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ABSTRACT 

This paper describes the basic principles and 
the architecture of a general host machine based upon 
lists processing. Current works in this field are 
dealing with conventional direct execution schemes 
which use lineary structured Directly Executable Lan- 
guages : prefixed languages with varying formats for 
operators and operands. If these languages are con~ 
venient for interpretation and provide an efficient 
execution scheme, on the other hand, they are very 
hard to generate, 

Therefore, we propose here a new direct execu- 
tion model based upon the definition of a class of 
Directly Executable Languages with a list oriented 
structure using LISP as model. The first part of the 
scheme is held by an editor which translates the high 
level source-text into the internal tree,structured 
form. The second part is held by an interpreter which 
executes this form on an appropriate machine. 

In this paper we pursue the design of the list- 
structured intermediate form and we give the reasons 
of our choice. Once we have brought out the concepts 
and the functions required for the implementation of 
non-numerical processing and particularly for list- 
structured forms, we discuss the architecture of the 
lists-directed machine. 

1-  A LIST~DIRECTED ARCHITECTURE 

1. Direct  execution 
-Fo r  ten years, many arch i tec tures have been de- 

veloped in order to support one or more high level 
languages by using a new execution scheme cal led d i -  
rect  execution, This scheme d i f f e r s  from current  im- 
plementations by the e l im ina t ion  of the machine-lan- 
guage, Various d i rec t  execution schemes were proposed. 
i~any authors th ink  as CHU E l l ,  that  the hardware 
s t ructure can execute d i r e c t l y  the external  form of  
i l igh level  languages, but most of them suggest a less 
extreme so lu t ion  which uses an in terna l  form to re- 
present the source~program, Typical d i r ec t  execution 
schemes are made of two steps ~ The f i r s t  one, so f t -  
ware, analogous to the compi lat ion in the convent io- 
nal models, t rans la tes the source, text  in to  an i n t e r -  
mediate form which has to be d i r e c t l y  executable.The 
second one, hardware, holds th i s  D i rec t l y  Executable 
Language (DEL) [2]  and in te rp re ts  i t  in a micropro- 
grammed way, 

Recent advances in technology of fas t  RAM memo- 

r ies  have involved an important development of micro- 
programming and in pa r t i cu l a r  of dynamic micropro- 
gramming. The a b i l i t y  to wr i te  powerful and swappable 
micro in terpre ters  d ic tated the g iv ing up of the ma- 
chine-languages in favor of DELs. 

Many DEL forms were suggested. The most advanced 
are the pol ish forms such as the P-code or I-PASCAL 
~3], but most of them are derived from the $-lanquaqes 
of the Burroughs B1700 ~4], In any cases, they have 
the main common feature which has prompted them the 
name of l i nea r  DELs ~ the tex t  is always represented 
by a sequence of statements inc lud ing op-codes and 
operands. 

2, Cr i t i c i sm of l i nea r  DELs 
The purpose of  HLL-processors is to reduce, as 

much as possible,  the semantic gap between the high 
level  languages and the hardware s t ructure.  The se- 
mantic gap C5] is  the measure of the d i f ference bet- 
ween the concepts of  the high level  languages present 
on a machine and the concepts of i t s  hardware st ruc-  
ture,  In a Von Neumann arch i tec tu re  there is no con.- 
cept of the high level  languages (e.g. arrays,  s t ruc-  
tures,  procedures, blocks, r e c u r s i v i t y  . . . )  which is 
d i r e c t l y  connected wi th a concept of the hardware 
s t ruc tu re ,  and th i s  process is bound to increase in 
the fu ture .  

Hence the DEL takes place in the semantic gap. 
I t  can be confounded nei ther  wi th  the high level  lan- 
guage i t s e l f ,  nor wi th the machine-language. What are 
the c r i t e r i a  fo r  choosing a good DEL ? The d i r ec t  
execution scheme is made of two environment t ransfers .  
The f i r s t  one deals wi th the t rans la t i on  from the ex- 
ternal  form in to  the in terna l  one : the t rans la to r  
has to process the external form so as to produce a 
language with the same semantic level  but a s imp l i -  
f ied  syntax. The second environment t rans fer  reexami- 
nes i t  and has to i n te rp re t  i t  in a hardware manner. 
Hence, an ideal DEL must be a good output environment 
for  the t rans la to r  and a good input  environment fo r  
the i n t e r p r e t e r .  

