
M3L ; A LIST~DIRECTED ARCHITECTURE

J,P, SANSONNET
M, CASTAN
C, PERCEBOIS

Laboratoire "Langages et Syst~mes Informatiques"
Univers i t~ Paul Sabatier

118 route de Narbonne 31077 TOULOUSE CEDEX- FRANCE

ABSTRACT

This paper describes the basic principles and
the architecture of a general host machine based upon
lists processing. Current works in this field are
dealing with conventional direct execution schemes
which use lineary structured Directly Executable Lan-
guages : prefixed languages with varying formats for
operators and operands. If these languages are con~
venient for interpretation and provide an efficient
execution scheme, on the other hand, they are very
hard to generate,

Therefore, we propose here a new direct execu-
tion model based upon the definition of a class of
Directly Executable Languages with a list oriented
structure using LISP as model. The first part of the
scheme is held by an editor which translates the high
level source-text into the internal tree,structured
form. The second part is held by an interpreter which
executes this form on an appropriate machine.

In this paper we pursue the design of the list-
structured intermediate form and we give the reasons
of our choice. Once we have brought out the concepts
and the functions required for the implementation of
non-numerical processing and particularly for list-
structured forms, we discuss the architecture of the
lists-directed machine.

1- A LIST~DIRECTED ARCHITECTURE

1. Direct execution
-Fo r ten years, many arch i tec tures have been de-

veloped in order to support one or more high level
languages by using a new execution scheme cal led d i -
rect execution, This scheme d i f f e r s from current im-
plementations by the e l im ina t ion of the machine-lan-
guage, Various d i rec t execution schemes were proposed.
i~any authors th ink as CHU E l l , that the hardware
s t ructure can execute d i r e c t l y the external form of
i l igh level languages, but most of them suggest a less
extreme so lu t ion which uses an in terna l form to re-
present the source~program, Typical d i r ec t execution
schemes are made of two steps ~ The f i r s t one, so f t -
ware, analogous to the compi lat ion in the convent io-
nal models, t rans la tes the source, text in to an i n t e r -
mediate form which has to be d i r e c t l y executable.The
second one, hardware, holds th i s D i rec t l y Executable
Language (DEL) [2] and in te rp re ts i t in a micropro-
grammed way,

Recent advances in technology of fas t RAM memo-

r ies have involved an important development of micro-
programming and in pa r t i cu l a r of dynamic micropro-
gramming. The a b i l i t y to wr i te powerful and swappable
micro in terpre ters d ic tated the g iv ing up of the ma-
chine-languages in favor of DELs.

Many DEL forms were suggested. The most advanced
are the pol ish forms such as the P-code or I-PASCAL
~3], but most of them are derived from the $-lanquaqes
of the Burroughs B1700 ~4], In any cases, they have
the main common feature which has prompted them the
name of l i nea r DELs ~ the tex t is always represented
by a sequence of statements inc lud ing op-codes and
operands.

2, Cr i t i c i sm of l i nea r DELs
The purpose of HLL-processors is to reduce, as

much as possible, the semantic gap between the high
level languages and the hardware s t ructure. The se-
mantic gap C5] is the measure of the d i f ference bet-
ween the concepts of the high level languages present
on a machine and the concepts of i t s hardware st ruc-
ture, In a Von Neumann arch i tec tu re there is no con.-
cept of the high level languages (e.g. arrays, s t ruc-
tures, procedures, blocks, r e c u r s i v i t y . . .) which is
d i r e c t l y connected wi th a concept of the hardware
s t ruc tu re , and th i s process is bound to increase in
the fu ture .

Hence the DEL takes place in the semantic gap.
I t can be confounded nei ther wi th the high level lan-
guage i t s e l f , nor wi th the machine-language. What are
the c r i t e r i a fo r choosing a good DEL ? The d i r ec t
execution scheme is made of two environment t ransfers .
The f i r s t one deals wi th the t rans la t i on from the ex-
ternal form in to the in terna l one : the t rans la to r
has to process the external form so as to produce a
language with the same semantic level but a s imp l i -
f ied syntax. The second environment t rans fer reexami-
nes i t and has to i n te rp re t i t in a hardware manner.
Hence, an ideal DEL must be a good output environment
for the t rans la to r and a good input environment fo r
the i n t e r p r e t e r .

