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ABSTRACT 

A comparison method for diagnosis of multipro- 
cessor systems is introduced. Given a system of n 
units modeled by a linear graph, problems of finding 
the minimum number of comparison edges required for 
fault detection and fault location are solved by the 
use of a covering algorithm. The bounds for the 
number of comparison edges, the number of necessary 
comparisons and test cycles in fault detection and 
fault location in systems with n units are deter- 
mined and an algorithm for an optimal comparison 
connection assignment is given. Simplicity and 
ease of implementation make the described method 
applicable for fault detection and location in 
multiprocessor systems. 

Index terms: Comparison, covering, l-diagnosable, 
diagnosis, fault detection, fault 
location, multiprocessor system, 
test cycle 

I. INTRODUCTION 

With the ever-growing complexity of multipro- 
cessor systems, maintenance costs are increasing 
rapidly and there is big demand for fast, reliable 
diagnostic methods for fault detection and fault 
location in a system. Reliability and fault tol- 
erance have become one of the primary goals in 
system design. 

Substantial progress in LSI and VLSI technology 
has made single chip processors a reality and 
multi-microprocessor systems have since attracted 
many researchers. Among several performance 
objectives in those systems, diagnostic procedures 
and fault tolerant system capabilities seem to be 
of great importance. Several papers have attacked 
the problem of the diagnosis of a system consisting 
of n units and the classical approach to this 
problem required that some units be able to test 

1 5 6 7 
other units Our philosophy is based on a 
comparison method. We assume that in the system 
of n units, the comparison of the behavior of some 
or every pair of units is possible so that any 
discrepancy during the comparison indicates some 
failure. It seems that this may be a simple and 
effective diagnosis method for complex systems such 
as microprocessor chips. A good example of the 
applied comparison technique is Bell System Elec- 
tronic Switching Systems (EES) where a pair of 

proecessors is compared on-line. 8 

Department of Electrical Engineering 
The University of Texas at Austin 

Austin, Texas 78712 

In this paper the cases of one and the maximum of 
n-2 faults (faulty units) are considered. In 
addition, the parameters of the comparison connection 
assignment are examined as well. We define lower 
and upper bounds for comparison connection assign- 
ment parameters in terms of the number of comparison 
edges, the number of comparisons and the number of 
test cycles. Comparisons may be made between pairs 
of units, e.g. by running the same program, 
preferably diagnostic, on those units and comparing 
the intermediate and final results. Comparisons 
may or may not require the use of additional hard- 
ware. The comparison conneciton in EES has a special 
unit called a matcher which is used to detect any 

8 
mismatch between a pair of processors. An ultra- 
reliable processor or any processor of the system 
could substitute a matcher provided that the 
required comparison connections exist. In this 
paper we will not involve ourselves in the practical 
implementation of the comparison method. Our 
objective is to show how to design systems which 
would require a minimum of additional hardware 
(comparison edges), a minimum number of comparisons 
or a minimum number of test cycles in order to detect 
or locate a faulty unit. We will examine systems 
with fixed and arbitrary structures. Moreover, it 
is important to remember that the diagnostic process 
consists of two activities: I) fault detection 
where the objective is only to find out whether a 
fault has occurred in the system and 2) fault 
location, where identification of the faulty unit is 
required. Both cases are investigated and a design 
algorithm for the comparison connection assignment 
is also given. 

II. THE MODEL 

A multiprocessor system is modeled by a graph 
G(V,E,C) where V is a set of n vertices and E and C 
are sets of edges. Each element of the set V 
corresponds to a single computer, processor or unit 
in the system and each element of the set E repre- 
sents the communication connection between a pair 
of units (processors, computers). Set C corresponds 
to the comparison connections and it may or may not 
be a subset of E. The comparison connection 
(comparison edge), represented by an edge, denotes 
that it is possible to compare the behavior of two 
units which are the endpoints of the considered 
edge. It also means that there is some hardware 
and/or software mechanism making the comparison 
feasible. Examples of the implementation of those 

8 
mechanisms may be found in Bell Systems EES's. 
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The main advantage of this model is its simplicity 
in detecting or locating a faulty unit because the 
comparison of pairs of elements seems to be easier 
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than testing one unit by another or others. 