Today's DELs are often rather  good input  envi -  
ronments fo r  the microprogrammed in te rp re te rs .  As they 
use to paraphrase the conventional machine-languages 
they are s t r i ng  re lated to the hardware s t ruc ture .  
One of the aims of DEL designers was the compactness 
of the intermediate tex t  [6 ] .  At f i r s t ,  t h i s  fac to r  
seemed to be rewarding because of the saved memory 
space and the fas ter  access to the whole t ex t ,  but 
as long as environment t rans fer  is concerned, i t  
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appears to be a major drawback, As a matter of f ac t ,  
the frequency-based encoding involves the interme, 
d iate form to be very complex, and then, hard to en- 
code and decode. ORGANICK notices in [7 ]  tha t ,  on 
the Bi700, w r i t t i n g  the access to the DEL is as d i f~  
f i c u l t  as w r i t t i n g  the very i n te rp re te r ,  In our pre~ 
vious works on emulation, we defined an e f f i c i e n t  
hardware tool for  b i t  pattern manipulat ion E8] in 
order to re l i eve  the microprogrammer of  the burden 
of accessing to the intermediate DEL forms, but such 
hardware mechanisms are heavy and unaesthet ic,  They 
resu l t  from a bottom/up approach and they overload 
the arch i tec ture .  

Today's DELs are often bad output environments 
for  the t rans la to r ,  Due to t he i r  sequential form, 
the semantic power of many DELs is far  from that  of 
the HLL tex t ,  In add i t ion ,  the compactness involves 
the def inable length formats which are very hard to 
generate. Thus, the precompilers turn out to be as 
complex as conventional compilers, 

I t  is  therefore necessary to redef ine the DEL 
forms so as to make both compi lat ion and in te rp re -  
t a t i on  steps as simple as possible,  

3. The choice of a l i s t ~s t r uc tu red  form 
In advanced ed i t i on  processors, ~he t ree -s t ruc -  

tured form is the abstract  representat ion of the 
source-texts which is the most developed, Here,with 
respecz to the environment t rans fe r ,  i t  exact ly  
plays ~he ro le of an ideal DEL form, As a matter of 
f ac t ,  i t  gives us the expected advantages : 

I t  is  a good output environment fo r  the com~ 
p i l e r  : the source- tex t / t ree- form t rans la t i on  can 
be achieved in a simple way by using the concepts 
of ed i t i on  : top/down recurs ive parsers, syntact i~  
ca] ed i t i on  . , ,  I f  the source-text  is  maintained in 
the in terna l  representat ions the IN/OUT transforma- 
t i on  is revers ib le  and the compiler turns out to be 
an ed i to r  which involves d i r ec t  benef i ts  in man- 
machine communication, 

, I t  is also a good input environment fo r  the 
in te rp re te r  : w i thout  an t i c i pa t i ng  the exact struc~ 
ture of the in terna l  form, the associated syntax 
w i l l  probably be t r i v i a l ,  Parsing is reduced to a 
simple tree exp lora t ion ,  i . e ,  a very s~mple recur~ 
sive process which only requires few ins t ruc t i ons .  

With respect to the t ree-s t ruc tured in terna l  
form, we had to choose between a n-uple and a b inary 
form. The object of the n~uple representat ion is to 
place the funct ions (operators) in the nodes of the 
tree and operands in the leaves. Hence, th i s  form is 
deal ing wi th two types of objects : on the one hand, 
nodes are n-uple ce l l s  inc lud ing a func t ion  name and 
a varying l i s t  of pointers towards the arguments.On 
the second hand, leaves are p r im i t i ve  objects i n c l u -  
ding a d i r e c t l y  evaluable informat ion.  In the binary 
representat ion operators and operands are a l l  placed 
in the leaves, nodes are only responsible fo r  l o g i -  
cal connections. Nodes are p a i r - c e l l s  cons is t ing of 
a l e f t  po inter  and a r i g h t  one, Leaves include e i ,  
ther funct ions to be executed or d i r e c t l y  evaluable 
informat ion.  

Although the n-uple representat ion is today the 

most popular, espec ia l l y  in advanced ed i t i on  systems, 
we have chosen the binary form for  several reasons : 
the f ixed size of the nodes eases the bu i ld ing  and 
the t ravers ing of t rees,  i t  is therefore a good en- 
vironment for  both t rans la t i on  and i n te rp re ta t i on .  
As funct ions and operands are at the same leve l , t he  
binary form is p o t e n t i a l l y  more powerful than the 
n~uple representat ion.  Las t l y ,  i t  shows up many s i -  
m i l a r i t i e s  wi th  the in terna l  representat ion of the 
LISP language. 

