
LIPP - A SIMD MULTIPR0CESSOR ARCHITECTURE FOR IMAGE PROCESSING*

by T. Ericsson and P.E Danielsson

Department of Electrical Engineering, Link~ping
University, Link~ping, Sweden

Abstract

LIPP (Link6ping Image Parallell Processor) is
a multiprocessor system intended mainly for image
analysis and image processing but even other
computing tasks where large amount of data should
be manipulated in forms of matrices, such as
weather forecasts or other related problems namely
systems of dif ferential equations. The processors
within the processor array are of bit-serial type
with the capability of directly processing data
with wordlengths in the range of 1 b i t to 32 bits
in one bit increments without time penalty. Bit-
serial operation gives the possibil i ty of designing
suprisingly fast algorithms. To each processor is a
fa i r l y large memory (64 Kbit) associated. A
processor can instantly reach 8 neighboring
memories through an interconnecting network. The
processor array whose size is thought to be 16 by
16 i t running in SIMD mode. In this way memory
access collisions can be minimized. Image and
matrix data are mapped in the memory space so that
each memory holds a subimage. We call this mapping
distributed processor toooloQy. Because of the
memory mapping and interconnection network
neighborhood operations such as two dimensional
convolution are easily performed.

Introduction

Image processing is a constant challenge to
conventional computers for reasons of speed. The
natural answer is parallelism. As have been shown
in [1,2], for neighborhood operations, four
dif ferent forms of parallelism are possible:
Operator, Image, Neighborhood and Pixel-bi t
parallelism. Consider the fact that the size of a
task varies from one operation up to maybe 100,
that the neighborhood kernel size goes from one to
maybe 100 points and that the number of bits per
pixel varies from one (for binary images) to maybe
100 (for complex multispectral images). We conclude
that we shall put our money on what we call image
parallelism only.

* This work is supported by the Swedish
National Board for Technical Development.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This implies a SIMD-system where several b i t -
serial processors execute the same operation on the
same image or images but on different neighbor-
hoods. No pipe-lining (only one level of operation
going on at the same time), no parallel fetch of
neighborhoods, not even one pixel but one bit is to
be fetched at a time to each processor.

Like in other contemporary designs of this
kind, e.g. CLIP 4 [3] and MPP [4] we assume a
central control unit that generates and broadcasts
a global address and control word. This information
is picked up by each unit in the two-dimensional
array 0, that is by the memory modules (M:s) and
the processors (P:s) respectively.

An extremly important difference between the
above-mentioned machines and the LIPP-proposal of
ours concerns the image-to-memory mapping for the
case (overwhelmingly common) that the number of
pixels in the image is larger than the number of
array points (M:s and P:s). In most machines this
is done in the fashion of Figure la) which shows a
case of an 8 x 8 image mapped on a 4 x 4 array.

A B C D
E F G H
i

MIN O P
I

AiB C (~

EIiF G H
I LL_K_ _L
M N O P

A B C D A AIB ~I~
E F G H A A B B

"I---ilK L E FE- F--~ "G
M NIO p EIE F F G
A BIC D I I I J (~ K
E FIi G H I II J J i K

.

M N O P M MIN N|O

) b)

c D
G-H H
G H H
K L L
K L L

p p

Figure 1 The two mappings of image array

Here the 16 M:s (A,B,C P) are all d is t r i -
buted over each 4 x 4 subimage. A 5 x 5 neighbor-
hood is covering all 16 memory modules as seen for
the D-pixel at the encircled position. So, the
simultaneous and direct access for all processors
to a certain pixel in their respective neighbor-
hoods requires that all processors are connected to
all memory modules, or at least up to a radius
corresponding to the neighborhood of maximum size.
For an array size of 16 x 16 or larger and a neigh-
borhood size of, say, 9 x 9, there would be
required a form of 81-connectedness which is
impossible to implement as a wiring scheme.

