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ABSTRACT 

W e  d e s c r i b e  a m u l t i p r o c e s s o r  s y s t e m  t h a t  
a t t e m p t s  to e n h a n c e  t h e  s y s t e m  p e r f o r -  
m a n c e  by  i n c o r p o r a t i n g  in to  its a r ch i t ec -  
t u r e  a n u m b e r  o f  key.  o p e r a t i n g  s y s t e m  
c o n c e p t s .  In  par t icu lar :  

- -  t h e  s c h e d u l i n g  a n d  s y n c h r o n i z a -  
t i on  o f  c o n c u r r e n t  ac t iv i t i e s  a r e  
bu i l t  in a t  t h e  h a r d w a r e  leve l ,  

- - t h e  i n t e r p r o c e s s  c o m m u n i c a t i o n  
f u n c t i o n s  a r e  p e r f o r m e d  in 
h a r d w a r e ,  a n d ,  

- -  a c o u p l i n g  b e t w e e n  t h e  s c h e d u l -  
i ng  a n d  c o m m u n i c a t i o n  f u n c t i o n s  
is p r o v i d e d  w h i c h  a l lows  ef f ic ien t  
i m p l e m e n t a t i o n  o f  para l le l  sys -  
t e m s  t h a t  is p r e c l u d e d  w h e n ' t h e  
s c h e d u l i n g  a n d  c o m m u n i c a t i o n  
f u n c t i o n s  a re  r ea l i zed  in 
s o f t w a r e .  

1. INTRODUCTION 

We describe a multiprocessor architecture that incorporates 
hardware support for many key operating system concepts. The 
architecture is extensible and is oriented towards supporting 
distributed computing. Such an architecture would be effective 
as a server node in a larger distributed system. The architec- 
ture is oriented towards microcomputers, especially Single 
Board Computers (SBC's). The intent hers is to simplify the 
operating system functions executed in each SBC by providing 
hardware support for communication and scheduling. 

The major functions of a conventional timesbared operating 
system are: 

- -  memory management 

- -  scheduling 
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- -  internal and external communication. 

In single CPU systems a significant amount  of processing time 
is consumed by these functions. This effectively lowers the pro- 
cessing bandwidth of the processor. The communication and 
scheduling problems are magnified even more in distributed 
systems. This further results in a bad mismatch between the 
communication capacity of the intereonnection network and the 
processing capacities of the individual processors. 

Figure 1 illustrates the inner loop of a typical multi-tasking 
operating system. Whenever an activity blocks, either volun- 
tarily or due to an interrupt, its state is saved. The appropriate 
system function (for example a system call or interrupt han- 
dling) is performed. Upon completion the system decides which 
activity will next gain control of the CPU. The state of the 
selected activity is restored and it is allowed to resume execu- 
tion. In our architecture, we separate the communication and 
scheduling functions from the data processing function as indi- 
cated by the dashed line in the figure. Further, we provide 
effective hardware support for the communication and schedul- 
ing within a processing node, thus freeing the processor to han- 
dle data processing. 

The main feature of our architecture is that it realizes and sup- 
ports the intimate coupling between communication and 
scheduling. Hardware support for communication functions 
have been suggested previously [RIC81], [DIT81], [SWA77]. 
This generally results in the speed up of low level communica- 
tion functions. However, since these systems consider com- 
munication independently of scheduling, the improvement in 
overall system performance is limited. 
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The architecture of our Processing Node (PN) is organized 
around a mult i -microprocessor  system based on shared memory  
as shown in Figure 2. The processors execute programs 
resident in their  local memories .  The shared memory  is used 
only for efficient sharing of data structures. This partitioning~is 
done primarily to reduce interference on the system bus 
[SMI77]. However,  in certain cases, access to the shared 
memory  may still result  in significant amount  of interference. 
The signaling, including synchronization,  is accomplished 
through special hardware queues. The Signaling and Schedul- 
ing Processor (SSP) manages all the internal  and external  com- 
munication.  In addition, it also handles the scheduling and 
binding of activities to Execut ion Units (EU).  Section 3 
describes the architecture in more detail. 