We cannot present here the LISP language [9 ]  
nor discuss i t s  implementation, but the great con- 
venience of t h i s  language fo r  non-numerical proces- 
sing is well-known. This is not pure fortune,because 
the l i s t - s t r u c t u r e d  representat ion,  used in LISP,is 
ve rsa t i l e  and powerful. The main cha rac te r i s t i c  of 
LISP is tha t  i t s  external syntax is qu i te  equal to 
i t s  abstract  syntax, represented w i t h i n  the computer 
by a binary tree. The LISP syntax is approximat ively 
that  of DELs, as spec i f ied above. I t  is therefore an 
exce l len t  model for  our execution scheme. 

2 -THE 3L-MODEL 

Consequently our d i rec t  execution scheme is 
based upon an in terna l  l i s t - s t r u c t u r e d  form using 
LISP as model. For each high level  language a LISP- 
Like,Language (3L) is defined (e.g. fo r  PASCAL : 
P3L, fo r  COBOL : C3L, e t c . . . ) .  For each 3L form an 
ed i to r  is w r i t t en .  I t  ensures a b i d i r ec t i ona l  com- 
munication between the external form (source- text )  
and the in terna l  one (3L form). For each 3L form, 
an in te rp re te r  is w r i t t en .  I t  evaluates the associa- 
ted 3L form on a hardware processor, specia l ized in 
l i s t  processing : the 3L-MACHINE (M3L). For any 
high level  language the d i rec t -execu t ion  scheme, 
described in the f i gu re  I ,  is obtained. 
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Figure 1 : THE 3L-MODEL 
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The LEM language 
The 3L-model includes two processors which exe- 

cute two d i f f e r e n t  tasks. Edi t ion processing is es- 
s e n t i a l l y  non-numerical and consists in processors 
such as : l ex i ca l  parsers, syntac t ica l  parsers, ed i t  
tors.  In te rp re ta t ion  processing is mainly associated 
with the environment t rans fer ,  Thus, in the ed i t i on  
step as in the i n t e rp re ta t i ve  steps non,numerical 
processing is ~revalent,  I t  w i l l  therefore be ex~ 
pressed in a s lng le  language wi th the intend of sups 
port ing the emulation funct ions ~ the Language fo r  
EMulation (LEN), 

LEi4 is  a high level  microprogramming language, 
On the one hand, i t s  goal is to support the emula~ 
t ion .  On the second hands the great symbolizat ion of 
LEM makes i t s  use easier for  persons who do not have 
to be special ized in the hardware s t ruc ture ,  

, The 3L-machine 
The 3L-machine is an emulation which can deal 

wi th any language provided that  before any operations 
i t  is  put on a f u l l y  parenthetized pref ixed notat ion,  

LISP gives a f u l l  sa t i s fac t i on  to th is  de f in i~  
t i on ,  thus M3L can be regarded as a LISP-machine, 
Today, several studies on LISP-machines have been 
made, in software [10] ,  in a microprogrammed way on 
the B1700 [11] ,  or wi th  microprocessors [12],However, 
the project  which is under study at MIT Z13] is the 
most important one, This shows how a t t r ac t i ve  archi~ 
zectures based on ~languages are. We w i l l  re fer  to 

them as ~,arch i tec tures [14] .  

Nevertheless, these plans are only deal ing wi th 
LISP and i t s  own concepts. As fo r  the hardware rea- 
l i z a t i o n s ,  the host processor is  not necessar i ly  a 
special ized machine ; sometimes i t  is  equipped wi th 
hardware tools  which are valuable but too much or ien-  
ted towards LISP concepts. Rather than discussing the 
semantic features of  LISP our aim was to show the 
common charac te r i s t i cs  of every 3L forms and give 
them a d i rec t  expression through the hardware. 

3 -  THE GENERAL ARCHITECTURE OF M3L 

The M3L project  was i n i t i a t e d  in september 1977 
with a systematic study of LISP i n t e r p r e t a t i o n . F i r s t ,  
we defined a pseudo-machine and then we b u i l t  a simu- 
l a to r  on which a microprogrammed LISP in te rp re te r  was 
wr i t t en ,  The simulat ion measures [15] prompted a new 
design for  the prototype present ly  in phase of achie- 
vement. These measures showed how important some re- 
sources are, more prec ise ly  the p a i r - c e l l s  memory. 
From a funct ional  point  of view, the r e c u r s i v i t y  me- 
chanism is the most c r i t i c a l .  We shal l  hence develop 
these two points more l a t e l y .  

1. The synoptic of M3L 
The general organizat ion of M3L is very simple. 

The resources (memories,registers,operators) are bus- 
sed on a s ingle communication path, using very con- 
vent ional t r i - s t a t e  connections. 