© 1983 A C M 0 1 4 9 - 7 1 1 1 / 8 3 / 0 6 0 0 / 0 3 9 5 5 0 1 . 0 0 395

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1067651.801679&domain=pdf&date_stamp=1983-06-13

The memory mapping showed in figure lb) the
neighborhood access problem is much more relaxed.
Each of the 16 memory modules holds a subimage (in
this simplistic example only 2 x 2 pixels). We call
this mapping distributed processor topology. I t
was f i r s t suggested for DAP [5] but i ts processors
are not able to access data from all nine neigh-
boring processor memories, which is essential when
doing neighborhood operations without need of
copylng image data.

The image is mapped on the memory array in
such a way that each memory contains a subimage of
the whole picture as shown in Figure 2. A subimage
is marked by M in the figure and the processor
array can be seen as being moved over the image
plane by the global control unit. The size of
subimages varies with memory and processor array
slze and size of image as shown in the following
table.

Image Array Subimage Max-neighbor-
slze size size hood slze

512x512 16x16 32x32 65x65
512x512 32x32 16x16 33x33
512x512 64x64 8x8 17x17

7 -

(-~F---~ ET"

Figure 2 Processor - Image interconnection

The problem of large neighborhood access is
not the only contest where distributed processor
topology as in lb) comes out as a winner over the
mapping of la). Even for the limited size of a
3 x 3 neighborhood, an access problem arises in
Figure la). In this example, the 16 processors are
f i r s t processing, say the top leftmost quadrant.
The border processors D, H, L, P, O, N, M need data
from neighboring quadrants of the image. In the
physical array structure we therefore need to wrap
around the plane in both directions creating a
torus-l ike shape. Unfortunately, the global common
address is not common anymore when the border
processors are trying to fetch data across the
quadrants while other processors fetch data inside
the present quadrant.

In contrast, the scheme of Figure lb) allow us
to store and process images of different sizes
quite freely. Each module stores a N/m x N/m
subimage of each image. In each module the
subimages from different images are mapped into one
linear address space. The global address is a
pointer in this space of, say, 64 Kbit.

The necessary interconnecting data paths can
be implemented in different ways, as was shown in
[2]. One of these is shown in Figure 3. Note, that
the main purpose is to make i t possible for the
global control unit to steer data from a memory
module to i ts processor (the normal case) and in
the same moment feed data from say South-East to
the processor in North-West. This case opens up the
dashed data-paths in Figure 3.

Q j-¢F-1 !

3

Figure 3 Two-level multiplexing of datapaths
and the resulting global inter-
connection scheme

Input/output methods

Problem statement

All designs of processor arrays requires
special attention when i t comes to input and output
of image data.

The problem we have to solve in LIPP arises
from the fact that image data outside the array
appears in raster scanned serial format. Assume
that an image arrives in TV-fashion, r igh t - le f t ,
top-down. Then, with our image to array mapping of
Figure lb) all the leftmost pixels of the f i r s t
lines shall be stored in module A. Without precau-
tions the I/O datarate would be limited by the
small bandwidth of a single bi t /ser ial memory
module. Input/output to the parallel array would be
a s t r ic t ly bi t-serial procedure.

For LIPP we wil l see at least three
alternative solutions:

horizontal/vertical unscrambling
orthogonal memory with f l ip network
orthogonal memory with word- and bi t
access.

In this paper we only discuss the f i r s t
alternative.

Horizontal/vertical unscrambling

Let us assume that our array has vertical and
horizontal one-bit wide buses (H- and V-buses
respectively) (highways in DAP [5]) and a control
mechanism that allow us to transport data from the
edge to a selected row of memory modules (using the
V-buses) or a selected column (using the H-buses).
A traditional serial-to-paral lel converting buffer
register is connected to the horizontal as well as
the vertical edge.

Assume a binary 16 x 16 image, a 4 x 4 array
and that the horizontal buffer register of four
pixels has been loaded with input data. Then, we

396

could transport the set of four contiguous pixels
(= four bits in this case) over the V-buses and l e t
the whole image be stored in the way of Figure 4a).
Each line of data, e.g. the f i r s t l ine O, 1, 2,
• . . , 15 is stored in the correct row of modules.
However, compared to the final de~i-nation, shown
in Figure 4b) the bits are heavily scrambled within
each l ine.