We shall consider the cases with one and the 
maximum allowable number of faulty units in the 
multiprocessor system. In the analysis, each case 
will be treated separately. In our study, the term 
"fault" is equivalent to "faulty unit". A system 
under t-fault assumption refers to the system in 
which up to t faults are permitted simultaneously. 
When two units are compared, their states and the 
outcome of the comparison are shown in Fig. i. The 
outcome "pass" indicates that both units are fault- 
free, while "fail" indicates that at least one of 
the units is faulty. In fault detection further 
comparisons with respect to the compared pairs of 
units are obviously redundant, but in the case of 
fault location, the units must be compared with 
some other units in order to identify faulty unit(s). 
Generally, we would prefer to compare units that 
are already connected by communication links, 
therefore C~E is desirable. 

Unit i Unit 2 

fault free 
fault free 
faulty 
faulty 

b 

fault free 
faulty 
fault free 
faulty 

Comparison Outcome 

0 (pass) 
i (fail) 
i (fail) 
i (fail) 

Fig. i. States and the outcome of a comparison 
of a pair of units 

Let us define a fault table F as p x q matrix 
where p is the number of faulty states with up to 
t faults and q is equal to the number of comparison 

4 
edges. (A similar table was defined by Kime where 
p represented the number of faults and q denoted 
the number of pass-fail tests.) 

f.. = i, j-th edge is adjacent to a vertex 
13 

or vertices in i-th faulty state, and 
fij = 0, otherwise. 

The comparison table H is also p x q matrix but 
it is determined during the diagnostic process and 
h.. = i iff j-th comparison fails and is adjacent 
13 

to vertices in i-th faulty state, and hij = 0 

otherwise. Upon completion of the comparison 
process, the row of matrix H that is identical (if 
any) to a row of matrix F identifies the faulty 
state uniquely, provided that all rows of matrix F 
were unique. 

We say that the system is k-diagnosable under 
the given comparison connection assignment if there 
is at least one set of k identical rows in matrix F. 
Obviously, in a l-diagnosable system every row is 
different, hence every faulty state may be uniquely 
determined. 

t 
The number of faultx states s = Z C., 

i=l nl 

n! 
where C. and t is the maximum number 

n i (n-i)!i! 
of faulty units that may simultaneously occur in 
the system. 

Since the number grows exponentially, it seems 
reasonable to consider that at most one faulty unit 
may be found at a time since the probability of 
simultaneous failure of more than one processor 
(unit) between successive diagnosis intervals seems 
to be minimal. Then k-diagnosability is equivalent 
to t-diagnosability with t = i. 

An example of a complete graph with four vertices 
and six edges is given in Fig. 2 and its corresponding 
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fault table in Fig. 3. s = E = i0. In order 

i=l 4Ci 

to make the graph l-diagnosable, at least five com- 
parison connections are necessary under two fault 
assumption. With four edges the graph becomes 
2-diagnosable (e.g. 1,3 and 2,4 are identical if 
the edges are a,b,c,d) and with three edges, the 
graph is 3-diagnosable. If we reduce the number of 
faults at a time to a single fault only, then three 
comparison edges suffice to make the system l- 
diagnosable. As we will prove later, it is possible 
to assume some fault of a maximum n-2 units in a 
system with n elements and have l-diagnosability. 
Therefore, in the given example a maximum of two 
faults has been assumed. 

It is assumed that there is an executive system 
which accomodates the information on comparisons 
and thus derives the state of the whole system: 
whether it be faulty or nonfaulty, and/or locates 
the faulty unit(s). A graph G(V,E) is a connected 
multigraph, i.e. there is a path between any pair 
of vertices and there may be one or more edges 
between any given pair of vertices. 