2 5 6 r m I  

64 

PAIR-CELLS MEMORY 
(RAM) 

16k 

STACK MEMORY 

. . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  

B 

4k 

CONTROL 
SIGNALS 

256 
0Q0  

EXECUTIVE MEMORY 
(ROM) 

MICROPROGRAMS 
MEMORY 

(RAM) 

100 

IE 

Figure 2 : ARCHITECTURE OF M3L 
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The f igure  2 shows the synoptic of the M3L pro- 
totype wi th the parameters which were retained in 
order to va l ida te  the 3L~model~ 

The datapath is  16-b i t  wider which corresponds 
to the maximal size of the p a i r - c e l l s  memory (64 K), 
The numerical processing is carr ied out by a b i t~  
s l i ce  ALU which is r e l a t i v e l y  powerful(AMD 2903), A 
l i t t l e  ar i thmet ica l  processor (AMD 9511), connected 
as a per iphera l ,  al lows the d i r ec t  achievement, in 
hardware, of  the more complex a lgebr ica l  funct ions•  
Inputs/outputs are also managed by special ized chips 
of  the Ai4O 2900 fami ly ,  Once again we f i nd  the con~ 
vent ional  funct ions of the Von Neumann arch i tec ture  
but, here, they take a marginal place, 

The resources of M3L consist  only in reg is ters  
and constants, Registers are div ided in to  four cater 
gories 

• A i reg is ters  i~EO,15~ 
They are used for  current  tasks and informat ion 
t rans fer  between the microprocedures 

• B i reg is te rs  iE[0,255]  
Theyserve as global reg is ters  fo r  every micropro- 
cedure, they contain the descr iptors of the cur-  
r e n t l y  emulated system 

• T i reg is ters  i~ [0 ,31]  
Theyare f l i p - f l o p s  which give the current status 
of the system, They are global resources and some 
of  them can be set or reset by the microprogrammer 

,• Ri reg is ters  i~EO,3J 
Theymake the use of r e c u r s i v i t y  possible owing to 
t h e i r  l o c a l i t y .  

The table 1 shows the s ta t i c  occurrences of the 
reg is ters  in the LISP mic ro in te rpre te r .  

i 
Reg i sters 

A 

B 49 

T 0 

R 141 

Tab] e 1 

o l i 2  
265 37 9 

6 2 

0 0 

68 26 

3 4 5 6 7 8 

8 6 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

7 0 0 0 0 0 

Registers occurrences 

In our LISp i n te rp re te r ,  only 5 A i reg is ters  
were necessary fo r  supporting the parameter parsing• 
The small number of B i reg is te rs  resul ted from the 
face tha t ,  in the s imulat ing environment, the para- 
meters of the emulated system were qui te non~existen~ 
as LISP mainly deals wi th non-numerical processing 
and as the escape concept was i n tens i ve l y  used fo r  
w r i t t i n g  the i n te rp re te r  (see sect ion 5.1) Ti reg is -  
ters were put aside, Four R i reg is ters  only were 
necessary to support the local environment of the 
microprocedures. We shal l  see that  t h i s  considerat ion 
had an important impact on the stack memory organi -  
zat ion.  

3• The micro-contro l  
The microprograms, w r i t t en  in LEM, are compiled 

to produce f ixed microcode. The great d i v e r s i t y  of  

control  s ignals to provide ( in  pa r t i cu l a r  to control  
the t r i - s t a t e  bus) has led to a two- level  micropro- 
gramming• Here, the used technique is d i f f e r e n t  from 
the microprogramming wi th  a real second level  re fe r -  
red to as nanoprogramming. To execute a micro- 
i ns t ruc t i on  through the datapath one must : 

I .  provide some parameters : 
number of  A i , Bi . . .  
long, short constant 
number of branch func t ion ,  of ALU funct ion. . .  

2. def ine an act ion to be executed, i . e .  state 
a pa r t i cu l a r  data t rans fer  through the data- 
path. 

The f i r s t  level  of microprogramming, which cor- 
responds to the f i r s t  par t ,  is v e r t i c a l .  Thus, the 
e f f o r t  of the LEM compiler is  less important and the 
size of  the mic ro ins t ruc t ions  can be shortened. In 
add i t ion ,  t h i s  reduces the amount of microcode to be 
swapped during contro l  switches. 

