
A MULTI-MICROPROCESSOR
ARCHITECTURE WITH HARDWARE
SUPPORT FOR COMMUNICATION

AND SCHEDULING

Sudhir R. Ahuja
Abhaya Asthana

Bell Laboratories
Holmdel, New Jersey 07733

ABSTRACT

W e d e s c r i b e a m u l t i p r o c e s s o r s y s t e m t h a t
a t t e m p t s to e n h a n c e t h e s y s t e m p e r f o r -
m a n c e by i n c o r p o r a t i n g in to its a r ch i t ec -
t u r e a n u m b e r o f key. o p e r a t i n g s y s t e m
c o n c e p t s . In par t icu lar :

- - t h e s c h e d u l i n g a n d s y n c h r o n i z a -
t i on o f c o n c u r r e n t ac t iv i t i e s a r e
bu i l t in a t t h e h a r d w a r e leve l ,

- - t h e i n t e r p r o c e s s c o m m u n i c a t i o n
f u n c t i o n s a r e p e r f o r m e d in
h a r d w a r e , a n d ,

- - a c o u p l i n g b e t w e e n t h e s c h e d u l -
i ng a n d c o m m u n i c a t i o n f u n c t i o n s
is p r o v i d e d w h i c h a l lows ef f ic ien t
i m p l e m e n t a t i o n o f para l le l sys -
t e m s t h a t is p r e c l u d e d w h e n ' t h e
s c h e d u l i n g a n d c o m m u n i c a t i o n
f u n c t i o n s a re r ea l i zed in
s o f t w a r e .

1. INTRODUCTION

We describe a multiprocessor architecture that incorporates
hardware support for many key operating system concepts. The
architecture is extensible and is oriented towards supporting
distributed computing. Such an architecture would be effective
as a server node in a larger distributed system. The architec-
ture is oriented towards microcomputers, especially Single
Board Computers (SBC's). The intent hers is to simplify the
operating system functions executed in each SBC by providing
hardware support for communication and scheduling.

The major functions of a conventional timesbared operating
system are:

- - memory management

- - scheduling

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, req,,ire~ a fee and/or specific permission.

© 1982 A C M 0 - 8 9 7 9 1 - 0 6 6 - 4 8 2 / 0 3 / 0 2 0 5 $ 0 0 . 7 5

- - internal and external communication.

In single CPU systems a significant amount of processing time
is consumed by these functions. This effectively lowers the pro-
cessing bandwidth of the processor. The communication and
scheduling problems are magnified even more in distributed
systems. This further results in a bad mismatch between the
communication capacity of the intereonnection network and the
processing capacities of the individual processors.

Figure 1 illustrates the inner loop of a typical multi-tasking
operating system. Whenever an activity blocks, either volun-
tarily or due to an interrupt, its state is saved. The appropriate
system function (for example a system call or interrupt han-
dling) is performed. Upon completion the system decides which
activity will next gain control of the CPU. The state of the
selected activity is restored and it is allowed to resume execu-
tion. In our architecture, we separate the communication and
scheduling functions from the data processing function as indi-
cated by the dashed line in the figure. Further, we provide
effective hardware support for the communication and schedul-
ing within a processing node, thus freeing the processor to han-
dle data processing.

The main feature of our architecture is that it realizes and sup-
ports the intimate coupling between communication and
scheduling. Hardware support for communication functions
have been suggested previously [RIC81], [DIT81], [SWA77].
This generally results in the speed up of low level communica-
tion functions. However, since these systems consider com-
munication independently of scheduling, the improvement in
overall system performance is limited.

REQUEST FOR SYSTEM SERVICE I
OR INTERRUPT

1 '
i ACT,V,TY'S i I SAVE STATE I

, " 1 J
/ I P.,OR, REQOESTEO " - - i

I PROGRAM / COM M UNICATION
EXECUTION I +

~' SCHEDULING
\ I SCHEDULE AN ACTIVITY I

! ,
I

RESUME EXECUTION

FIGURE I CORE OF A MULTITASKING SYSTEM

205

http://crossmark.crossref.org/dialog/?doi=10.1145%2F960120.801844&domain=pdf&date_stamp=1982-03-01

The architecture of our Processing Node (PN) is organized
around a mult i -microprocessor system based on shared memory
as shown in Figure 2. The processors execute programs
resident in their local memories . The shared memory is used
only for efficient sharing of data structures. This partitioning~is
done primarily to reduce interference on the system bus
[SMI77]. However, in certain cases, access to the shared
memory may still result in significant amount of interference.
The signaling, including synchronization, is accomplished
through special hardware queues. The Signaling and Schedul-
ing Processor (SSP) manages all the internal and external com-
munication. In addition, it also handles the scheduling and
binding of activities to Execut ion Units (EU). Section 3
describes the architecture in more detail.

