
COMMUNICATION SKILLS REQUIRED BY COMPUTER PROFESSIONALS

Norman Enger
Applied Management Systems

ABSTRACT

Computer professionals usually have technical backgrounds
that concentrate on information systems and computer science
courses. These courses primarily emphasize the use of various
technologies to implement automated systems. This emphasis often
neglects the teaching of interpersonal communication skills and
understanding of human factors as they relate to the design and
implementation of computer-based information systems. The computer
professional usually needs these neglected communication skills to
successfully implement integrated information systems.

INTRODUCTION

The success or failure of a major computer system development

effort often depends on the interpersonal communication skills of

the project's systems analysts and software engineers. If computer

professionals are aware of the human factors that inhibit effective

interpersonal communication and impede the implementation of a system,

they can often act to eliminate potential human barriers to the success-

ful development of an information system.

Unfortunately, few data processing managers, systems analysts,

or software engineers have received formal training in either inter-

personal oral and written communications skills or human factors con-

siderations related to information systems. Academic computer science

and information system curriculums

often stress technical system analysis

and software engineering skills and

minimize courses that cover human fac-

tors or behavioral sciences.

$00.75 © 1981 ACM 0-89791-04~3/81/0600/0080
See Page ii for Copyright Statement

80

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800051.801849&domain=pdf&date_stamp=1981-06-04

For example, the successful design and implementation of a major new

system often requires marketing skills and an understanding of human and

organizational psychologies. Often, data processing management and the

technical staff must "sell" a system to both policy management and user

personnel. They must overcome the human fears and resistance to change

that are common to most large organizations. Management and the systems

analysts become "marketeers" "selling" the benefits of the new system to

prospective users. They often must make oral presentations promoting the

development and implementation of a new system.

Many data processing managers have been promoted from the data pro-

cessing ranks. These managers usually have strong technical skills, but

limited formal managerial and business training or background. Difficul-

ties can be created when a data processing person is promoted into a

managerial position because a talented systems analyst or software en-

gineer does not necessarily make an effective manager.

A recent book by J. Daniel Couger and Robert Zawacki, Motivating and

Managing Computer Personnel, indicates that computer professionals have a

lower social need and higher growth need than other professionals. The

need for social interaction with co-workers or user personnel is low.

Many computer professionals are "loners", who obtain great satisfaction

from technical achievements and have limited interest in socializing or

communicating with co-workers. This profile of computer professionals has

implications for the skills required to develop information systems.

81

Organizations may have t o develop special seminars and training classe~

to strengthen the oral and written skills of computer professionals. Data

processing management may have to actively promote more effective ¢ommunica'

tion between computer professionals on development teams and between the

teams and users.

REQUIREMENTS ANALYSIS

During the Requirements Analysis phase of system development (See

Figure l: Structured Systems Life Cycle Phases), the functions to be

performed by the new system are defined. The systems analyst works

closely with the user organization to identify the user requirements that

must be satisfied by the new system. The analyst identifies the infor-

mation that is needed, the sources of the information, the destinations of

the information, the use of the information, the required frequency of

output reporting, and the response time requirements. The analyst will

use this definition of requirements of the "problem" to be solved to deve-

lop the "solution" in the Logical Design phase. The user requirements

become the framework for the future development of the system.

Interviewing users is usually the systems analyst's primary method of

data gathering to identify user requirements. The analyst schedules inter-

views with the user organization to discuss the functions to be peformed

by the new system. Unfortunately, the importance of interviewing skills

is often not recognized by data processing organizations. The systems

82

analyst typically receives extensive training in technical subjects but

little training in interviewing techniques or technical writing. Inter-

personal relations and communications skills which are vital to effective

interviewing are neglected.

Two types of interviews commonly used by analysts are structured

interviews and unstructured interviews. A structured interview uses a set

of predefined questions to guide the interview. It is normally used when

several people with similar or related positions are to be interviewed,

either individually or in small groups in an attempt to arrive at a set of

conclusions. An unstructured interview is less formal and more flexible

in structure. The format and direction of the interview session will vary

greatly with the personality of each interviewer and interviewee. However,

the analyst will still have established objectives for the interview prior

to the meeting with the user.