The second par t ,  f i xed  fo r  a given act ion,  s t i l l  
requires much more b i t s  fo r  the d i r ec t  control  of the 
gates. The repe t i t i on  of such a long dead-bi t  se- 
quence is cumbersome. Thus, the act ion tobeexecuted is 
speci f ied by the second level  of microprogramming, 
in a s ing le  hor izonta l  word where each b i t  d i r e c t l y  
contro ls  the gates. I t  is  ca l led the executive• 

The format of a m ic ro ins t ruc t ion  is 

8 32 

. . . . . . . . .  I P n l  

opc represents the code number of an execut ive and 
the P i ' s  are the arguments. The size of micro ins t ruc-  
t ions is 32 b i t s .  To the operation code (opc) can 
correspond up to 256 execut ives. Theo re t i ca l l y ,  a 
great number of executives can be def ined, but prac- 
t i c a l l y ,  the f a c i l i t i e s  of a datapath are never com- 
p le te l y  put on use : our s imulat ion of a LISP system 
required 60 executives only.  The executives reside in 
fas t  PROM memory ( t  A= 50 ns) wi th  256 words of 
lO0-b i t  length. 

The cycle time of the mic ro ins t ruc t ions  is f i xed 
to 500 ns. I t  may seem to be long fo r  a modern tech- 
nology but wi th  regard to ~he power of the microins-  
t ruc t ions  i t  is  a good speed : the cycle s ta r ts  wi th  
the mic ro ins t ruc t ion  Fetch ( i00 ns). Then, i t  i nc lu -  
des some reg is ters  moves and always a main control  
phase (200 ns). As the case may be t h i s  phase performs: 

- an access to the p a i r - c e l l s  memory 
- an ar i thmet ica l  operat ion on the ALU 
- a context switch wi th  an access to the stack 

m~nory 
- a refresh cycle 

Hence, the mic ro ins t ruc t ion  cycle includes the access 
to the d i f f e r e n t  memories. This resu l ts  from the fac t  
that  the s imulat ion has shown that  most of the 
accesses to the p a i r - c e l l s  memory are performed, on 
an average, each three mic ro ins t ruc t ions .  Thus, M3L 
can be viewed as a memory-to-memory a rch i tec tu re .  
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4 - THE PAIR-CELLS MEMORY 

The pair-cel ls memory is the main memory of 
i43L. I t  contains 64 K of identical cells with the 
following format : 

(CAR) (CDR) (DES) 

In tne 1~3L prototype,  the s ize  of  FO (in LISP : 
CAR) and Fi (in LISP : CbR) f i e ld s  is equal to the 
datapath s ize  (16 b i t s ) ,  The f i e ld  F2 (a byte) ser~ 
ves as a descriptor of the pair, These f ie lds can 
be accessed to independently in the read/write mode, 
Thus, we have the equivalence between : 

the LISP functions 

(SETQ X (CAR 'Y)I 

(RPLACA 'X 'y) 

the LEM microinstructions 

X÷FO(Y) 

FO(X) ÷ Y 

(X and Y are M3L registers) 

The measurement of the memory accesses has 
shown that a CAR access is often followed by a DES 
ana then a COR one, This corresponds to the "decor 
ding" of the cel l ,  Therefore, the read access to the 
di f ferent parts of the cells has been thoroughtly 
elaborated. This fact is emphasized by the addition 
of the FETCH microinstruction : 

FETCH X INTO y AND Z 

Y ~ FO(X) 

Z ÷ FI(X)  

DES ÷ F2(X) 

DES is a pseudo-register devoted to the descriptor 
f ie ld .  

At the interpretative step, this microinstruc~ 
tion, similar to the fetch~operation of the Von Neu- 
laann systems, real ly  speeds up the decoding operas 
tions and the passage of arguments to the microinter~ 
prefer procedures. I t  permits 31 percent of the me- 
mory accesses to be avoided, 

The pair~cells memory is block organized, The 
three blocks correspond to the CAR, COR and DES 
f ields respectively~ As CAR and CaR blocks are 64 K 
words of 16 bi ts,  i t  is clearly implied that the 
pointers deal with real addresses, As a matter of 
fact, we have implemented no CDR-coding mechanism 
because we think that the prof i t  in memory space 
should be lower than 10 percent of the prototype 
cost, and i t  does not j us t i f y  the complexity intro- 
duced by i ts  management, As we wished to validate 
tile 3L-model rapidly, the prototype only features a 
16-bit addressing and a re la t ive ly  small main memory, 
Presently, a new version of M3L with a 24-bit ad~ 
dressing is studied. 

The DES block is 64 K words of 8-bits. Logically, 
each F2 f ie ld  can be divided into contiguous or su~ 
perposed sub-fields (F3,F4 . . . ) .  They can also be 
accessed to independently in the read/write mode. 

