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In the past few years, the increase in interactive
use of computers has led to an emphasis on human
factors and the ways in which digital information
can best be presented to users. Computer graphics
has been at the forefront of this growth involving
vision as an active aid in interpreting data. Bar
charts, psuedo-color image processing, and
3-dimensional figures are but a few means of
providing the viewer with data information.

As the use of computers increases, the need for a
variety of alternatives of interacting with
computers also increases. Computer—generated sound
is one capability not being fully utilized in the
computer/human interface. Just as an x-y plot
reveals relationships in data, sounds might also
reveal relationships in data. This report focuses
on the potential for using computer generated
sounds to present data information. The first
section addresses multivariate data problems which
might be aided by sound output. The second
describes experiments performed to determine
whether listeners can discriminate among data sets
based on sound. The final section discusses
ongoing work and future directions.

PRESENTING INFORMATION

Vast quantities of computer output are useful only
if presented in ways which can be understood and
utilized by human analysts. In problems involving
several varijables, it is particularly difficult to
visualize the relationships among data samples and
the differences among data sets. Computer graphics
has become a widely used and sophisticated
technique for the output of these digital
calculations[5]. However, in areas in which the
number of varying parameters exceeds our visual
response to color, rotation and dimension or in
areas in which the data does not correspond to our
familiar three-dimensional perception, graphical
displays are inadequate. When traditional methods
of graphical plotting are used to display the data,
information is often lost because only a few
dimensions may be presented.
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Two particularly interesting graphical methods use
multivariate data without restricting the
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dimensionality. Andrews describes functions whose
coefficients are the data variables of samples[1].
For data sets which are distinct, the resulting
curves will cluster together accordingly. Chernoff
depends on the ability of a human analyst to
distinguish among faces[3]. The data sample
variables are mapped to facial characteristics so
that each data sample produces a corresponding
face. Figure 1 plots ten data samples from each of
three sets. The first two rows of faces are from
set 1, the next two from set 2, and the last two
from set 3. The differences in facial
characteristics clearly separate the three sets of
data.

Despite the success of graphical methods for
presenting information, problems of adequately
conveying multivariate data to a human analyst
remain. In order to utilize graphical output, the
human must first focus visual attention directly on
the output, thereby restricting the information
presented to that which is before the eyes.
Secondly, graphics are generally limited to a
finite number of dimensions, requiring that many
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multivariate data problems
dimensions before analysis. Thirdly, when dealing
with data about which very little 1is known, a
variety of perceptions of the data is helpful. For
many applications, current means of presenting
information from the computer to the human are not
sufficient.

be reduced to fewer

Sound might improve these limitations by providing
auditory cues of significant events when they occur
(and thus easing the restriction of focused
attention), by increasing the dimensionality of the
graphics, and by presenting an alternative "view"”

of the data[13]. Computer generated sound is an
available technology which offers a number of
attributes for representing data dimensions. [t is

worth examining sound as a means of increasing the

bandwidth of information from a computer to a
human.

EXPERIMENT

To verify that sound does have potential for
presenting data information to analysts, 1 ran

several experiments.
purposes; the first
convey accurate

These experiments served two
to determine that sound does
information about the data and the
second to examine the potential of using sound to
convey more information than the wusual means of
data analysis. The following sections describe one
method of encoding data into sound, the methods
for the experiments, and the results of each phase
of those experiments.

Procedures
In order to present data information in sound,
there must be a means of encoding data values in

sound characteristics. Consider a mapping between

a particular mn-dimensional data sample and a
discrete sound or note. Characteristics of a note
include pitch, volume, duration, waveshape and
envelope. Each of these may vary over a

well-defined range. A single data sample can then
be encoded into a single note by using the value of
each variable to determine the 1level of a sound
characteristic. Thus, each data sample produces a
corresponding note which is determined by a mapping
from data dimensions to sound characteristics.