Too often, if three different analysts are sent to interview the same

user group and define user requirements, they will define three different

sets of user requirements. The three sets of requirements will overlap

but they would not be identical. A fourth analyst might interview the

user group and find additional requirements not contained in the first

three definitions. This variation in user requirements definition by the

analysts usually reflects flaws in the interviewing methodology. If the

"problem" to be solved has not been properly defined, then the "solution"

will probably be unsatisfactory to the user organization.

B3

Interviews must be carefully planned and the interview results should

be checked for accuracy and completeness. Some general rules for inter-

viewing are:

• Understand the business functions of the user organization being
interviewed to better relate to the needs of the organization.

• Study the job functions of the person to be interviewed to under-
stand his or her work responsibilities.

• Set objectives for the interview to guide the interview and
measure the success of the interview.

• Have an appearance and bearing appropriate to a computer
professional.

• Try to be a listener--do not dominate the conversation.

• Prepare questions to stimulate the thought process of the person
being interviewed.

• Seek to make the person being interviewed relax, to develop a
friendly context for the interview.

• Discuss user responses to remove ambiguity or contradiction and
where appropriate, promote a more detailed discussion of an answer

• Set a tentative time limit for the duration of the interview.

• Document the interview results during and immediately after the
interview while recollection of the interview is still vivid.

• Schedule a second meeting with the same person if additional
information is needed.

• Use the interview as a vehicle to build a working relationship
with the user organization.

Questionnaires can also be used for gathering facts where the analyst

must contact large numbers of individuals and obtain answers to a variety

84

of questions. These questionnaires must be carefully worded to elicit

meaningful responses that will contribute to the study. The questions

must be tested for both clarity and objectivity.

The systems analyst must be able to prepare interview questions and

questionnaires, conduct interviews, establish rapport with interviewees,

and accurately document the information obtained from the interviews.

Gathering data by means of interviews is a primary method of collecting

data to define user requirements. The analyst can use the interview to

win user cooperation and support for the information system to be devel-

oped by involving the user in defining specifications for the new system.

LOGICAL DESIGN

During the Logical Design phase, the "solution" to the "problem"

identified in the requirements analysis phase is developed. This phase

requires that the user requirements be transformed into a logical model of

the new system environment.

A major communication challenge is the translation of user require-

ments for a major information system into logical design specifications.

This remains one of the weakest steps in the entire system development

life cycle. There is substantial risk that this translation will contain

flaws that will, if they are not corrected, cause user dissatisfaction

with the operational system. The analyst may misinterpret a user state-

ment or fail to verify a user requirement. Any communication problems be-

tween the analyst and user will increase the probability of a poor translation.

85

The systems analyst must be able to communicate effectively with th

user during this logical design phase. If the user is deeply involved

during the design phase, he can often make suggestions which are useful

the analyst. These suggestions may lead to methods for performing func-

tions which the analyst may not be aware can be changed. Through user

interaction, the analyst can quickly identify the functions in the user

organization that have a high resistance to change. He can then, with

full awareness of the attitudes of the user organization, proceed with t

development of the new system.

When considering how one should go about designing a system or data

processing program with active user involvement and whether there is som

orderly process by which the design of a system can be organized, the to

down design method emerges as the currently popular approach.

The structured top-down approach stresses extensive interaction dur

logical design between the systems analyst and the user organization.

Although referred to by such other names as hierarchical design or sys-

tematic design, most of the variations of top-down design have the same

objective: to identify the major functions to be accomplished and then

proceed to the identification of the lesser functions that derive from tl

major ones. This functional decomposition results in hierarchy charts o~

the system that should be discussed, in detail, with the user organiza-

tion. As the top-down design process proceeds from the identification oJ

86

the major functions and their interfaces to the breaking down of these

functions into successively smaller ones, each sublevel becomes a self-

contained component whose operation is subordinate to the next higher

level.