DES 
7 6 5 4 3 2 

/ , 
i ~ i  1, /'%' , , / /  / 

/ / I 

F2 

F3 

F4 

F5 

F6 

.. 

The access functions to the pair-cel ls are 
generalized to : 

X + Fi(Y)i=O,n or Fi(X)i=O,n ÷ Y 

The slicing capabil ity of the descriptor byte 
results in a good optimization of descriptors enco- 
ding. I t  allows a direct access to any pair-cel l  
f ie ld  and yields a good output environment for the 
editor (DES encoding) and a good input environment 
for the interpreter (DES decoding) because, in these 
two steps, there are no sh i f t ,  compacting or decom- 
pacting to perform. 

The access functions to the DES block are achie- 
ved in hardware by a gadget (MPX) whose basic prin- 
ciples are developed in [8]. I t  performs parallel 
just i f icat ions on the DES sub-fieds in a purely com- 
binatory way. The sub-fields are defined by a mask 
sourced From the executives. We said above that such 
tools are unaesthetic but, as the operation f ie ld  is 
only 8-bi t  wide, i t  can be achieved very easily and 
i t  offers an access to the DES sub-fields as fast as 
that of the FO and F1 f ie lds.  

The technology used for the pair-cel ls memory 
is the dynamic-MOS RAN (TMS 4116). Its fast access 
time (t A=150 ns) has enabled the inclusion of the 
read/write cycle in the microinstruction cycle. The 
drawback of dynamic memory is that additional refresh 
operations are required. In M3L, they are mainly per- 
formed during register-to-register moves. Note that 
new technologies wi l l  eliminate this inconvenience 
rapidly and wi l l  strenghten the trend to d i rect ly  
access the main memory in the microprogramming envi- 
ronment. 

5 - THE STACK MEMORY 

1. The recursivi ty in the LEM language 
LEM is a r ecursive language, this is absolutely 

necessary in tree processing. A LEM module is compo- 
sed of l i t t l e  procedures which are independent and 
not ordered. They can refer to each other and even 
to themselves. In control switching from a micropro- 
cedure to another, the Ai global registers are used 
for parameters passing and the R i local registers 
are automatically saved. 
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P1 picks i ts  input arguments into the A i registers 
and outputs i ts  results to P8 via Ai 's .  The object 
of the R i registers is to maintain the value of A i 
registers in the environment of PIo Thus, their  
value cannot be erased by the application of P2. 

To the r e c u r s i v i t y  an automatic escape mechanism 
was added. Wr i t t ing top/down recurs ive parsers re-  
quires such tools .  They are s im i la r  to the software 
in te r rup ts  ( l i ke  ON condi t ions of  PL/l).Escapes and 
r e c u r s i v i t y  are two concepts which are c lose ly  rela~ 
ted, hence they were merged in order to o f f e r  a bet- 
ter  systematizat ion of the control  t rans fer  between 
the microprocedures. I t  is thus stated that  in LEM: 

- ca l l s  are recurs ive 
- returns are escapes 

2. The stack memory management 
The object of t he - recu rs i v iLy  stack is  to save 

the context of the ca l l i ng  microprocedure during a 
CALL i ns t ruc t i on  and to restore i t  on the corres~ 
ponding return i ns t r uc t i on ,  A 'context  comprises 
mainly : the local reg is te rs  (R i ) ,  the microprogram 
counter (~PC) and the escape tag (ESC), 

We f i r s t  thought that the size of the context 
would be important because of the number of local 
registers required For tree processing, Therefore, 
our preliminary architecture included a complex 
memory stack processor for the management of CALLs 
and ESCAPEs. I t  consisted in a disk f i l e ,  which 
simulated the v i r t u a l  stack m~nory, and a c i r c u l a r  
queue which simulated the real stack memory and was 
implemented in a fas t  memory, In order to save a 
r~aximum of memory space, only the used R i reg is ters  
were saved when a switch occurred, 

Fortunately th i s  "gas-works" processor was only 
achieved in software, We were surprised when the f i r s t  
LISP in te rp re te r  was wr i t t en ,  As a matter of f ac t ,  
only four Ri reg is te rs  were required (see table i ) ,  
The reason is that  in tree processing the use of the 
r e c u r s i v i t y  resu l ts  in very concise contextual i n f o r -  
mation : genera l ly ,  She cu r ren twork  (Ai)  is done on 
the CAR and we only have to save the CDR (see also 
the sect ion 6,1),  This fac t  was confirmed b y t h e  dy- 
namic measures ; the average number of pushed Ri 
reg is te rs  is  1,3. 