2. MODEL

Our model of distr ibuted computat ion consists of "server" and
"client" processes. A server provides advert ised services to
client processes that connect to it. A common way of imple-
ment ing a server is to create on demand mult iple threads of
execution, where each thread corresponds to an activity that
handles a single client. A server process connects to the out-
side world via channels and communica tes to it by sending and
receiving messages over channels [AST81]. Messages are
either requests to perform some action or are responses con-
taining the results of an action. Requests are identified by a
token. This token is carried by the request as it hops from one
server to another in the process of complet ing itself. Eventu-
ally, a response message with the same token is received by the
originating client or server process.

A server process runs on a PN. A process comprises many
'activit ies ' . A message received by a PN is responded to by an
activity. Many activities may be in progress at a given time.

Request Tokens

The messages received by a node are identified by a token
number (t #) and a message type. These tokens are the similar
to activation tokens in other systems [DEN80, ARV81]. From
a communicat ion perspective one can view them as a means of
further mult iplexing channels into finer threads of communica-
tion that allow activities within one node to be dynamically
associated with activities in another node.

Channels

All input /ou tpu t to external processes is accomplished using
channels (c#) . Channels provide bi-directional communica t ion
paths between processes. Channels are setup before being used
and taken down when no longer required. Channels are owned
by a server process and are shared by "the activities compris ing
that process.

Activities

An activity is an instance of a procedure that interprets and acts
upon messages received by a node. An activity has its own
locus of control, a program to execute, and its own private data.
All activities within a process share a common address space.
Activit ies communica te and synchronize with the outside world
via channels using Send/Rece ive primit ives such as in [HOA78]
or [CHE79]. Within a node activities may share data and syn-
chronize with each other using semaphores [DIJ68]. The bind-
ing between a request token and an activity takes place when a
new request token arrives and is maintained until that request is
completely serviced. In order to process a request an activity
may have to generate requests to other servers. An activity
blocks whenever it issues a communica t ion request. An
activity is identified by its pointer (a #) which references an
activity object that specifies the text for the activity, its private
data and stack area and other state informat ion related to that
activity.

Activit ies execute on processors. The binding between an
activity and a processor is dynamic. An activity that is ready for
execution is assigned a processor on which it can execute so as
to balance the load on all processors. An activity gives up a
processor as soon as it blocks.

Activity States

The procedure for an activity consists of a finite number of
steps that are executed sequentially. These steps may be pure
data manipulat ion operations or may be synchronizat ion opera-
tions. Any synchronization operation causes the activity to
block until that synchronization is achieved. An activity, there-
fore, has three states. An activity may be in a "running" state.
There is only one such activity in a processor at any given time.
As soon as an activity issues a synchronizat ion primit ive it is
suspended and gets queued on a "wait" queue. The entry on
the wait queue is a pointer to a synchronization object that
specifies the activity request ing the synchronizat ion, the type of
synchronization and other related data. When the desired syn-
chronization is achieved, the activity is put on a "ready" queue.
The EU takes the first activity waiting on the ready queue,
loads its context and executes it.

SHARED MEMORY

SYSTEMI BUS

t_.--- MEM

I

SSP : SIGNALING AND SCHEDULING PROCESSOR
EU: EXECUTION UNIT
PC: PERIPHERAL CONTROLLER

FIGURE 2 BLOCK DIAGRAM OF A NODE

3. ARCHITECTURE AND IMPLEMENTATION

A PN is a bus based mult iprocessor as i l lustrated in Figure 2.
It comprises a shared memory, a number of Execut ion Units
(EU), a number of Peripheral Controllers (PC), and a Signaling
and Scheduling Processor (SSP). The execut ion units,
described later, are stripped down microcomputers . The peri-
pheral controllers are similar to execut ion units except that they
have special interfaces to I /O devices. The shared memory
architecture allows efficient sharing of data s tructures and
minimizes movemen t of data. In this architecture all commun-
ication is handled by the SSP.