Top-down design facilitates the clarity of communication between data

processing and user organizations by producing graphic presentations of

the new system that can be understood by and discussed with users. It

results in the construction of a modular, hierarchical system and it is

the isolation-by-function feature that can be used to great advantage to

decompose, with the user, the logical structure of the system. Due to

this functional modularity, the scope of needed changes can readily be

ascertained, and the changes made and tested with a minimum of effort.

Perhaps the most important element contributing to the success of

top-down design is its formal approach to the specification of each module's

inputs, functions, and outputs. A precise definition of user requirements

is essential to the development of a correct system or program. Too fre-

quently, the contents of specification packages are vague, inaccurate, and

incomplete, resulting in the developed system possessing these same charac-

teristics. It is for this reason that several serious attempts to for-

malize the steps of top-down design have been made.

If a structured approach is being followed by the analyst, he can use

data flow diagrams, a data dictionary, data structure diagrams, and trans-

form descriptions to define the logical description of the system. Deci-

87

sion tables, decision trees, Warnier Bracket Diagrams, Nassi Schneiderman

Charts, or Chapin Charts could be used to illustrate the logical processes

and data transformations in the new system. Structured English or pseudo-

code might be used by the systems analyst to describe policies and proce-

dures in a precise form of English using the logical structures of struc-

tured coding.

One of the more widely known examples of a method to illustrate a

system or software hierarchy is IBM's HIPO. HIPO is an acronym for

Hierarchy plus Input, Process, and Output. It is one of several valid

methods of graphically describing a software system or program as an

arrangement of functions to be performed. HIPO provides both documen-

tation and process visibility through its diagrams.

Some of the major benefits claimed by some users of HIPO in the

design phase are:

• A description of system requirements represented in HIPO form is
more easily understood by users than standard written specifications

• The capability of specifying specifications through HIPO allows
a user organization to graphically describe a system and its
functions.

• Users become acquainted with hierarchical design and the concept
of "function" during specification development. This familiarity
helps them to follow design walk-throughs and to understand
their system more readily.

The hierarchy portion of HIPO involves a structure which is much like

an inverted tree. This tree-like structure is comprised of functions,

88

actions, and objects. Each function is represented as a box and can be

described within that box by an action verb and by an object (the data

which is affected). Each branch of the tree will have its subordinate

branches; therefore, any element of the tree can easily be traced back to

its root. The hierarchy of functions is created by a technique known as

functional decomposition, wherein a function is exploded into increasingly

lower levels of detail until all subfunctions have been defined. The top

box of the hierarchy describes the entire system or program as a single

function, and each lower level function is a subset of the function above.

The top level functions contain the control logic which determines when

and in what order lower level functions are to be invoked, and the lower

level functions are where the coding statements are predominantly found.

When the thoughts and ideas of the user and designer are not properly

recorded, the results are inefficient use of time, implementation of am-

biguous functions, and the creation of a system which does not adhere to

its intended purpose. HIPO provides a means of more precisely defining

user requirements and improving communication between the users and the

data processing staff.

The systems analyst should be willing and able to explain or demon-

strate elements of the new system to the user organization. To improve

communication, the analyst will often prepare, for the user, examples of

system output displays and reports. The user can review and discuss these

89

tangible system outputs with the systems analyst rather than just narra-

tive descriptions. The software engineers might also develop a prototy[

of the final system for the user organization. The prototype might have

proposed visual and hard copy outputs derived from a test data base. O~

some projects, the prototype could be gradually refined by the systems

analysts and software engineers into the final system.

STRUCTURED PHYSICAL DESIGN AND TOP-DOWN IMPLEMENTATION

During the Structured Physical Design phase, the logical design is

used to produce detailed subsystem, data base, and program specificatiol

The logical design is matched to the physical software and hardware enw

ronment in which the system must operate. The communications challenge

to translate the logical design specifications into physical design req,

ments. At this point, also, there is substantial risk that the logical

physical design translation can be flawed.

Following the structured approach, hierarchy (HIPO) or structure

charts would be used to delineate the software modules of the system.

