waiting for the control unit to get 
ready. For the sake of brevity we obstain from 
further discussions on this point. 

Processor design 

From the previous discussions we conclude that 
the processor should be designed for bi t-ser ial  
arithmetic and logic. Several surprisingly fast 
algorithms can be designed that exploits bi t -ser ial  
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access and processing as will be presented in the 
next part. 

The following l i s t  of desirable features are 
incorporated in Figure 6 of such a processor. 

* SIMD processing mode implying that the 
processor need no control unit of i ts own. 

* Bitserial accumulator/subtractor and 
logical unit (ALU). 

* Internal shiftregisters with variable 
length. 

Dynamical variation of length of the 
shiftregisters without loss of stored 
data. 

* Index register for table lookup. 

* Shiftable (in/out) up/down counter with 
status information. 

* Status registers for interrupt signalling. 

* Activity register for data dependent 
processing. 

* Direct data paths to four fa i r ly  large 
memories (16-64 Kbit). 

Neighborhood data access transparent to 
processor act iv i ty.  

N- bit shiftreg. J I 

N- bit shifh"eg. ]-~ 

• ndex reg. 

I Iz.q t I 

~ 0 ~  dIn°odd J ~ ' ~  

Figure 6 The processor 

Arrows throughout Figure 6 indicate control 
information data paths from a global control unit. 
I t  is hard to get all these control signals trans- 
ferred in each clock cycle due to their large quan- 
t i t y .  The amount of these signals can be reduced by 
observing that several of them are mutual exclu- 
sive. All such signals can be grouped and coded. 

Another way to reduce the amount of control 
signals is to distribute some functions among the 
processors, Each processor is then equipped with a 
small micro program controller and is thus able to 

perform suboperations individually. I f  the global 
addresses are given by the master controller, 
common to the whole array, i t  is possible to partly 
run the array in a MIMD mode without memory 
accessing collisions. Even slight local modifica- 
tions of addresses within a given space can be 
tolerated. 

Interrupt signalling through register f l i p  
flop I, see Figure 6, indicates completion of a 
suboperation. Register I can also be used for 
arithmetic overflow indication and for object 
finding purposes in segmentation algorithms. 

Activity register, A, is employed in data 
dependent computations. An example of which is the 
logarithm algorithm implementation in part 5.2 
below. 

Register C is used for storing the carry b i t  
produced by the ALU in for the instance the 
add/subtract operation. 

Register E is also employed in the data depen- 
dent computations of the logarithm algorithm, refer 
to part 5.2 of this paper. In this example the 
counter is only used as a register. The special 
features of this counter are exploited in median or 
percentil calculations. This counter can also 
perform convolution. The signal from the enable 
register E is used as count enable and the data 
path from the ALU is used for presetting the 
counter as well as certain possibi l i t ies to alter 
the operation of the ALU and modifying the address 
to the memory. Data can be loaded into the counter 
directly from memory via the ALU. The global 
control information determines the status of count 
up or down. 

The processor is equipped with two shi f t -  
registers of changable length in order to store 
intermediate data. These registers should be able 
to dynamically vary their lengths without loss of 
stored data. By having this fac i l i t y  i t  is for 
example possible to reduce the amount of clock 
cycles needed for square root extraction by almost 
f i f t y  per cent. 

Figure 6 indicates only one single memory 
unit. This is the only memory that is allowed for 
write operations. I t  contains different subimages 
and look-up tables. This means that each processor 
in the array could have different tables, but in 
most cases the information stored in the dif ferent 
tables is the same. Memories should be large enough 
to store several subimages and tables. A large 
number of operations can thus be made without 
extensive input/output operations. 

When often the same large table is needed 
one may think of attachment of a ROM to the 
processor, in which several tables can be found. 

The inter-connecting network between neigh- 
boring memories is represented by the MUX symbol in 
Figure 6. An implementation is shown in Figure 3 of 
thls paper. Neighboring memories can be reached 
without time penalty through these bidirectional 
multiplexers. 

The multiplexer can be thought of as being a 
part of either the memory or the processor. Now, 
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production of memory chips requires specially tuned 
processes and layout techniques, which means that 
i t  is hard to add extra features to a ready-made 
design. Therefore i t  is better to incorporate the 
multiplexer function into the processor design. 

Input and output data paths have not been 
included in Figure 6. 

Local indexing in a look-up table is a very 
versatile operation as seen by the following 
important applications. 

* Arbitrary grayscale transformation. 

* General (logical) neighborhood mapping. 

* Distributed arithmetic (for convolution). 

* Histogramming and feature counting. 

The index register is loaded serial ly from one 
of the connected memories via the ALU. However, the 
register is read in parallel and fed to the adder 
~hich is activated by the add/noadd control signal 
i f  indexing shall take place. In this way we 
calculate the address within a single cycle. 
However, we then have to (optimistically?) assume 
that index add, memory cycle and processor cycle 
all can take place in one machine cycle of 100 ns. 

Algorithms 

In order to design a well balanced system we 
have to tune i t  with respect to different tasks and 
algorithms which we will run on the system. Our 
main objective is to use i t  in different image 
processing applications. However, but other type of 
applications which could be formulated in terms of 
algorithms acting upon matrices of data may also be 
applicable. In the following we give an example of 
a number representation which is handy for some 
image processing applications. Besides algorithms 
for basic algorithm this representation calls for 
algorithms to directly perform basic arithmetic 
(addition, multiplication) and conversion 
algorithms between different representations. The 
performance of this algorithms are stated below. 