Today's DELs are often rather good input envi -
ronments fo r the microprogrammed in te rp re te rs . As they
use to paraphrase the conventional machine-languages
they are s t r i ng re lated to the hardware s t ruc ture .
One of the aims of DEL designers was the compactness
of the intermediate tex t [6] . At f i r s t , t h i s fac to r
seemed to be rewarding because of the saved memory
space and the fas ter access to the whole t ex t , but
as long as environment t rans fer is concerned, i t

CH1494-4/80/0000-0105 $00.75 © 1980 IEEE t05

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800053.801915&domain=pdf&date_stamp=1980-05-06

appears to be a major drawback, As a matter of f ac t ,
the frequency-based encoding involves the interme,
d iate form to be very complex, and then, hard to en-
code and decode. ORGANICK notices in [7] tha t , on
the Bi700, w r i t t i n g the access to the DEL is as d i f~
f i c u l t as w r i t t i n g the very i n te rp re te r , In our pre~
vious works on emulation, we defined an e f f i c i e n t
hardware tool for b i t pattern manipulat ion E8] in
order to re l i eve the microprogrammer of the burden
of accessing to the intermediate DEL forms, but such
hardware mechanisms are heavy and unaesthet ic, They
resu l t from a bottom/up approach and they overload
the arch i tec ture .

Today's DELs are often bad output environments
for the t rans la to r , Due to t he i r sequential form,
the semantic power of many DELs is far from that of
the HLL tex t , In add i t ion , the compactness involves
the def inable length formats which are very hard to
generate. Thus, the precompilers turn out to be as
complex as conventional compilers,

I t is therefore necessary to redef ine the DEL
forms so as to make both compi lat ion and in te rp re -
t a t i on steps as simple as possible,

3. The choice of a l i s t ~s t r uc tu red form
In advanced ed i t i on processors, ~he t ree -s t ruc -

tured form is the abstract representat ion of the
source-texts which is the most developed, Here,with
respecz to the environment t rans fe r , i t exact ly
plays ~he ro le of an ideal DEL form, As a matter of
f ac t , i t gives us the expected advantages :

I t is a good output environment fo r the com~
p i l e r : the source- tex t / t ree- form t rans la t i on can
be achieved in a simple way by using the concepts
of ed i t i on : top/down recurs ive parsers, syntact i~
ca] ed i t i on . , , I f the source-text is maintained in
the in terna l representat ions the IN/OUT transforma-
t i on is revers ib le and the compiler turns out to be
an ed i to r which involves d i r ec t benef i ts in man-
machine communication,

, I t is also a good input environment fo r the
in te rp re te r : w i thout an t i c i pa t i ng the exact struc~
ture of the in terna l form, the associated syntax
w i l l probably be t r i v i a l , Parsing is reduced to a
simple tree exp lora t ion , i . e , a very s~mple recur~
sive process which only requires few ins t ruc t i ons .

With respect to the t ree-s t ruc tured in terna l
form, we had to choose between a n-uple and a b inary
form. The object of the n~uple representat ion is to
place the funct ions (operators) in the nodes of the
tree and operands in the leaves. Hence, th i s form is
deal ing wi th two types of objects : on the one hand,
nodes are n-uple ce l l s inc lud ing a func t ion name and
a varying l i s t of pointers towards the arguments.On
the second hand, leaves are p r im i t i ve objects i n c l u -
ding a d i r e c t l y evaluable informat ion. In the binary
representat ion operators and operands are a l l placed
in the leaves, nodes are only responsible fo r l o g i -
cal connections. Nodes are p a i r - c e l l s cons is t ing of
a l e f t po inter and a r i g h t one, Leaves include e i ,
ther funct ions to be executed or d i r e c t l y evaluable
informat ion.