Signaling and Scheduling Processor

The SSP provides for reliable t ransport of messages over chan-
nels that connect a PN to other processing nodes or devices.
Addit ionally, it also provides for all the signaling and data
movemen t between activities. As ment ioned earlier we have
separated execut ion of programs from the functions of schedul-
ing and communica t ion support. Thus, the execut ion units
only execute programs under the direction of the SSP. An EU
does not have to support a large local operating system. The
peripheral controllers execute device specific programs and pro-
vide the necessary hardware interfaces. The SSP, on the other

206

hand, does not actually execute user programs but only moves
signals around. So the requirements for the SSP are quite
different from those of the execution units. In fact, the critical
element of this architecture is the SSP and its interface to the
execution units and the peripheral controllers.

Figure 3 illustrates the architecture of the SSP and its interface
to the execution units and the peripheral controllers. The SSP
consists of two major units: the Receiver and the Sender. The
SSP signals the execution units through the "ready" queues.
The execution units signal the SSP through the "wait" queues.
The SSP also generates work for the peripheral controllers
through the "output" queues. All data from the outside world
comes through the peripheral contr.ol, t~.C~l~:,The PC's signal the
SSP via the "input" queues to r~q~ti~st action upon the input
data. All data movement between the execution units, the
peripheral controllers and the SSP is done through the shared
memory; only the signaling is done through the queues. A
similar arrangement of shared queues was employed for inter-
process communication in the SL10 packet switcl~ [CLI76].

The division of functionality between the receiver and the
sender in a SSP is as follows. The receiver implements the fol-
lowing functions:

- - it monitors all incoming messages, external and inter-
nal to SSP, and processes them one at a time according
to their urgency,

- - for a request token it selects an activity that will pro-
vide the desired service, and

- - it binds the activity to an EU by placing the activity
object pointer in the ready queue of the EU.

The sender performs similar functions and these are:

- - it monitors the wait queues of the EU and selects a
synchronization object according to the urgency,

- - it performs the function specified by the synchroniza-
tion object.

- - The function may be to send an external message or
an internal synchronization signal.

- - Upon completion of an external send operation, it puts
a signal on the internal message queue of the receiver
asking it to wake up the activity that had requested
that send.

One key feature of this architecture is that all signaling is sup-
ported through hardware queues. The importance of imple-
menting queues in hardware is two fold. First, the fifo queues
provide an elastic buffer between the execution units and the

• SSP. Second, they provide a solution to the mutual exclusion
problem which will result if the queues were to be implemented
as a shared data structure in the common memory. This is
because the reader and writer of a fifo have exclusive access to
their ends of the device, hence, the need for any arbitration to
access the fifo is eliminated. Furthermore, the usual hardware
support for implementing mutual exclusion in multiprocessors
are test-and-set operations. Although, test-and-set operations
support well the implementation of controlled access to shared
data, they are a poor mechanism for supporting asynchronous
communication between activities. The reason is that test-and-
set operations cannot affect scheduling. On the other hand, the
hardware fifo's in our architecture not only provide an effective
path to send signals but also affect the scheduling at the
reader's end.

Another significant feature of this architecture is that it
separates, in form of the SSP, the functions of communication
and scheduling. This allows growth in the number of execution
units and peripheral controllers, and reconfiguration without
changing the communication structure.

The Receiver is very much like a sophisticated interrupt con-
troller. Interrupts are asynchronous messages requesting
scheduling of some activities. In the Rece;eer we have
integrated that with other messages; hence all signals, hardware
or software generated, are handled the same way. The Sender
is also a scheduler except instead of scheduling execution units
it schedules messages to be sent out and reschedules internal
signals on the execution units through the Receiver.

The Receiver and the Sender are primarily data movers. How-
ever, the SSP needs only a limited instruction set. In order to
achieve maximum throughput in the system, the SSP has to
operate at a high enough rate such that no EU or peripheral
controller is blocked waiting on the SSP. Then, the perfor-
mance of the system is determined by the number of execution
units and the peripheral controllers in the system. This
presents an additional constraint on the number of execution
units and peripheral controllers that can be efficiently used with
a given implementation of the SSP. We intend to implement
the SSP using high speed bit-slice processors, such as the
AMD2900 series.

. ;

'READY"
UEUESi_ ~

I i
I i
I
I ¢lSSP
I 'l l "INPUT" QUEUES

t" INTERNAL SIGNAL

I I

"WAIT'QUEUES

I

"oOuU gg

F I G U R E 3 S IGNALING AND SCHEDULING PROCESSOR
ARCHITECTURE

207

Hardware Scheduling of Activities

All computation in a PN is driven by the arrival of messages on
channels much like the way computation proceeds in data flow
machines. On the arrival of a message SSP examines the
request token and schedules the desired activity to act upon the
message. An activity typically computes sequentially and may
then wish to communicate with some other activity. At that
point it blocks, gives up the EU and is rescheduled only when
the desired communication is accomplished. Whereas, it is an
activity that voluntarily controls giving up of the EU it is exe-
cuting on, it is the SSP that controls when an activity regains
control of an EU. When an activity blocks due to a send opera-
tion, it will remain blocked until the specified message is
transmitted to the other end of the channel and acknowledged
to this effect. This acknowledgement is automatic and is not
generated as a result of computation at the receiving end. For
a receive operation, an activity will resume immediately if there
is a message with the specified token already waiting to be read.
If not, the activity will remain suspended until such a message
arrives on the specified channel. The SSP essentially matches a
token received on a channel to an activity corresponding to that
token.