These charts show each module as a part of a hierarchy and identify inw

cation, intermodular communication, and the location of major loops and

decisions. An unresolved communications problem in the Physical Design

phase is the role of the systems analyst relative to the software engin,

This issue, as to which of the two professional groups performs the phy

ical software design work of this phase, has become a controversial iss~

gO

in the industry. Whichever group performs this translation function,

there is a continuing need to communicate with the user organization and

clearly define the physical software design requirements to the imple-

menters of the system.

During the Top-Down Implementation phase, the software modules de-

fined in the physical design phase are coded and integrated into the

framework of the ultimate system. Structured techniques have proven to be

very effective in this phase of the system life cycle. The analysts and

programmers, following the structured life cycle, would use such tech-

niques as top down implementation, structured programming, chief pro-

granmner teams, and structured walk throughs to code, program, and inte-

grate the software.

Communication requirements during top-down implementation relates to

team organization and structured walk-throughs. Working with a software

engineering team requires that the Chief Programmer, Team Leader, or Pro-

ject Leader and the staff have effective oral and written communication.

The technique of top-down expansion of functional specifications must

be combined with the computer professional's perceptive analysis of the

task to be programmed. Testing each level of a program before engaging in

further programming will assure that the resultant program achieves the

intent of the original specifications. Therefore, design and interface

errors will not belatedly be discovered.

91

Top-down program development, starts with the functional requirements

of the program and develops the design downward with the lowest level

modules being designed and coded last. The traditional development

phases--design, code, unit test, and integration--are no longer sequential

processes for the entire project but are concurrent and overlapped through-

out the development cycle. A program unit is coded only after the module

which invokes it has been completed. After an input routine is coded, it

is then tested and integrated into the existing code, which, at the same

time, design and coding may be in process on another routine. This

approach enables the unit testing of an element of the system as soon as

it is completed and can be of great value in isolating errors early in the

development process and in reducing the time spent in correction.

Structured walk-throughs can be used to improve the exchange of infor-

mation among team members at various phases of a project. These are formal

reviews, held at specific points throughout the development process. They

are formal, with an agenda, and all participants are walked through the

problem, program, or project. In the Top-Down Implementation phase, the

purpose of a walk-through could be to insure correctness of a programs or

module. A walk-through will be set up to determine the completion of a

milestone event wherever possible. When complex subjects are to be ad-

dressed, all participants should be provided working papers in advance.

All attendees should be aware of what is expected of them and what is to

be accomplished. The purpose of a structured walk-through is to determine

if the design or coding is correct.

92

If necessary, a separate meeting should be scheduled to discuss op-

tions and alternatives directed toward improving a system or code. The

person conducting the walk-through has the responsibility to keep the

walk-through direct and effective. When alternative approaches that could

improve the design or coding are identified, it is the responsibility of

the Chief Programmer or the Team Leader to insure that a separate meeting

is scheduled to investigate these alternative approaches. The backup for

a project may be established by having backup personnel attend these

walk-throughs.

Attendance at structured walk-throughs will vary depending upon the

specific subject being discussed. Users may have to attend meetings dis-

cussing the system's functional capabilities. Management attendance may

be required when information on subjects outside the jurisdiction of the

team is required, or when the status of the project is to be reviewed. On

projects that have been set up for structured testing, the test supervisor

should attend appropriate walk-throughs.

The programmers on a software development team may have to communicate

and interact with a Librarian who manages the written and machine documenta-

tion of a software development effort. The Librarian maintains a support

library for a team effort. The programmer will usually enter modifica-

tions to programs and will initiate compilations after the first one.

Unit testing will always be directed, and normally accomplished by the

programmer.