F inal ly ,  we chose the simplest solution, The 
number of R i registers is stated to four and the con~ 
text is located in a single pseudo register wilere 
Ri=O, 3,~PC, ESC can be accessed to. Therefore, the 
status register is 90-bit wide, During CALL and 

ESCAPE operations i t  is simply stored into (or res- 
tored from) the stack memory. In one microinstruc- 
t ion cycle the micro-context is pushed or popped. 

The stack memory consists of 16 K words which 
are 90~bit wide. This allows the performing of 
16 000 recursive CALL successively. Our dynamic mea- 
sures, upon l i t t l e  LISP programs, have shown that 
the number of contexts increases rapidly and then 
seems to become stable a f te r  100. However, because 
of the low cost and the fas t  access time of the dy- 
namic~MOS m~nory we used the same technology in the 
p a i r - c e l l s  memory and in the stack memory, thus d ic -  
ta t i ng  the 16 K s ize.  Because of t a i l - r e c u r s i v i t i e s  
e l im ina t ion  and of the small size of the p a i r - c e l l s  
memory, the stack is ce r t a i n l y  too large fo r  t h i s  
version of M3L. This fac t  w i l l  have to be confirmed 
in fu r the r  measurements. 

3, The CALL microinstruction 
The CALL. Mechanism of M3L is i l lus t ra ted in 

the figure 3. 

ESC code 

I 
1 
In 

ESC 

STACK 

out  

= 

LOAD 
command 

I 
in 

~PC 

STACK 

e~ 

Y 
] MICROPROGRA. I COUNTER + 

116 

out 

116 

Figure 3 : THE MICRO-CONTROL UNIT 

The call microinstruction has the-following 
format : 

0 78 13 16 31 

l i co, I 
when a call microinstruction is executed, both the 
escape number (passed as argument) and the return 
address (uPC) are saved and a branch operation is 
done according to the address specified as second 
argument (~). The execution goes along with three 
phases : 
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- return address computation : incrementation of uPC 

context, saving : ESC code ESC stack ; 
uPC÷~PC stack 

i n i t i a l i sa t i on  of uPC : m÷uPC 

which correspond to two register moves and an access 
cycle to the stack memory. 

4, The escape microinstruction 
The object of the escape microinstruction is 

to make a branch to the last microprocedure of the 
current process which has previously set up the same 
escape code• Its format is : 

0 78 13 31 

i ESCAPE I E SC code ~////////~ 
The execution cycle is d iv ided in to  two phases: 

- fetch of the preceding context from the stack 
memory 

- i f  the ESC code,which is passed as argument,cor- 
responds to the restored ESC code then i n i t i a l i z e  
uPC with the return address. 

Notice that  wi th t h i s  algor i thm, the same 
escape mic ro ins t ruc t ion  is performed as many times 
as the ESC code of the mic ro ins t ruc t ion  is d i f f e r e n t  
from the fetched one. This process enables the stack 
to be scanned un t i l  the searched context is found. 

6 - EXAMPLES OF MICROPROGRAMMING 

1. Interpretation o.f.a HLL control construct 
When the 3L-model is applied to a HLL language, 

the f i r s t  task is to design the associated 3L form. 
For example, le t  us consider the following HLL con- 
t ro l  construct : 

i f  boolexp then statementl else statement2 

The corresponding 3L form might be : 

( IF boolexp statement1, statement2 ) 

which gives, for  example, the in terna l  form : 

\ I , I  

",. 
I ,,I ,, I, I 
/ \ 

statementl  statement2 

N : node 

F : funct ion 

When i t  is ca l led ,  the IF procedure which i n -  
terprets  the ' i f '  func t ion  receives the pointer  to 
i t s  argument l i s t  in the A1 reg is te r .  In LEi,I : 

procedure if ; 

begin 

fetch A1 into A1 and R1; % to save the CDR in R1% 

call exec ; 

if A1 ~ 'nil' then A1 ÷ FO (RI~ % CAR % 

else A1 ÷ F1 (R1);% CDR % 

call exec ; 

escape 

end 

- EXEC : is the general evaluator of the interprete~ 
I t  picks in A1 the pointer to the sub-tree 
i t  has to evaluate, and returns i t  in A1 
again to the result 

- checking of boolexp is done l ike in LISP, 

Seven microinstructions only are required for 
the fixed representation of this microprocedure, On 
M3L, i ts  execution time is 3 us to which we must add 
the evaluation time corresponding to the two calls 
of exec• They s t r i c t l y  depend on the complexity of 
the sub-trees to be evaluated, 

2. The i n te rp re ta t i on  of LISP 
---Present ly,  a l i t t l e  LISP in te rp re te r  is opera~ 

~ional on the simulator of the M3L prototype. This 
i n te rp re te r  requires 670 32-b i t  m ic ro ins t ruc t ions ,  
I t  includes tile 21 pr inc ipa l  standard funct ions of  
LISP. 