Execution Unit

Figure 4 illustrates the implementation of an EU. It is a
Motorola 68000 microprocessor based single board computer.
These boards have been enhanced to incorporate the 'Ready'
queues. The 'Ready' queues form a part of the hardware signal-
ing support. Each EU has memory that is locally addressable,
called the local memory. The rest of the address space is
shared by all the execution units and the S,.~P. The queues are
implemented as hardware FIFO's similar to those proposed by
Ward et.al. [WAR79]. A read corresponds to reading the front
of the queue. A write corresponds to adding to the end of the
queue. The ready queue also provides a Data Available signal
that is monitored by a Queue Monitor. The function of a queue
monitor is tO arbitrate among the queues according to urgency
and cause a switch in the CPU's thread of execution. We
implement this function with a conventional interrupt controller
such as INTEL 8259. It actually interrupts the MC68000 when
a queue, with a priority higher than the activity currently run-
ning, becomes non-empty. There is now only one interrupt
service routine that reads the interrupting queue to fetch an
activity object pointer, restore the state of that activity and
resume execution.

SYSTEM BUS

BUS
INTERFACE]

LOC*L L _F ;
ME.ORY I- -I

J [~ 7 ' : ' I
I 1" ' "] ~ 1 Z"~} ~'~'l~ I DATA AVAIL ABLE

: / ?" READY" QUEUES

I l i J

LOCAL BUS

4. AN EXAMPLE

We now illustrate the usefulness of this architecture with the
implementation of a simple file server. The intent is to show
how everything fits together by tracing the flow of data and sig-
nals through the various components of the system. We make
no claims about the completeness of the file server model.

The file server supports open, close, read, write, seek and
directory operations. Clients connect to the file server via
channels and work with files using a predefined message proto-
col. The file server comprises a Storage Manager (SM) and
Request Handlers (RH). Whenever a client connects to the file
server a new instance of the Request Handler is created to
serve requests from that client. A RH associated with a channel
remains in existence until the client disconnects that channel.
Another module, the Supervisor (SUP), authorizes the requests
from clients for setting up new channels. We assume the
existence of two peripheral controllers, a Disk Controller (DC)
and a Network Interface Unit (NIU). Figure 5(a) depicts these
modules and their relationship to the SSP.

Connect

We will consider the scenario for a request from a client to con-
nect to the file server. The connect message is received, under
control of the network interface unit, directly in a shared
memory buffer (See Figure 5(b)). The NIU signals the SSP of
the reception. The SSP recognizing that the message is a
request to set up a new channel wakes up the supervisor and
hands it a pointer to the received message for further process-
ing. The wakeup is caused by writing the pointer to SUP's con-
text on the ready queue of an appropriate EU. Upon resuming
execution, SUP decides whether to accept or refuse the request
for channel setup. Assuming that it decides to accept, SUP
creates a new activity, RH, to service all subsequent requests
from the client process at the other end of the channel. The
SUP composes a response message indicating acceptance of the
setup request and signals the SSP to send this message over a
specified channel. The S~P signals the NIU to transmit that
message.

File Read

Once a connection between the file server and a client process
is established, all subsequent requests on that channel are ser-
viced by the associated RH. Figure 5(b) shows the flow of sig-
nals that takes place in processing a file read request. Notice
that the received request is deposited directly into the shared
memory by the NIU and is never recopied again; only signals
moving through the hardware queues cause various activities to
act upon that request. Similarly, the data from the disk is read
into the shared memory once by the disk controller and is not
moved aj~ain until it is transmitted over a channel by the NIU.