93

The L i b r a r i a n c a t a l o g s a l l formal changes to the c o n t e n t s o f the

l i b r a r y . No v e r s i o n o f a program or document can be e n t e r e d or de le teq

from the l i b r a r y w i t h o u t the L i b r a r i a n . U s u a l l y an i n i t i a l e n t r y o f p~

gram and changes i s made by the L i b r a r i a n . Programs f o r sys tem t e s t i n~

and i n t e g r a t i o n a r e p r o v i d e d from the l i b r a r y . P r i o r t o the performan,

o f a t e s t , the L i b r a r i a n s e l e c t s the program r e q u e s t e d from the l ib ra r~

and t r a n s f e r s the r e s p o n s i b i l i t y f o r i t to the Tes t D i r e c t o r . When a I

i s comple t ed , the L i b r a r i a n w i l l , as d i r e c t e d by the Tes t D i r e c t o r , idq

t i f y a n d / o r s t o r e , in the a p p r o p r i a t e form, the v e r s i o n s o f the prograt

t e s t e d .

A c a t a l o g or index o f the l i b r a r y c o n t e n t s i s m a i n t a i n e d by the

L i b r a r i a n . Each document o r program e n t e r e d o r d e l e t e d w i l l be recordq

to i n c l u d e the d a t e , a c t i o n , and i f a p p r o p r i a t e , the a u t h o r i t y o f the

a c t i o n . The L i b r a r i a n w i l l u s u a l l y i n i t i a t e the f i r s t c o m p i l a t i o n o f

program. Subsequen t l y the L i b r a r i a n w i l l , when r e q u e s t e d , i n i t i a t e ful

t h e r c o m p i l a t i o n s and t e s t programs. These may be done by the L i b r a r i ~

on ly i f s u f f i c i e n t i n s t r u c t i o n and t e s t d a t a a r e a v a i l a b l e .

In summary, d u r i n g the P h y s i c a l Design and Top-Down Implemen ta t io t

phase s , t h e r e i s a need f o r the sys tems a n a l y s t s and s o f t w a r e engineer~

communicate between t h e m s e l v e s , w i th u s e r o r g a n i z a t i o n s , and as member~

deve lopment teams. Top-Down I m p l e m e n t a t i o n encourages team developmen!

efforts and structured walk-throughs which in turn require effective

94

inter-personal cormnunication. Chief Prograrmuer Teams have Librarians who

are responsible for the external (written) and internal (machine) documen-

tation of a software project.

ACCEPTANCE TEST GENERATION PHASE, QUALITY ASSURANCE PHASE, AND SYSTEM
OPERATION

The s t r u c t u r e d systems l i f e cyc le p rov ides for an Acceptance Tes t

G e n e r a t i o n Phase and a Q u a l i t y Assurance Phase . During the Acceptance

Tes t G e n e r a t i o n Phase , t e s t s p e c i f i c a t i o n s and t e s t cases a re deve loped .

During the Q u a l i t y Assurance Phase , a ccep t ance t e s t s a re performed u s i n g

the t e s t cases and u s e r s a re t r a i n e d to ope r a t e the new system. S t r u c -

t u red t e s t i n g t e c h n i q u e s would be used d u r i n g the q u a l i t y a s s u r a n c e t e s t -

ing of the system and, t h e r e f o r e , each l e v e l of the system w i l l be t e s t e d

to assure that the new system satisfies the acceptance test specifications

and that design and interface errors are not discovered after the system

becomes operational.

When a new system is installed, there is often a major change in the

environment of the organization. The employees may have different job

functions or be separated from co-workers. Work formerly performed by the

employee may now be automatically produced by the computer system. This

may be a report that was formally manually prepared but that now is com-

puter produced. This in turn may cause a feeling of loss of importance in

the worker. The worker may discover that his contribution to the end

95

product of the system is no longer very visible and they therefore may

have less interest in the end product. The unhappy employee may express

his or her hostility by deliberately reducing work efficiency or making

system errors.

Job security fears may also arise. The workers may fear that the ne~

system will displace them. If the workers have not been involved in the

development of the new system, they may regard it as an undesirable ex-

ternal force. Fears may be overcome if the analyst involves end users in

the development of the system, asks them to contribute ideas during syste~

development, and provides them with adequate pre-operation training.