) 

) 
Fig. 2. A complete graph on four vertices 
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fau]ty stat~--.~ 

1 
2 
3 
4 

1,2 
1,3 
1,4 
2,3 
2,4 
3,4 

Fig. 3. 

a b c d e f 

1 1 0 0 i 0 
0 i i 0 0 1 
0 0 i i i 0 
I 0 0 1 0 1 
I i i 0 i i 
1 1 i i i 0 
1 1 0 I i i 
0 1 1 1 1 1 
1 1 1 1 0 1 
1 0 1 1 1 1 

A fault table of the complete graph 
on four vertices 

One of the objectives of this paper is to deter- 
mine i) lower and upper bounds for the number of 
comparison connections, 2) the number of comparisons 
that have to be made in order to detect or locate 
a faulty unit, and 3) to determine the number of 
test cycles where test cycle is defined as a time 
interval necessary to perform comparisons between 
pairs of units simultaneously. We will also give 
an algorithm for the comparison connection assign- 
ment. Since the algorithm is based on covering 
problem algorithm, the following definitions are 
necessary. 

In graph G, a set of g edges is said to cover 
G if every vertex in G is adjacent on at least one 
edge in g. A set of edges that covers a graph G 
is said to be an edge covering or simply Covering 
G. The minimal covering is a covering from which 
no edge can be removed without destroying its 
ability to cover the graph. A minimal covering 
with the smallest number of edges is called the 
minimum covering. The number of edges in the mini- 
mum covering is called the covering number of the 
graph. 

The comparison assignment parameters may be 
denoted as follows: 

qd - 

q~ - 

c d - 

c~ - 

t d - 

t~ - 

the number 
detect any 

the number 

locate any 

of comparison edges In 
fault in the system 

of comparison edges in 
fault in the system 

order to 

order to 

the number of comparisons required in order 
to detect any fault in the system 

the number of comparisons required in order 
to locate any fault in the system 

the number of test cycles required for 
fault detection 

the number of test cycles required for 
fault location 

We shall attempt to solve two problems: one is 
to find a comparison connection assignment in a 
system with a fixed interconnection structure and 
another where the comparison connections between 
elements of the system may be placed arbitrarily. 

III. COMPARISON ASSIGNMENT AND ITS PARAMETERS 

An efficient comparison diagnostic procedure 
requires solution of the following problem. Given 
a graph G(V,E), find the minimum set of comparison 
connections C~E which assures l-diagnosability, 
i.e. location of every faulty state, and requires 
the minimum number of comparisons and test cycles. 
We will examine this problem under the single fault 
assumption. 

Both optimization requirements concern cost min- 
imization directly since a decrease in hardware 
costs is obtained by minimizing the number of com- 
parison connections. In addition, the computer 
time used for diagnosis is reduced due to the 
minimization of the number of comparisons and test 
cycles. 

Since the number of comparison connections is 
topology dependent, we may only determine lower 
and upper bounds for this number. The exact 
number of comparison connections may be obtained 

23 
by using the minimum covering algorithm. 

The case of fault detection is straightforward. 
In order to detect whether there is a faulty unit 
in the system, every unit should be compared to 
some other one. In an ideal case, if there is an 
even number of units and there are connections 
sufficient to cover every pair separately by a 
single link, the number of required comparison 

n 
edges is equal to ~ . If the number of units is 

odd, then the obtainable minimum equals I~ I and 

thus determines the lower bound for the number of 
comparison edges qd" The upper bound occurs when 

every link has to be a comparison edge. This happens 
in some types of tree graphs which have a number 
of edges equal to n-l. This case occurs, for 
example, in a star graph where the graph is a tree 
with one vertex adjacent to all remaining vertices. 
In this graph, every comparison connection has to 
be used in order to detect or locate the faulty 
unit. Summarizing the above, we have 

n - 1 .  

The upper bound for fault location is exactly 
the same as for fault detection. The difference, 
however, may be found in the lower bound. Assuming 
the ideal case for detection, i.e. that all pairs 
of vertices are matched by a single edge in the 
first test cycle, we should have an additional 
connection that would compare a pair of units which 
have resulted in different outputs due to the fault. 
These connections should be a separate set of edges 
independent from the ones already used. We merge 
vertices adjacent to edges that were used for 
comparisons in the first step and we search for the 
minimum covering in the remaining graph. Conse- 

quently, the number of edges is equal to I~I in 

In ] the first test cycle plus in the second 

cycle. This bound may be decreased further if we 
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notice that in order to locate one faulty unit out 
of three units we need two comparison connections 
instead of three as the above derived bound might 
indicate. Based on the fact that two edges are 
absolutely necessary for fault location in three 
units, we can now define the lower bound on the 
number of comparison edges. This bound is equal to 

2 UJ + n-3 L J=n-L J" I n  e f f e c t  

n - ~q£ in -i. 