2. MODEL 

Our model of distr ibuted computat ion consists of "server" and 
"client" processes. A server provides advert ised services to 
client processes that connect  to it. A common way of imple- 
ment ing a server  is to create on demand mult iple threads of 
execution,  where each thread corresponds to an activity that  
handles a single client. A server  process connects  to the out- 
side world via channels  and communica tes  to it by sending and 
receiving messages over  channels  [AST81]. Messages are 
either requests to perform some action or are responses con- 
taining the results of an action. Requests  are identified by a 
token. This token is carried by the request  as it hops from one 
server  to another  in the process of complet ing itself. Eventu-  
ally, a response message with the same token is received by the 
originating client or server  process. 

A server  process runs on a PN. A process comprises many 
'activit ies ' .  A message received by a PN is responded to by an 
activity. Many activities may be in progress at a given time. 

Request Tokens 

The messages received by a node are identified by a token 
number  ( t # )  and a message type. These tokens  are the similar 
to activation tokens  in other systems [DEN80, ARV81].  From 
a communicat ion  perspective one can view them as a means of 
further  mult iplexing channels  into finer threads of communica-  
tion that  allow activities within one node to be dynamically 
associated with activities in another  node. 

Channels 

All input /ou tpu t  to external  processes is accomplished using 
channels  ( c# ) .  Channels  provide bi-directional communica t ion  
paths between processes. Channels  are setup before being used 
and taken down when no longer required. Channels  are owned 
by a server  process and are shared by "the activities compris ing 
that  process. 

Activities 

An activity is an instance of a procedure that  interprets and acts 
upon messages received by a node. An activity has its own 
locus of control,  a program to execute,  and its own private data. 
All activities within a process share a common  address space. 
Activit ies communica te  and synchronize with the outside world 
via channels  using Send/Rece ive  primit ives such as in [HOA78] 
or [CHE79]. Within a node activities may share data and syn- 
chronize with each other using semaphores  [DIJ68]. The bind- 
ing between a request  token and an activity takes place when a 
new request  token arrives and is maintained until that request  is 
completely serviced. In order to process a request  an activity 
may have to generate requests  to other servers. An activity 
blocks whenever  it issues a communica t ion  request. An 
activity is identified by its pointer  ( a # )  which references an 
activity object that  specifies the text  for the activity, its private 
data and stack area and other state informat ion related to that  
activity. 

Activit ies execute  on processors. The binding between an 
activity and a processor is dynamic. An activity that  is ready for 
execution is assigned a processor on which it can execute so as 
to balance the load on all processors. An activity gives up a 
processor as soon as it blocks. 

Activity States 

The procedure for an activity consists of a finite number  of 
steps that are executed sequentially. These steps may be pure 
data manipulat ion operations or may be synchronizat ion opera- 
tions. Any synchronization operation causes the activity to 
block until  that synchronization is achieved. An activity, there- 
fore, has three states. An activity may be in a "running" state. 
There is only one such activity in a processor at any given time. 
As soon as an activity issues a synchronizat ion primit ive it is 
suspended and gets queued on a "wait" queue. The entry on 
the wait queue is a pointer to a synchronization object that 
specifies the activity request ing the synchronizat ion,  the type of 
synchronization and other related data. When the desired syn- 
chronization is achieved,  the activity is put on a "ready" queue. 
The EU takes the first activity waiting on the ready queue,  
loads its context  and executes it. 
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FIGURE 2 BLOCK DIAGRAM OF A NODE 

3. ARCHITECTURE AND IMPLEMENTATION 

A PN is a bus based mult iprocessor  as i l lustrated in Figure 2. 
It comprises a shared memory,  a number  of Execut ion Units  
(EU),  a number  of Peripheral  Controllers  (PC),  and a Signaling 
and Scheduling Processor (SSP). The execut ion units,  
described later, are stripped down microcomputers .  The peri- 
pheral controllers are similar to execut ion units except that  they 
have special interfaces to I /O  devices. The shared memory  
architecture allows efficient sharing of data s tructures and 
minimizes  movemen t  of data. In this architecture all commun-  
ication is handled by the SSP. 