SSP

FIGURE 5 (a). ELEMENTS OF THE FILE SERVER

FIGURE 4 EXECUTION UNIT

208

Nil./ SSP SUP RH
REdBvE]
SETUP
RE3QUEST

I
- - ~K uP ssP

---SEE?IT SEtup

' ~ I I ' T - - -- -- '11- - "CR--E-A" IE RES PON F¶

RES~'ONSE

RECEIVE
REND
REQUEST

WAKEUP RH

TRANSMIT
RESPONSE

I

SM DC

ASK SM FOR
I O,T; .I I
I i ~DCFOR I i DISK BLOCK I

• 1 4p|
I I I ~ ;o B~°cK

. I
I I READ DONE

I CREATE READ
RESPONSE

I '

FIGURE 5 (b) SCENARIOS FOR SETUP AND READ
REQUESTS. NOTICE ALL SIGNALING TAKES
PLACE THROUGH THE SSP.

5. PERFORMANCE

We expect several features of our architecture to contribute
towards enhancing the performance of the system. The shared
memory allows efficient data passing between units of the sys-
tem by reducing the need for copying data. The hardware fifo's
provide parallel paths for flow of signals between units. Each
unit operates independently at its rate. The design of an EU is
oriented towards the special function it is intended to perform.
Thus, an EU only runs activities given their context pointers,
the SSP sorts messages and schedules activities to operate on
messages, and a PC performs device specific functions. In
order to take advantage of all these features the application has
to be partitioned appropriately. This architecture certainly can-
not provide performance improvements for all classes of appli-
cations. We believe, however, that it lends itself well to a cer-
tain class of applications (such as transaction processing) that fit
the model described in section 2. We are currently building a
prototype system of four processors to investigate the system's
performance for transactional applications. Further analysis
needs to be done to examine the effects of interference in
accessing the system bus and the shared memory. The effect of
the SSP capacity on the performance and configuration of the
system also remains to be analyzed.

6. CONCLUSION

We have described a multiprocessor system that incorporates
into its architecture, at a very fundamental level, hardware sup-
port for communication and scheduling. The system treats syn-
chronization and communication uniformly. It takes advantage
of the intimate coupling between communication and schedul-
ing and provides a special processor to support it.

An interesting picture emerges upon tracing the flow of infor-
mation in Figure 3. The elements of the processing node are, in
fact, organized in form of a circular pipeline with an inlet and
an outlet to the outside world. Each component is coupled with
its neighboring component via a fifo that serves both as a com-
munication link and as an elastic buffer. Carefully exploited,
such an arrangement can allow information to flow efficiently
between components. Since all components in the system
function independently, a high degree of concurrency is possi-
ble during its operation.

7. ACKNOWLEDGEMENTS

The authors are grateful to C. S. Roberts for his encouragement
and suggestions during the course of this work.

8. REFERENCES

[ARV81] Arvind, and V. Kathail, "A Multiple Processor Data
Flow Machine that supports generalized procedures,*
8th Annual Symposium on Computer Architecture,
1981, pp. 291-302.

[AST81] A. Asthana, C. S. Roberts and G. K. Swanson,
"Design of a Communications Kernel for Loosely
Coupled Multiprocessors," Proc. 19th Annual Aller-
ton Conference on Communication, Control and
Computing, 1981.

[CHE79] D.R. Cheriton, et.al., "Thoth: A Portable Real-Time
Operating System," CACM 22, 2, Feb. 1979, pp.
105-115.

[DIJ68] E . J . Dijkstra, *Cooperating Sequential Processes,"
Programming Languages (F. Genuys, ed.),
Academic Press, New York, 1968.

[DEN80] J. B. Dennis, "Data Flow Super Computers," Com-
puter, 13, 12, Dec 1980, pp. 48-56.

[DIT81] D. R. Ditzel, "Reflections on the High-Level
Language Symbol Computer System," Computer,
14, 7, July 1981, pp. 55-67.

[HOA78] C. A. R. Hoare, "Communicating Sequential
Processes," CACM, 21, 8, Aug. 1978, pp. 666-677.

[RIC81] R. Rice, "The Chief Architect's Reflection on Sym-
bol IIR," Computer, 14, 7, July 1981, pp. 41-55.

[SMI77] A . J . Smith, 'Multiprocessor Memory Organization
and Memory Interference,* CACM, 20, 10, Oct.
1977.

[SWA77] R.J. Swan, S. H. Fuller and D. P. Siewiorek, "Cm* -
a modular Multiprocessor,* Proc. AFIPS Press,
Arlington, Va. 1977, pp. 637-644.

[WAR79] S. Ward, C. Terman, J. Sieber, and R. McLellan,
"NU: The LCS Advanced Node," MIT report, 1979.

[CLI76] W.W. Clipsham, F. E. Glave and M. L. Narraway,
"Datapac Network Overview,* Proc. ICCC, August
1976, pp. 131-136.

209