• The EVAL procedure : the ro le  of th i s  proce- 
dure, in our LISP in te rp re te r ,  is to decode the 
objects and pass the argument l i s t  to the funct ions.  
When i t  is applied to the d i f f e r e n t  kinds of LISP 
objects i t s  response-time is : 

numbers : 2 us 
atoms : 2,5 us 
functions; 6,5 us 
quote : 5us 

• The standard funct ions : the fo l low ing  table 
gives the response-time fo r  the typ ica l  LISP func- 
cions. This time does not include the inner EVAL 
sub-cal ls .  

LISP 
funct ion  us 

CAR 2 

CDR 2 

CONS 10 

QUOTE 1 

RPLACA 4 

LISP 
funct ion us 

RPLACD 4 

LISTP 3 

ATOM 3 

NULL 2,5 

ENDLISP 0.5 
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The measurement of some standard funct ions is 
dependent From the environment in which they are 
executed: 

EQ i f  equal and non-num, 
- -  i f  non-equal and 1 ~hnon-num, 

i f  non-equal and 2 th non~num, 
i f  non-equal and non-num, 
i f  equal and num. 

GT s ta r t i ng  wi th fa lse 
- -  fa lse aL the pth level  

t rue wi th  n arguments 

ADO1 i f  numerical 
else 

SETQ wi th n a f fec ta t ions  

IF wi th se lect ion true 
wi th  se lect ion t a r e  and n 
statemenzs in tTE~SE  clause 

COND wi thout  clause 
~ w i t h  n clauses whose pth is 

selected and involves the 
execution of n S~expressions 

5 ~s 
5,5 ~s 
6, 5 ~s 
9 us 
9 ps 

5,5 ~s 
4+E (p~l) .5]us 
n.5 ~s 

I0,5 ~s 
2,5 ~s 

3+E (n~l ) .4 ]~s 

3 ~s 

4,5+2+ ((n~1).3.5) ~ s 

1,5 ~s 

2 ,5+( (7+5) . (p~ i ) )  
+7+((n.1).7)~s 

These times do not include the inner EVAL sub- 
ca l l s ,  because cheir value depend on the complexity 
of the sub-trees which are evaluated, Here are three 
complete examples ; 

The execution of : 

(SETQ X (CONS (CAR X)(CDR Xl) ) 

(RPLACA 'X (CAR 'X)) 

(IF (EQ X 'A)(SETQ X 'B)(SETQ X 'AI)  

requires : 

48 ~s 

29 ~s 

I ~ ' A " 4 3  ~s 
'A 50.5~s 

In the three examples studied,  advantages of 
about 14 ~imes speed improvement are rea l ized over 
the ClI-HB LISP which is running on an IRIS 80 computer. 

CONCLUSION 

The archi teczure of M3L is not spectacular .This 
machine is equipped wi th  no black boxes performing 
super-Functions, nor complicated processors. I t  qui te 
consists o~ memories : the pa i r~ce l l s  memory and the 
stack memory deal wi th 70 percent of the prototype 
chips. However, we th ink  that  t h i s  a rch i tec ture  is  
innovat ive and ~hat i t s  e f f i c i ency  in l i s t  processing 
is great. The reason fo r  i t  is  that  the top/down 
st rategy used here has resul ted in a good d i s t r i b u -  
t ion  of the emulation funct ions at every step of the 
model : 3L form, LEM, hardware sLructure. 

Rather than developing a LiSP-machine our aim 
was to inves t iga te  emulation in a more general con- 
tex t .  Today, the LE,4 micro-software fo r  the in te rp re -  
ra t ion  of PASCAL is in the phase of achievement.Fol- 
lowing the LISP example, we focus in ed i t i on  proces- 
sing so as to improve i n t e r a c t i v i t y ,  Thus, the s imp l i -  
c i t y  and the v e r s a t i l i t y  of M3L lead th i s  machine 
towards the range of  i n te rac t i ve  app l ica t ions .  In 
t h i s  area, M3L and in a more general fashion X~archi- 
tectures can improve h igh ly  the man/machine communi~ 
cat ion.  
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