Signaling and Scheduling Processor 

The SSP provides for reliable t ransport  of messages over  chan- 
nels that connect  a PN to other processing nodes or devices. 
Addit ionally,  it also provides for all the signaling and data 
movemen t  between activities. As ment ioned earlier we have 
separated execut ion of programs from the functions of schedul- 
ing and communica t ion  support. Thus,  the execut ion units 
only execute  programs under  the direction of the SSP. An EU 
does not have to support  a large local operating system. The 
peripheral controllers  execute  device specific programs and pro- 
vide the necessary hardware interfaces. The SSP, on the other  
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hand, does not actually execute user programs but only moves 
signals around. So the requirements for the SSP are quite 
different from those of the execution units. In fact, the critical 
element of this architecture is the SSP and its interface to the 
execution units and the peripheral controllers. 

Figure 3 illustrates the architecture of the SSP and its interface 
to the execution units and the peripheral controllers. The SSP 
consists of two major units: the Receiver and the Sender. The 
SSP signals the execution units through the "ready" queues. 
The execution units signal the SSP through the "wait" queues. 
The SSP also generates work for the peripheral controllers 
through the "output" queues. All data from the outside world 
comes through the peripheral contr.ol, t~.C~l~:,The PC's signal the 
SSP via the "input" queues to r~q~ti~st action upon the input 
data. All data movement between the execution units, the 
peripheral controllers and the SSP is done through the shared 
memory; only the signaling is done through the queues. A 
similar arrangement of shared queues was employed for inter- 
process communication in the SL10 packet switcl~ [CLI76]. 

The division of functionality between the receiver and the 
sender in a SSP is as follows. The receiver implements the fol- 
lowing functions: 

- -  it monitors all incoming messages, external and inter- 
nal to SSP, and processes them one at a time according 
to their urgency, 

- -  for a request token it selects an activity that will pro- 
vide the desired service, and 

- -  it binds the activity to an EU by placing the activity 
object pointer in the ready queue of the EU. 

The sender performs similar functions and these are: 

- -  it monitors the wait queues of the EU and selects a 
synchronization object according to the urgency, 

- -  it performs the function specified by the synchroniza- 
tion object. 

- -  The function may be to send an external message or 
an internal synchronization signal. 

- -  Upon completion of an external send operation, it puts 
a signal on the internal message queue of the receiver 
asking it to wake up the activity that had requested 
that send. 

One key feature of this architecture is that all signaling is sup- 
ported through hardware queues. The importance of imple- 
menting queues in hardware is two fold. First, the fifo queues 
provide an elastic buffer between the execution units and the 

• SSP. Second, they provide a solution to the mutual exclusion 
problem which will result if the queues were to be implemented 
as a shared data structure in the common memory. This is 
because the reader and writer of a fifo have exclusive access to 
their ends of the device, hence, the need for any arbitration to 
access the fifo is eliminated. Furthermore, the usual hardware 
support for implementing mutual exclusion in multiprocessors 
are test-and-set operations. Although, test-and-set operations 
support well the implementation of controlled access to shared 
data, they are a poor mechanism for supporting asynchronous 
communication between activities. The reason is that test-and- 
set operations cannot affect scheduling. On the other hand, the 
hardware fifo's in our architecture not only provide an effective 
path to send signals but also affect the scheduling at the 
reader's end. 

Another significant feature of this architecture is that it 
separates, in form of the SSP, the functions of communication 
and scheduling. This allows growth in the number of execution 
units and peripheral controllers, and reconfiguration without 
changing the communication structure. 