More algorithms are neccessary for a complete 
system and have also been investigated [9] [ I0 ] .  
However, we feel that the bitserial algorithms 
presented below may be representative for the very 
often unconventional approach called upon by this 
architecture. 

Signed logarithm number representation 

In most applications of image processing the 
precision need is not very high because o~ 
relatively low signal to noise ratio ~ 10 of 
commonly used image sensors (CCD arrays and 
vidicons). In fact 8 bit  or in some cases 16 b i t  
integers are in use extensively. When using 
integers algorithms have to be designed carefully 
with intevening scaling operations to overcome the 
possibil i ty of overflow. A signed logarithm number 
system, suitable for low precision applications, 
have been proposed by Swartzlander and Alexopoulos 
[6] that need no scaling. 

The representation uses logarithm of base 2 
and a multiplicative factor to always keep the 
logarithm positive. Because of this factor we have 
to do some adjustments of the result after a 
multiplication or division. We therefore suggest a 
twos complement representation of the logarlthm 
which do not need the scaling factor. A logarithm 
of base 2 gives a poor accuracy. A base of 256 ¢ 2 
has been suggested by Tood [7J which extends the 
accuracy at the sacrifice of dynamic range. For a 
16 bit  representation including sign bi t  we get an 
accuracy~gf ± 0.14 % and a dynamic range of 
3.4 * 10 °0 . We suggest the following representation 
of a floating point number { with sign S{ and 
logarithm L~. 

= m • 2 e ( i )  

S{ = 1 i f  { <_ 0 (2) 

S~ = 0 i f  { > 0 (3) 

: log 8 (Iml) + e • 8 i f  p (4) 

L~ = log 8 (p) i f  l { i  < P (5) 

p is the smallest number that can be 
represented in this form. 

Multiplication and division in this represen- 
tation are both easily calculated. Addition and 
subtraction are however mere d i f f i cu l t  to compute. 
A method for this is found in [6], which gives as 
follows in case of addition. 

La+b : La + f8 (Lb - La) i f  )a I ~ 181 (6) 

La+b : Lb + f8 (La - Lb) i f  lbl > lal (7) 

fs(X) = log s (1 + s x) (8) 

Subtraction is computed in the same manner, 
but the function fs(X) in equation (8) must be 
altered to (9). 

fs(x) = log s (1 - s x) (9) 

This function can be computed in a table 
lookup procedure. How large table size Z, do we 
have to allow for? I t  naturally depends on the base 
8. 

Z > ~n (2/~n 8} ~n p (i0) 

I f  the table size is an even power of two i t  
is easy to check whether we are addressing inside 
the table or not. 

A reasonable table size is 4096. 

That gives 8 equal to 402~. This base is 
~ h e r  odd. Instead of 402k-choose 8 to be 
~n~/2, because 384 happens to be the sum of two 
even powers of 2. This base gives an accuracy of 
± 0.09 % and 95 % ut i l izat ion of the look ~ table. 
The dynamic range of this base is 4.9 • 10 . 

I f  we use the two shiftregisters and the 
counter to store intermediate results we can do the 
computation a + b or a - b in 93 cycles. Mul t ip l i -  
cation and division require 48 cycles each. 
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Applied to standard pictures (512 x 512 
pixels), and computed on an array of 16 by 16 
processors, we can do pixelwise multiplication in 
4.9 ms. The speed for addition (subtraction) is 9.5 
ms. 

Logarithm computation 

I f  we would l ike to use the signed logarithm 
number representation we have to convert the 
incoming pixel data. The pixel data usually comes 
in as an integer of f ixpoint format. 

Many algorithms have been formulated for 
computing log~ [8]. The unique properties of the 
logarithm can be ut i l ized in a fast computing 
scheme. Such a method can be formulated in the 
following manner. 

logp ({) = log~ (~ x a k) - Z log~ (a k) (11) 

Choose a k in such a way so that ~ x a k 
approaches 1.-Then log~ (~) becomes - Z logp (ak). 

Let a k be of the form 

a k = 1 + q 2 -k , q = - 1 , 0 , 1 (12) 

The algorithm can then be formulated as 
follows 

x 0 : ~ (13) 

YO : 0 (14) 

Xk+ 1 = x k • ak+ 1 (15) 

Yk+l = Yk - log~ (ak+ 1) (16) 

q = 1 i f  0 < x k < 1 (17) 

q = -1 i f  x k Z 1 + 2 -(k+l) (18) 

q = 0 i f  1 ~  x k < 1 + 2 -(k+l) (19) 

Yk = log~ { + e(n) (20) 

e(n) in (20) is an errorfunction with an upper 
bound of 

2-n 
le(n)l < ~nf3 (21) 

To convert a floating point number (10 b i t  
mantissa, 6 bit  exponent) to a signed logarithm 
number representation described in the previous 
section we need 264 cycles. 

The conversion of a ful l  size picture 
(512 x 512) in a 16 bit  floating point format to a 
picture in a signed logarithm number representation 
is accomplished in 27 ms on a 16 x 16 processor 
array. 

Conclusions 

We believe that the most important step 
forward is to leave the densely packed processor 
system and use the distributed processor topology. 
The former image array mapping is a curse inherited 
from the old and false idea that the ultimate image 
processor should look l ike a two-dimensional i tera- 
tive automation that tesselates the image plane 
with one f in i te-state machine in each gridpoint. 

The algorithm examples shows that bi t  serial 
processors could be quite effective especially when 
dealing with various formats and precision of 
number representation. 
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