Fortunately, the scrambling pattern is identi-
cal in each l ine. Therefore, by u t i l i z ing the H-
buses we could do one read column-wise of four
pixels and store them in the vertical edge buffer.
Then we store them back in their final destination.
To avoid over-writing we have to make an i n i t i a l
move of each line to a buffer area in the memory
modules. However, these moves can be made with fu l l
m x m parallelism and consequently with negligible
time consumpti on.

I I I I I I I I I I I I I I I I I I I I

a)
Figure 4

b)
Vertical input, horizontal
unsc rambl i ng

The great advantage of this method is that no
extra hardware has to be introduced. For a 16 x 16
array an 512 x 512 x 8 bi t image would require 40
ms which is exactly the frame time in European TV-
standard.

An extension of the idea is to use 8 bi t wide
V- and H-buses. To save lines and IC-pins we also
intend to use the buses for global address d i s t r i -
bution. In this case the time for transferring the
picture mentioned above is 8.3 ms.

The over-all architecture of LIPP

With the adoption of the f i r s t Input/Output
alternative of previous section a overview of LIPP
takes the form of Figure 5.

In the center is the m x m array with memory-
processor arrangements in principle organized as in
Figure 3. The edge registers are to right and
bottom of the array. Some but not al l of the global
control is shown. Global addresses and constants
are issued over the V- and H-buses. One of these
lines is used for gating. When the whole array is
activated both decoders enable al l their m control
lines. However, when one row or one column of M/P-
units are to be activated only one of the corres-
ponding decoder outputs is enabled.

Each processor can deliver a data-dependent
interrupt signal as wi l l be shown in the next
section. These are OR-ed together in each row and
independently in each column. An m-bit flag
register for both coordinates can be set and
delivered to the hostcomputer. I f only one
processor has delivered an interrupt i t can be
identif ied immediately, addressed by proper column
and row select and data delivered at the feature
output. I f more than one processor signals an
interrupt a more elaborate search process has to
take place.

The horizontal bus lines combines to the r ight
in an adder tree. Hereby fast accumulation of
counts can be obtained, most typical ly histograms.
Histogramming is extremely common in most image
processing applications. I t consists of collecting
the distribution of gray levels throughout the
image. In LIPP each M/P-unit is f i r s t creating a
local histogram for the subimage of i ts own,
u t i l i z ing the table look-up function to be explai-
ned in the next section. Second, corresponding
table entries from the local histograms are accumu-
lated over the adder tree. The speed is i l lustrated
by the following example.

$cb.t.¢

o , . , / ~ t -

I

_I

F a.,g-/,~ ,-~ cs¢.,-~

i thee I r

I
. 2

t C~ve.*-dAa, ,a . / i - - ~ , 4 r ~

Figure 5 The over-all architecture of LIPP

An image of 512 x 512 x 8 b i t processed with a
16 x 16 array requires a 256 x 11 bi t table for
each local histogram. These are accumulated in
parallel over each subimage in (32 x 32) x
(8 + 11 + 11) cycles (subimage size is 32 x 32 8
cycles for serial read out of a pixel, 11 + 11'
cycles for serial read-out and storing back of a
table entry). The local histogram entries are then
byte-wise transported to the merging tree in
256 x 4 x 16 cycles. The total amounts to
30.000 + 16.000 cycles or 4.6 ms assuming a 10 MHz
cycle rate.

The control unit is invisible in Figure 5. I t
generates the common addresses to processor memory
array and issues the current ALU function and other
control signals essential to al l processors.
Needless to say, the proper design of this unit is
crucial to the success of LIPP. One p i t - f a l l would
be to design fast operations in the array that
depend on a massive microprogram support. The
compilation of the microprogram the fetching of i t
and f ina l ly i ts interpretation (address and control
vector generation) must be fa i r l y swift and simple.
Otherwise we might have an unbalanced system that
is mostly waiting for the control unit to get
ready. For the sake of brevity we obstain from
further discussions on this point.