The Receiver is very much like a sophisticated interrupt con- 
troller. Interrupts are asynchronous messages requesting 
scheduling of some activities. In the Rece;eer we have 
integrated that with other messages; hence all signals, hardware 
or software generated, are handled the same way. The Sender 
is also a scheduler except instead of scheduling execution units 
it schedules messages to be sent out and reschedules internal 
signals on the execution units through the Receiver. 

The Receiver and the Sender are primarily data movers. How- 
ever, the SSP needs only a limited instruction set. In order to 
achieve maximum throughput in the system, the SSP has to 
operate at a high enough rate such that no EU or peripheral 
controller is blocked waiting on the SSP. Then, the perfor- 
mance of the system is determined by the number of execution 
units and the peripheral controllers in the system. This 
presents an additional constraint on the number of execution 
units and peripheral controllers that can be efficiently used with 
a given implementation of the SSP. We intend to implement 
the SSP using high speed bit-slice processors, such as the 
AMD2900 series. 

. . . . . . . . .  ; . . . . .  
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Hardware Scheduling of Activities 

All computation in a PN is driven by the arrival of messages on 
channels much like the way computation proceeds in data flow 
machines. On the arrival of a message SSP examines the 
request token and schedules the desired activity to act upon the 
message. An activity typically computes sequentially and may 
then wish to communicate with some other activity. At that 
point it blocks, gives up the EU and is rescheduled only when 
the desired communication is accomplished. Whereas, it is an 
activity that voluntarily controls giving up of the EU it is exe- 
cuting on, it is the SSP that controls when an activity regains 
control of an EU. When an activity blocks due to a send opera- 
tion, it will remain blocked until the specified message is 
transmitted to the other end of the channel and acknowledged 
to this effect. This acknowledgement is automatic and is not 
generated as a result of computation at the receiving end. For 
a receive operation, an activity will resume immediately if there 
is a message with the specified token already waiting to be read. 
If not, the activity will remain suspended until such a message 
arrives on the specified channel. The SSP essentially matches a 
token received on a channel to an activity corresponding to that 
token. 

Execution Unit 

Figure 4 illustrates the implementation of an EU. It is a 
Motorola 68000 microprocessor based single board computer. 
These boards have been enhanced to incorporate the 'Ready' 
queues. The 'Ready' queues form a part of the hardware signal- 
ing support. Each EU has memory that is locally addressable, 
called the local memory. The rest of the address space is 
shared by all the execution units and the S,.~P. The queues are 
implemented as hardware FIFO's similar to those proposed by 
Ward et.al. [WAR79]. A read corresponds to reading the front 
of the queue. A write corresponds to adding to the end of the 
queue. The ready queue also provides a Data Available signal 
that is monitored by a Queue Monitor. The function of a queue 
monitor is tO arbitrate among the queues according to urgency 
and cause a switch in the CPU's thread of execution. We 
implement this function with a conventional interrupt controller 
such as INTEL 8259. It actually interrupts the MC68000 when 
a queue, with a priority higher than the activity currently run- 
ning, becomes non-empty. There is now only one interrupt 
service routine that reads the interrupting queue to fetch an 
activity object pointer, restore the state of that activity and 
resume execution. 
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4. AN EXAMPLE 

We now illustrate the usefulness of this architecture with the 
implementation of a simple file server. The intent is to show 
how everything fits together by tracing the flow of data and sig- 
nals through the various components of the system. We make 
no claims about the completeness of the file server model. 

The file server supports open, close, read, write, seek and 
directory operations. Clients connect to the file server via 
channels and work with files using a predefined message proto- 
col. The file server comprises a Storage Manager (SM) and 
Request Handlers (RH). Whenever a client connects to the file 
server a new instance of the Request Handler is created to 
serve requests from that client. A RH associated with a channel 
remains in existence until the client disconnects that channel. 
Another module, the Supervisor (SUP), authorizes the requests 
from clients for setting up new channels. We assume the 
existence of two peripheral controllers, a Disk Controller (DC) 
and a Network Interface Unit (NIU). Figure 5(a) depicts these 
modules and their relationship to the SSP. 