In a practical approach it seems that the method 
of minimum covering would be used. Although it does 
not guarantee the minimum number of comparison 
connections for fault location, nevertheless, it 
assures the minimum for fault detection and also 
minimizes the number of comparisons and test cycles 
for fault location which in the long run may be more 
cost effective than minimization of the number of 
comparison edges. 

The number of comparison edges concerns the total 
number of pairs of units that may be compared. We 
will demonstrate that the lower bound of necessary 
comparisons is smaller or equal to the lower bound 
for the number of comparison connections. 

In the diagnosis process, the fault may be de- 
tected after the first test cycle. Subsequently, 
only one additional comparison is required and 
sufficient for fault location if the comparison is 
made between one of the pairs of units that has 
shown discrepancy and some other unit that proved 
to be fault-free on the basis of previous compari- 
sons. The bounds for the number of comparisons 
c d and c may be easily determined. 

The bounds for the number of comparisons are 

in fault detection -.~] ! c d in - i and 2) in i) 

fault location [ql ! c£ ~ n - i. 

The bounds for the number of test cycles for 
fault detection and location are respectively: 

1 ~ t d ~ n - i and 2 ! t£ in - I 

Let us consider an example of graph~ (Fig. 4, 
Fig. 5 and Fig. 6) that attain lower and upper 
bounds for l) the number of comparison connections, 
2) the number of comparisons and 3) the number of 
test cycles in fault detection. 

In the system represented by the graph in Fig. 4, 
lower bounds are attained except for the minimum 
number of comparison edges for the case of fault 
location. The structure of the system may be con- 
sidered as optimal in terms of the comparison con- 
nection assignment diagnosis for fault detection. 

1 I a 2i I 3 
f i 12 I c 

6 d 4 

Fig. 4. A system of six vertices with an opti~mum 
connection assignment for fault detection 
(dotted lines) and minimum c£ and t£ 

The system in Fig. 5, represented by a star graph, 
also has six units but all of its diagnostic param- 
eters are equal to upper bounds. 

1 a 2 b 3 

6 5 4 

F ig .  5.  A s y s t em o f  s i x  v e r t i c e s  ( s t a r  graph)  
w i t h  compar i son  p a r a m e t e r s  equa l  to  t he  
upper  bounds 

The p a r a m e t e r s  shown in  Table  1 prove  t h a t  a l l  
c h a r a c t e r i s t i c s  o f  t he  graph w i t h  r e s p e c t  to  f a u l t  
detection in Fig. 4 are optimum and equal to lower 
bounds as opposed to the graph in Fig. 5 whose 
comparison assignment parameters are equal to the 
upper bounds. 

connection 

qd 
q£ 

c d 

c£ 

t d 

t£ 

As in 
Fig. 4 

3 

5 

3 

4 

i 

2 

As in 
Fig. 5 

5 

5 

5 

5 

5 

5 

As in 
Fig. 6 

4 

4 

4 

4 

2 

2 

Table i. The comparison parameters of systems 
in Figures 4, 5 and 6 

The optimum connection assignment for fault loca- 
tion is shown in Fig. 6. 

i a 2 b 3 
O, O O 

o o o 
6 e 5 d 4 

Fig. 6. The comparison connection assignment 
requiring a minumum number of comparison 
edges for fault location 

In an arbitrary graph, the number of comparison 
edges for fault detection qd is equal to the 

covering number y. The fault location requires 
Y + Yr edges if the covering method is used where 

Yr is the covering number of the graph reduced in 

the following manner: merge all subsets of vertices 
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that are connected by edges which are in the mini- 
mum cover by making them into single vertices and 
deleting all self-loops. The method of determining 
the qd and q£ directly suggests an algorithm for 

finding a set of comparison connections for fault 
detection and fault location. 