Although the n-uple representat ion is today the

most popular, espec ia l l y in advanced ed i t i on systems,
we have chosen the binary form for several reasons :
the f ixed size of the nodes eases the bu i ld ing and
the t ravers ing of t rees, i t is therefore a good en-
vironment for both t rans la t i on and i n te rp re ta t i on .
As funct ions and operands are at the same leve l , t he
binary form is p o t e n t i a l l y more powerful than the
n~uple representat ion. Las t l y , i t shows up many s i -
m i l a r i t i e s wi th the in terna l representat ion of the
LISP language.

We cannot present here the LISP language [9]
nor discuss i t s implementation, but the great con-
venience of t h i s language fo r non-numerical proces-
sing is well-known. This is not pure fortune,because
the l i s t - s t r u c t u r e d representat ion, used in LISP,is
ve rsa t i l e and powerful. The main cha rac te r i s t i c of
LISP is tha t i t s external syntax is qu i te equal to
i t s abstract syntax, represented w i t h i n the computer
by a binary tree. The LISP syntax is approximat ively
that of DELs, as spec i f ied above. I t is therefore an
exce l len t model for our execution scheme.

2 -THE 3L-MODEL

Consequently our d i rec t execution scheme is
based upon an in terna l l i s t - s t r u c t u r e d form using
LISP as model. For each high level language a LISP-
Like,Language (3L) is defined (e.g. fo r PASCAL :
P3L, fo r COBOL : C3L, e t c . . .) . For each 3L form an
ed i to r is w r i t t en . I t ensures a b i d i r ec t i ona l com-
munication between the external form (source- text)
and the in terna l one (3L form). For each 3L form,
an in te rp re te r is w r i t t en . I t evaluates the associa-
ted 3L form on a hardware processor, specia l ized in
l i s t processing : the 3L-MACHINE (M3L). For any
high level language the d i rec t -execu t ion scheme,
described in the f i gu re I , is obtained.

L HIGH LEVEL LANGUAGE J

EDITOR__

II
AS~)ClATED INTERNAL 3L FORI,¿

I
L

INTERPRETER E
M

a.

Figure 1 : THE 3L-MODEL

106

The LEM language
The 3L-model includes two processors which exe-

cute two d i f f e r e n t tasks. Edi t ion processing is es-
s e n t i a l l y non-numerical and consists in processors
such as : l ex i ca l parsers, syntac t ica l parsers, ed i t
tors. In te rp re ta t ion processing is mainly associated
with the environment t rans fer , Thus, in the ed i t i on
step as in the i n t e rp re ta t i ve steps non,numerical
processing is ~revalent, I t w i l l therefore be ex~
pressed in a s lng le language wi th the intend of sups
port ing the emulation funct ions ~ the Language fo r
EMulation (LEN),

LEi4 is a high level microprogramming language,
On the one hand, i t s goal is to support the emula~
t ion . On the second hands the great symbolizat ion of
LEM makes i t s use easier for persons who do not have
to be special ized in the hardware s t ruc ture ,

, The 3L-machine
The 3L-machine is an emulation which can deal

wi th any language provided that before any operations
i t is put on a f u l l y parenthetized pref ixed notat ion,

LISP gives a f u l l sa t i s fac t i on to th is de f in i~
t i on , thus M3L can be regarded as a LISP-machine,
Today, several studies on LISP-machines have been
made, in software [10] , in a microprogrammed way on
the B1700 [11] , or wi th microprocessors [12],However,
the project which is under study at MIT Z13] is the
most important one, This shows how a t t r ac t i ve archi~
zectures based on ~languages are. We w i l l re fer to

them as ~,arch i tec tures [14] .

Nevertheless, these plans are only deal ing wi th
LISP and i t s own concepts. As fo r the hardware rea-
l i z a t i o n s , the host processor is not necessar i ly a
special ized machine ; sometimes i t is equipped wi th
hardware tools which are valuable but too much or ien-
ted towards LISP concepts. Rather than discussing the
semantic features of LISP our aim was to show the
common charac te r i s t i cs of every 3L forms and give
them a d i rec t expression through the hardware.