Connect 

We will consider the scenario for a request from a client to con- 
nect to the file server. The connect message is received, under 
control of the network interface unit, directly in a shared 
memory buffer (See Figure 5(b)). The NIU signals the SSP of 
the reception. The SSP recognizing that the message is a 
request to set up a new channel wakes up the supervisor and 
hands it a pointer to the received message for further process- 
ing. The wakeup is caused by writing the pointer to SUP's con- 
text on the ready queue of an appropriate EU. Upon resuming 
execution, SUP decides whether to accept or refuse the request 
for channel setup. Assuming that it decides to accept, SUP 
creates a new activity, RH, to service all subsequent requests 
from the client process at the other end of the channel. The 
SUP composes a response message indicating acceptance of the 
setup request and signals the SSP to send this message over a 
specified channel. The S~P signals the NIU to transmit that 
message. 

File Read 

Once a connection between the file server and a client process 
is established, all subsequent requests on that channel are ser- 
viced by the associated RH. Figure 5(b) shows the flow of sig- 
nals that takes place in processing a file read request. Notice 
that the received request is deposited directly into the shared 
memory by the NIU and is never recopied again; only signals 
moving through the hardware queues cause various activities to 
act upon that request. Similarly, the data from the disk is read 
into the shared memory once by the disk controller and is not 
moved aj~ain until it is transmitted over a channel by the NIU. 

SSP 

FIGURE 5 (a). ELEMENTS OF THE FILE SERVER 

FIGURE 4 EXECUTION UNIT 
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FIGURE 5 (b )  SCENARIOS FOR SETUP AND READ 
REQUESTS. NOTICE ALL SIGNALING TAKES 
PLACE THROUGH THE SSP. 

5. PERFORMANCE 

We expect several features of our architecture to contribute 
towards enhancing the performance of the system. The shared 
memory allows efficient data passing between units of the sys- 
tem by reducing the need for copying data. The hardware fifo's 
provide parallel paths for flow of signals between units. Each 
unit operates independently at its rate. The design of an EU is 
oriented towards the special function it is intended to perform. 
Thus, an EU only runs activities given their context pointers, 
the SSP sorts messages and schedules activities to operate on 
messages, and a PC performs device specific functions. In 
order to take advantage of all these features the application has 
to be partitioned appropriately. This architecture certainly can- 
not provide performance improvements for all classes of appli- 
cations. We believe, however, that it lends itself well to a cer- 
tain class of applications (such as transaction processing) that fit 
the model described in section 2. We are currently building a 
prototype system of four processors to investigate the system's 
performance for transactional applications. Further analysis 
needs to be done to examine the effects of interference in 
accessing the system bus and the shared memory. The effect of 
the SSP capacity on the performance and configuration of the 
system also remains to be analyzed. 

6. CONCLUSION 

We have described a multiprocessor system that incorporates 
into its architecture, at a very fundamental level, hardware sup- 
port for communication and scheduling. The system treats syn- 
chronization and communication uniformly. It takes advantage 
of the intimate coupling between communication and schedul- 
ing and provides a special processor to support it. 

An interesting picture emerges upon tracing the flow of infor- 
mation in Figure 3. The elements of the processing node are, in 
fact, organized in form of a circular pipeline with an inlet and 
an outlet to the outside world. Each component is coupled with 
its neighboring component via a fifo that serves both as a com- 
munication link and as an elastic buffer. Carefully exploited, 
such an arrangement can allow information to flow efficiently 
between components. Since all components in the system 
function independently, a high degree of concurrency is possi- 
ble during its operation. 
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