For the experiments, | used six-dimensional data
and mapped it to six characteristics of sound
(pitch. volume, note duration, fundamental
waveshape, attack envelope, and overtone
waveshape). Pitch varied over the 48 notes in four
octaves of a piano scale, volume varied from very
soft to very loud in twelve increments, and
duration varied from 50 msec 1050 msec in
increments of 5 msec. The waveshape of a
fundamental frequency varied from a pure sine to a
random buzz. Figure 2 shows four of the ten
variations of waveshape wused. Similarly, a fifth
overtone varied in waveshape and was added to the
fundamental. An attack envelope varied from a
long, slow attack to a constant envelope.

to
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Each trial of the experiment consisted of two sets
of data which differed from one another in a
well-def ined manner. Fifty samples made up each
set of data and each sample was six dimensional.
The subjects were given no information about the
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Figure 2: Waveshape Variations

sets differed. In the
experiment, samples were presented to the subject
as computer generated sounds. A subject first
heard ten notes identified as being from set i1 and

ways in which the two

ten notes identified as being from set 2. These
were considered the training samples. After
repeating the notes as often as desired, a subject

then entered the testing portion of the experiment.
For a given trial, the goal of the experiment was
for the subject to correctly identify those test
samples which were in set 1 and those which were in
set 2. That is, the subject heard a note and was
asked to determine whether that note belonged to
set 1 or to set 2. For each test sample, the
subject’s response was recorded. A subject’s final
score was the number of correct responses in
determining whether test samples belonged in set 1
or set 2.

Phase 1

To establish a basis for the fact that sound does
convey data information, data bases were generated
in which set 2 variables were transformed relative
to set 1. Initially sets 1 and 2 were sets of
six—dimensional random normal data. For one group
of subjects, set 2 was translated relative to set
1. For another, set 2 was scaled relative to set 1
and, for the third, the variables in set 1 were
strongly correlated relative to set 2. For
simplicity, all variables were equivalent; that is,
each dimension of a transformed set was translated,
scaled, or correlated equally.
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Figure 3: Phase 1 Data Sets

Figure 3 shows 2-dimensional graphical
representations of three pairs of data sets. In
the first plot, set 2 is translated in all six
dimensions relative to set 1. In the second plot,

in all six dimensions relative to
In the third plot, set 2 variables are not

set 2 is scaled
set §.

correlated while set 1 variables are. Note that
subjects did not see a display of the data but
rather heard six-dimensional representations in
sound.
Table 1 is a summary of the results for the
experiments in determining whether the sound
encoding of multivariate data  would convey
#subj #test  Zcorrect

Translation

by 3 7 40 927

by 1 7 40 70%

by 0.5 7 40 53%
Scaling

by 8 7 40 697%

by 4 7 40 747

by 2 2 40 55%

repeat by 8 5 40 76 .5%
Correlation

.99 4 60 60%

Table 1

consistent informatior.
The first group of seven subjects was first tested
on data in which set 2 was translated 3 standard

deviations from set 1. The subjects were then
tested on data in which set 2 was translated 1
standard deviation from set 1 and finally on data
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translated .5 standard
Similarly, the second group
of subjects was tested on data in which set 2 was
scaled by 8 standard deviations and on data in
which set 2 was scaled by 4 standard deviations.
The third trial of the second group was data in
which set 2 was scaled by 2 standard deviations for
two of the subjects. The remaining 5 subjects were
again tested on data in which set 2 was scaled by 8
standard deviations. The third group of subjects
was tested on data in which the variables of set 1
were strongly correlated. As expected, generally
the further separated the two sets, the better the
subjects were able to distinguish between them.

in which set 2 was
deviations from set 1,

Phase 2

During the second phase of the experiment, the
intent was to discover if, for some data, sound
could add more information than other methods
alone. It was desirable to provide a data base
whose characteristics were dependent on the
multivariate nature of the data so that

discrimination by usual methods was more difficult.

One set of semples of 6-dimensional data was
obtained from a multivariate normal random deviate
generator. Samples were then separated into two
sets such that a sample, s = (x1, x2, x3, x4, x5,

x6). belonged to set 2 if and only if

+ x3% + x4% + x5% + x6% ¢ 1.5%2
or

+ x3% + x42 + x5% + x6% ¢ 1.5%

r

x52 + x82 ¢ 1.5%

x22

x1%?

[+
2 4 %22 + x4% +

x1

six variables had
Thus, at least five

Only samples in which all
positive values were included.

of the six variables in each sample of set 2 had
value less than 1.5 and at most one of the
variables x1, x2, or x3 could have value greater
than 1.5. In a complete positive and negative

can think about the data in set 2 being
"cylinders”, each of radius 1.5
three axes. Fifty samples were
the two sets. The experiment
three different means of
information —- visually,
combination of visuals and

space, one
contained in three
about the first
used from each of
then consisted of
presenting the data
aurally, and with a
sound.

six dimensions were used by
to pitch, duration, volume,
For graphical

For sound output, all
mapping the variables
waveshape, envelope, and overtone.

output, only two dimensions were used in an x-y
plot. The points were not identified as belonging
to set 1 or set 2. When a sample was used for

training or testing, the point was highlighted on a
display screen. Note that the intent was not to
compare six-dimensional sound with two-dimensional
graphics but to determine whether the sound could

in fact increase the dimensionality of the
graphics.