Employees may be reluctant to learn new computer related jobs and

overtly upset the system. This reluctance may stem from feelings of

personal inadequacy. They may fear complexities in their new job role.

The analyst should try to overcome early signs of resistance before it

hardens. He should try to develop good working relationships with the

users and stress the benefits of the new system. At some point, trust

between the user and the analyst should be established.

Even if the user and data processing staff interact well during the

development and design of the system, they may fail to consider the cleri-

cal staff that will operate the system. A system which is designed with-

out consideration for the clerical staff that will use it, is likely to

result in a system that will be difficult for them to use. The effect new

96

procedures will have on the clerical staff must be considered. Work must

remain challenging to the clerks and they must feel they are constructively

contributing to the system or otherwise boredom will set in, there will be

many careless errors, or they many sabotage the system. Often, the effect

of a new system on office attitudes is not considered.

The testing of computer programs and systems prior to implementation

should be a formal process in which the input is well defined and the

expected results are known, Effective testing also has the characteristic

of enabling the quick isolation of errors when they are encountered and

should be an orderly and well planned process. The Test Plan should indi-

cate who will perform the test, the environment of the test, the input

descriptions, the output requirements, and the test process. These items

should be addressed in sufficient detail to provide understanding.

Testing discipline should be used to insure that there is an orderly,

step by step process of testing. This involves the identification of a

supervisor, the establishment of a specific order of test, and the method

of keeping track of progress. Using top-down development, programs and/or

modules will be created in the sequence in which they are to operate. A

level of detail of the Test Plan should be set so that an orderly sequen-

tial test can be defined and tracked through the testing process. The

Chief Programmer, Team Leader, or Project Leader will construct this chart.

A program/module to be tested may range from a single module of one page

of coding to a major part of a full system of several thousand lines of

97

code. The System Operation phase begins after the system has been fully

tested, user personnel have been trained, and conversion has been success-

fully completed.

CONCLUSION

The computer professional needs various communication skills to pro-

perly implement integrated information systems. These skills are often

overlooked in conventional educational programs for computer professionals.

During the Requirements Analysis effort, interviewing techniques must

be improved to better define user needs. Rapport with the user organiza-

tion must also be established to develop a cooperative working relationship~

During the Logical Design phase, a communications problem exists in trying

to effectively translate the user requirements into logical design func-

tions. Top-down design promotes communication by using graphic displays

of the hierarchy of a system. During Physical Design, problems may exist

between the systems analysts and software engineers who often fail to

agree upon the boundaries of their work domains. The development of soft-

ware during Top-Down Implementation requires effective inter-personal

communication for team operation and structured walk-throughs.

Finally, during Acceptance Test Generation, Quality Assurance, and

System Operation, the analyst must calm user fears of the new system and

overcome any resistance to change. Usually, the computer professional

requires numerous inter-personal communication skills during the develop-

ment of major integrated information systems.

98

Norman En~er~ Ph.D.s C.D.P.

Norman Enger is the President of Applied Management Systems, Inc.,

an international consulting company serving a variety of industrial,

institutional, government, and scientific clients. The company's

activities have included the design and installation of large tele-

communications networks, the design and implementation of numerous com-

puter applications, the design of data base systems, the education of

data processing personnel and the development of complex simulation

models. Prior to founding Applied Management Systems, Inc., in 1970, he

was a Director of Systems for the Control Data Corporation.

He is a frequent speaker before the ACM, DPMA, and other profes-

sional groups on the design and implementation of computer based

information systems. His latest book, Computer Security: A Management

Audit Approach was published by the American Management Association in

1980. He is the author of four other books and a large number of pro-

fessional articles.

Since 1967, he has been an Adjunct Professor of Information and

Management Sciences, School of Government and Business Administration,

The American University. In 1979, he was presented with the Distinguished

Adjunct Faculty Award by the American University's Center For Technology

and Administration.

A Certified EDP Auditor (CDPA) and a Certified Data Processor (CDP),

he is a member of the Association for Computing Machinery (ACM) and the

Institute for Electrical and Electronics Engineers (IEEE).

99