Processor design

From the previous discussions we conclude that
the processor should be designed for bi t-ser ial
arithmetic and logic. Several surprisingly fast
algorithms can be designed that exploits bi t -ser ial

397

access and processing as will be presented in the
next part.

The following l i s t of desirable features are
incorporated in Figure 6 of such a processor.

* SIMD processing mode implying that the
processor need no control unit of i ts own.

* Bitserial accumulator/subtractor and
logical unit (ALU).

* Internal shiftregisters with variable
length.

Dynamical variation of length of the
shiftregisters without loss of stored
data.

* Index register for table lookup.

* Shiftable (in/out) up/down counter with
status information.

* Status registers for interrupt signalling.

* Activity register for data dependent
processing.

* Direct data paths to four fa i r ly large
memories (16-64 Kbit).

Neighborhood data access transparent to
processor act iv i ty.

N- bit shiftreg. J I

N- bit shifh"eg.]-~

• ndex reg.

I Iz.q t I

~ 0 ~ dIn°odd J ~ ' ~

Figure 6 The processor

Arrows throughout Figure 6 indicate control
information data paths from a global control unit.
I t is hard to get all these control signals trans-
ferred in each clock cycle due to their large quan-
t i t y . The amount of these signals can be reduced by
observing that several of them are mutual exclu-
sive. All such signals can be grouped and coded.

Another way to reduce the amount of control
signals is to distribute some functions among the
processors, Each processor is then equipped with a
small micro program controller and is thus able to

perform suboperations individually. I f the global
addresses are given by the master controller,
common to the whole array, i t is possible to partly
run the array in a MIMD mode without memory
accessing collisions. Even slight local modifica-
tions of addresses within a given space can be
tolerated.

Interrupt signalling through register f l i p
flop I, see Figure 6, indicates completion of a
suboperation. Register I can also be used for
arithmetic overflow indication and for object
finding purposes in segmentation algorithms.

Activity register, A, is employed in data
dependent computations. An example of which is the
logarithm algorithm implementation in part 5.2
below.

Register C is used for storing the carry b i t
produced by the ALU in for the instance the
add/subtract operation.

Register E is also employed in the data depen-
dent computations of the logarithm algorithm, refer
to part 5.2 of this paper. In this example the
counter is only used as a register. The special
features of this counter are exploited in median or
percentil calculations. This counter can also
perform convolution. The signal from the enable
register E is used as count enable and the data
path from the ALU is used for presetting the
counter as well as certain possibi l i t ies to alter
the operation of the ALU and modifying the address
to the memory. Data can be loaded into the counter
directly from memory via the ALU. The global
control information determines the status of count
up or down.

The processor is equipped with two shi f t -
registers of changable length in order to store
intermediate data. These registers should be able
to dynamically vary their lengths without loss of
stored data. By having this fac i l i t y i t is for
example possible to reduce the amount of clock
cycles needed for square root extraction by almost
f i f t y per cent.

Figure 6 indicates only one single memory
unit. This is the only memory that is allowed for
write operations. I t contains different subimages
and look-up tables. This means that each processor
in the array could have different tables, but in
most cases the information stored in the dif ferent
tables is the same. Memories should be large enough
to store several subimages and tables. A large
number of operations can thus be made without
extensive input/output operations.

When often the same large table is needed
one may think of attachment of a ROM to the
processor, in which several tables can be found.

The inter-connecting network between neigh-
boring memories is represented by the MUX symbol in
Figure 6. An implementation is shown in Figure 3 of
thls paper. Neighboring memories can be reached
without time penalty through these bidirectional
multiplexers.

The multiplexer can be thought of as being a
part of either the memory or the processor. Now,

398

production of memory chips requires specially tuned
processes and layout techniques, which means that
i t is hard to add extra features to a ready-made
design. Therefore i t is better to incorporate the
multiplexer function into the processor design.

Input and output data paths have not been
included in Figure 6.