Algorithm for finding the comparison connection 
assignment: 

Step I: Find the minimum covering g in a given 

graph G by using the covering algorithm. 

Step 2: If the connection assignment is for fault 
detection then stop (the assignment is 
minimum for fault detection), otherwise 
go to Step 3. 

Step 3: Reduce graph G by merging all connected 
parts of the covering into single ver- 
tices, delete self-loops and leave all 
remaining connections. 

Step 4: Find the minimum covering h in the 
reduced graph then stop. Coverings g 
and h form the comparison connections 
set for fault location which requires 
a minimum number of comparisons. 

The number of comparisons required for fault 
detection is the same as qd and equals y. The 

number of comparisons for fault location equals 
y + i if there is a perfect matching (i.e. when 
the number of edges in covering g of G equals 

) and c£ ~ y otherwise. 

The number of testing cycles for fault detection 
may be determined by t d = dmax(V ) where d (v) 

max 
denotes the maximum degree among vertices in g and 
h, i.e. after deleting in G the edges which are not 
in the covering sets g or h. In the case of fault 
location, the number of test cycles tE = 2 is suf- 

ficient if there is a perfect matching, otherwise 
t£ = d (v). 

max 

The comparison connection method may be extended 
to multiple faults. The comparison parameters in 
this case could be derived from a fault table. A 
necessary and sufficient condition for every state 
to be locatable is to insure that there are enough 
comparison edges to make every row distinct. This 
means that every subset of 1,2,...t vertices (if 
up to t faults are assumed) must have a distinct 
set of adjacent edges in order to be locatable. 

Theorem: If there is a comparison edge between 
every pair of vertices in the system 
graph G and G has n verti¢es, the max- 
imum number of faulty units that may 
occur and be uniquely located equals 
n - 2. 

Proof: Since the comparison of every pair of 
vertices is possible, there will be a 
single comparison without discrepancy 
locating the only two nonfaulty units. 
Then all other eases with less than 
n - 2 faulty units may also be located 

2 3 

but the states of the system when there 
are n - i or n faults cannot be dis- 
tinguished due to the fact that in both 
cases all comparison edges would indi- 
cate discrepancy. Therefore n - 2 is 
the maximum number of the locatable 
faulty units. 

Another problem that should be considered here 
is the design of systems with an optimal connection 
assignment. The optimal connection assignment is 
one which requires the minimum number of comparison 
connections, comparisons and test cycles in a system 
of n units. In fault detection all three parameters 
may be easily optimized by covering algorithms. 
The comparison assignment is determined by the min- 
imum covering of n vertices and all three parameters 

are minim= if the vertices are coupled in [~I" 

In fault location the optimization objective must 
be determined first. If it is the minimum number 
of comparison connections, the system has to be 
partitioned into triples of units and each triple 
should be connected by a pair of edges. If n is 
not divisible by 3 then one or two units are 
connected to some triples by single edges. In 
addition, there is a capability of locating at 

least [~j faulty units provided each fault occurs 

in the separate triple. If the minimization of the 
number of comparisons and test cycles seems to be 
more cost-effective than the minimization of the 
number of comparison connections then the perfect 
matching, merging and perfect matching again may 
be applied. Optimization of q£ corresponds to the 

minimization of the additional hardware costs (if 
any) in order to make comparisons feasible, opti- 
mization of c E and t£ refers to the minimization 

of computer time. 

IV. CONCLUSION 

A comparison method has been introduced for fast 
and reliable detection and/or location of a faulty 
unit in multiprocessor systems. This method is 
primarily applicable for the reconfigurable multi- 
microprocessor systems where the simultaneous 
running of the same programs on different processors 
and diagnostic comparisons are easily feasible. 
Simplicity and ease of implementation as well as 
the smaller number of tests than those used in 
classical methods make comparison connection assign- 
ment an attractive alternative in the diagnosis of 
the multiprocessor systems. 
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