75 subjects participated, 25 in each of three
groups. Each subject’s trial consisted of 10
training samples randomly selected from set i and
10 from set 2. The subject then had 40 test
samples to identify. The first group of 25 heard



each sample, the second group both heard and saw

each sample, and the third group only saw each
sample.

The average percentage of samples correctly
identified was 62% for the graphics only
presentation, 64.5% for the sound only
presentation, and 69% for the presentation
combining sound and graphics. Figure 4 is a plot

of the raw data in which the subjects have been
ordered from low score to high score within each

EXPERIMENT DATA, PHASE 2
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Figure 4: Phase 2 Results

group. Note that for those subjects correctly
identifying at least 22 of the 40 test items, the
group using both sound and graphics had
consistently higher scores. The group with sound

only performed as well as those with graphics
output. These scores suggest that sound does add
useful information to graphical output and that
even sound alone is useful in discriminating

between different sets of data.

Severai months after the original experiment, 10 of
the 25 subjects who participated in the sound-only
trials were randomly selected to participate in a
second experiment. The goal of this second
experiment was to find out whether further training

would improve a subject’s performance. The
subjects were given more experience using the
facility with a variety of sound output

applications.
the data were
the experiment

In addition, the training samples of
available to the subject throughout
providing a reference at any time.
The subjects stilll had no knowledge of the data
base itself. These subjects who had further
training correctly identified 74% of the test
samples.

Overall the results are a positive indication that
sound can indeed increase the information about
multivariate data when it is presented to a human
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analyst. The responses from all groups were better
than could be expected from guessing. The fact
that further training improved the subject’s

ability to discriminate data samples based on sound
alone suggests that the maximum performance level
may not have been reached. It is also possible
that improved methods for providing a reference for
comparing sounds (much like the role of axes in an

x-y plot) could increase the performance. Several
areas of using sound synthesis for data
presentation open themselves for futher

exploration.

ON-GOING WORK

One implication of the results of the experiment is
that sound not only conveys meaningful information
about multivariate data but also has potential for
increasing the information presented to a human
analyst. It is possible in some cases that sound
may yield more information to a human about
multivariate data than graphical methods. However,
the experiments made no attempt to compare the
various methods of presenting multivariate data
with graphics alone. Instead it seems most
exciting to consider the potential of using both
sound and graphics together. At this time,
however, discovering more about the use of sound
alone is critical to future studies involving both
sound and graphics.

Applications

Since sound is not static but varies with time, it
seems particularly appropriate to consider
applications in which one of the variables is time.
A real-time simulation is one such application
currently being examined with sound output[2].
Simulations which run for several hours generate
pages of statistics desecribing each time step of
the model. In most cases, there are several
variables involved and very different intermediate
results may cause the same end result. By encoding
the variables at each time step into the parameters
of sounds, each run of the simulation then has a
corresponding "song”. Listening to the "songs" for
several runs of a simulation can aid a human
analyst in determining those stages of the
simulation which are particularly meaningful or in
which a significant change occured.

In addition to the multivariate applications
described, at least two other areas offer potential
for sound exploration. Since sound has the
characteristic of not requiring a particular focus,
auditory cues would be useful in drawing attention
to specific events. Sound might also be
appropriate for different types of data, such as
logarithmic data, which is often difficult to judge
visually.

Sound Characteristics

Although the applications for sound encoding are
important, the characteristics of sound deserve
further attention. First, sound parameters are not
independent and thus affect the relationships among

data variables. For example at constant volume, a



high frequency note will sound softer than a low
frequency note. Second, the timbre of a note is
especially significant in determining the

perception of that note. More work should be done
in considering the possible uses and variations of
timbre. Likewise, location or stereo effects of
sound could add dimensionality. Third, it is not
clear how many sound parameters can be
distinguished and which of those parameters have
the most meaning.

SUMMARY

All of the work thus far has
can be a useful

indicated that sound
means of presenting information to
a human user. As visual feedback from computers
improves human use of digital calculations, it
seems appropriate to examine other human means of
obtaining information. Although experiments have
been done with touch[6], most computer research
involving senses other than vision has been with
sound. Since sound technology already exists for
mass reproduction and playback, it seems a natural
choice for further study of its wuses to convey
digital information. The computer/human interface
can only be enhanced by another means of presenting
information.
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