Local indexing in a look-up table is a very
versatile operation as seen by the following
important applications.

* Arbitrary grayscale transformation.

* General (logical) neighborhood mapping.

* Distributed arithmetic (for convolution).

* Histogramming and feature counting.

The index register is loaded serial ly from one
of the connected memories via the ALU. However, the
register is read in parallel and fed to the adder
~hich is activated by the add/noadd control signal
i f indexing shall take place. In this way we
calculate the address within a single cycle.
However, we then have to (optimistically?) assume
that index add, memory cycle and processor cycle
all can take place in one machine cycle of 100 ns.

Algorithms

In order to design a well balanced system we
have to tune i t with respect to different tasks and
algorithms which we will run on the system. Our
main objective is to use i t in different image
processing applications. However, but other type of
applications which could be formulated in terms of
algorithms acting upon matrices of data may also be
applicable. In the following we give an example of
a number representation which is handy for some
image processing applications. Besides algorithms
for basic algorithm this representation calls for
algorithms to directly perform basic arithmetic
(addition, multiplication) and conversion
algorithms between different representations. The
performance of this algorithms are stated below.

More algorithms are neccessary for a complete
system and have also been investigated [9] [I0] .
However, we feel that the bitserial algorithms
presented below may be representative for the very
often unconventional approach called upon by this
architecture.

Signed logarithm number representation

In most applications of image processing the
precision need is not very high because o~
relatively low signal to noise ratio ~ 10 of
commonly used image sensors (CCD arrays and
vidicons). In fact 8 bit or in some cases 16 b i t
integers are in use extensively. When using
integers algorithms have to be designed carefully
with intevening scaling operations to overcome the
possibil i ty of overflow. A signed logarithm number
system, suitable for low precision applications,
have been proposed by Swartzlander and Alexopoulos
[6] that need no scaling.

The representation uses logarithm of base 2
and a multiplicative factor to always keep the
logarithm positive. Because of this factor we have
to do some adjustments of the result after a
multiplication or division. We therefore suggest a
twos complement representation of the logarlthm
which do not need the scaling factor. A logarithm
of base 2 gives a poor accuracy. A base of 256 ¢ 2
has been suggested by Tood [7J which extends the
accuracy at the sacrifice of dynamic range. For a
16 bit representation including sign bi t we get an
accuracy~gf ± 0.14 % and a dynamic range of
3.4 * 10 °0 . We suggest the following representation
of a floating point number { with sign S{ and
logarithm L~.

= m • 2 e (i)

S{ = 1 i f { <_ 0 (2)

S~ = 0 i f { > 0 (3)

: log 8 (Iml) + e • 8 i f p (4)

L~ = log 8 (p) i f l { i < P (5)

p is the smallest number that can be
represented in this form.

Multiplication and division in this represen-
tation are both easily calculated. Addition and
subtraction are however mere d i f f i cu l t to compute.
A method for this is found in [6], which gives as
follows in case of addition.

La+b : La + f8 (Lb - La) i f)a I ~ 181 (6)

La+b : Lb + f8 (La - Lb) i f lbl > lal (7)

fs(X) = log s (1 + s x) (8)

Subtraction is computed in the same manner,
but the function fs(X) in equation (8) must be
altered to (9).

fs(x) = log s (1 - s x) (9)

This function can be computed in a table
lookup procedure. How large table size Z, do we
have to allow for? I t naturally depends on the base
8.

Z > ~n (2/~n 8} ~n p (i0)

I f the table size is an even power of two i t
is easy to check whether we are addressing inside
the table or not.

A reasonable table size is 4096.

That gives 8 equal to 402~. This base is
~ h e r odd. Instead of 402k-choose 8 to be
~n~/2, because 384 happens to be the sum of two
even powers of 2. This base gives an accuracy of
± 0.09 % and 95 % ut i l izat ion of the look ~ table.
The dynamic range of this base is 4.9 • 10 .

I f we use the two shiftregisters and the
counter to store intermediate results we can do the
computation a + b or a - b in 93 cycles. Mul t ip l i -
cation and division require 48 cycles each.

399

Applied to standard pictures (512 x 512
pixels), and computed on an array of 16 by 16
processors, we can do pixelwise multiplication in
4.9 ms. The speed for addition (subtraction) is 9.5
ms.

Logarithm computation

I f we would l ike to use the signed logarithm
number representation we have to convert the
incoming pixel data. The pixel data usually comes
in as an integer of f ixpoint format.

Many algorithms have been formulated for
computing log~ [8]. The unique properties of the
logarithm can be ut i l ized in a fast computing
scheme. Such a method can be formulated in the
following manner.

logp ({) = log~ (~ x a k) - Z log~ (a k) (11)

Choose a k in such a way so that ~ x a k
approaches 1.-Then log~ (~) becomes - Z logp (ak).

Let a k be of the form

a k = 1 + q 2 -k , q = - 1 , 0 , 1 (12)

The algorithm can then be formulated as
follows

x 0 : ~ (13)

YO : 0 (14)

Xk+ 1 = x k • ak+ 1 (15)

Yk+l = Yk - log~ (ak+ 1) (16)

q = 1 i f 0 < x k < 1 (17)

q = -1 i f x k Z 1 + 2 -(k+l) (18)

q = 0 i f 1 ~ x k < 1 + 2 -(k+l) (19)

Yk = log~ { + e(n) (20)

e(n) in (20) is an errorfunction with an upper
bound of

2-n
le(n)l < ~nf3 (21)

To convert a floating point number (10 b i t
mantissa, 6 bit exponent) to a signed logarithm
number representation described in the previous
section we need 264 cycles.

The conversion of a ful l size picture
(512 x 512) in a 16 bit floating point format to a
picture in a signed logarithm number representation
is accomplished in 27 ms on a 16 x 16 processor
array.

Conclusions

We believe that the most important step
forward is to leave the densely packed processor
system and use the distributed processor topology.
The former image array mapping is a curse inherited
from the old and false idea that the ultimate image
processor should look l ike a two-dimensional i tera-
tive automation that tesselates the image plane
with one f in i te-state machine in each gridpoint.

The algorithm examples shows that bi t serial
processors could be quite effective especially when
dealing with various formats and precision of
number representation.

References

El] P.E. Danielsson and S. Levialdi, "Computer
Architecture for Pictorial Information
Systems", IEEE Computer, pp 53-67, November
1981.

[2]

[3]

E4]

Es]

E6]

[7]

P.E. Danielsson and T. Ericsson, "Suggestions
for a Image Processor Array", Internal Report
LiTH-ISY-I-0507, LinkBping University, S-581
83 Link~ping, Sweden.

M. Duff, "CLIP 4. A large Scale Integrated
Circuit Array Parallel Processor", Proc. of
Third International Joint Conference on
Pattern Recognition, pp 728-733, 1976.

K. Batcher, "Design of a Massively Parallel
Processor", IEEE Trans. on Computers, Vol C-
29, No 9, pp 836-840, September 1980.

S. Reddaway, "The DAP approach", Infotech
State of the Art Report on Super Computers,
Vol 2, 1979.

E.E. Swartzlander and A.G. Aleaopoulos, "The
sign/logarithm Number System", IEEE Trans. on
Computer, December 1975.

S. Todd, "Low Precision floating point for
Signal Processing", IBM Technical Disclosure
Bulletin, Vol 23, no 12, pp 5563-5564, May
1981.

[8]

[9]

[1o]

T.C. Chen, "Automatic Computations of
Exponentials, Logarithms, Ratios and Square
roots", IBM Journal of Research and
Development, pp 380-388, July 1972.

P-E Danielsson and T. Ericsson, "LIPP -
proposals for the design of an image processor
array", Computing structures for image
processing, M. Duff (Ed), Academic Press,
London 1983.

P-E Danielsson, "Vices and Virtues of Image
Parallel Malchines", Digital Image Analysis
and Processing, S. Levialdi (Ed), Pitman
Books, London 1983.

400