3 - THE GENERAL ARCHITECTURE OF M3L

The M3L project was i n i t i a t e d in september 1977
with a systematic study of LISP i n t e r p r e t a t i o n . F i r s t ,
we defined a pseudo-machine and then we b u i l t a simu-
l a to r on which a microprogrammed LISP in te rp re te r was
wr i t t en , The simulat ion measures [15] prompted a new
design for the prototype present ly in phase of achie-
vement. These measures showed how important some re-
sources are, more prec ise ly the p a i r - c e l l s memory.
From a funct ional point of view, the r e c u r s i v i t y me-
chanism is the most c r i t i c a l . We shal l hence develop
these two points more l a t e l y .

1. The synoptic of M3L
The general organizat ion of M3L is very simple.

The resources (memories,registers,operators) are bus-
sed on a s ingle communication path, using very con-
vent ional t r i - s t a t e connections.

2 5 6 r m I

64

PAIR-CELLS MEMORY
(RAM)

16k

STACK MEMORY

.

B

4k

CONTROL
SIGNALS

256
0Q0

EXECUTIVE MEMORY
(ROM)

MICROPROGRAMS
MEMORY

(RAM)

100

IE

Figure 2 : ARCHITECTURE OF M3L

107

The f igure 2 shows the synoptic of the M3L pro-
totype wi th the parameters which were retained in
order to va l ida te the 3L~model~

The datapath is 16-b i t wider which corresponds
to the maximal size of the p a i r - c e l l s memory (64 K),
The numerical processing is carr ied out by a b i t~
s l i ce ALU which is r e l a t i v e l y powerful(AMD 2903), A
l i t t l e ar i thmet ica l processor (AMD 9511), connected
as a per iphera l , al lows the d i r ec t achievement, in
hardware, of the more complex a lgebr ica l funct ions•
Inputs/outputs are also managed by special ized chips
of the Ai4O 2900 fami ly , Once again we f i nd the con~
vent ional funct ions of the Von Neumann arch i tec ture
but, here, they take a marginal place,

The resources of M3L consist only in reg is ters
and constants, Registers are div ided in to four cater
gories

• A i reg is ters i~EO,15~
They are used for current tasks and informat ion
t rans fer between the microprocedures

• B i reg is te rs iE[0,255]
Theyserve as global reg is ters fo r every micropro-
cedure, they contain the descr iptors of the cur-
r e n t l y emulated system

• T i reg is ters i~ [0 ,31]
Theyare f l i p - f l o p s which give the current status
of the system, They are global resources and some
of them can be set or reset by the microprogrammer

,• Ri reg is ters i~EO,3J
Theymake the use of r e c u r s i v i t y possible owing to
t h e i r l o c a l i t y .

The table 1 shows the s ta t i c occurrences of the
reg is ters in the LISP mic ro in te rpre te r .

i
Reg i sters

A

B 49

T 0

R 141

Tab] e 1

o l i 2
265 37 9

6 2

0 0

68 26

3 4 5 6 7 8

8 6 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

7 0 0 0 0 0

Registers occurrences

In our LISp i n te rp re te r , only 5 A i reg is ters
were necessary fo r supporting the parameter parsing•
The small number of B i reg is te rs resul ted from the
face tha t , in the s imulat ing environment, the para-
meters of the emulated system were qui te non~existen~
as LISP mainly deals wi th non-numerical processing
and as the escape concept was i n tens i ve l y used fo r
w r i t t i n g the i n te rp re te r (see sect ion 5.1) Ti reg is -
ters were put aside, Four R i reg is ters only were
necessary to support the local environment of the
microprocedures. We shal l see that t h i s considerat ion
had an important impact on the stack memory organi -
zat ion.

3• The micro-contro l
The microprograms, w r i t t en in LEM, are compiled

to produce f ixed microcode. The great d i v e r s i t y of

control s ignals to provide (in pa r t i cu l a r to control
the t r i - s t a t e bus) has led to a two- level micropro-
gramming• Here, the used technique is d i f f e r e n t from
the microprogramming wi th a real second level re fe r -
red to as nanoprogramming. To execute a micro-
i ns t ruc t i on through the datapath one must :

I . provide some parameters :
number of A i , Bi . . .
long, short constant
number of branch func t ion , of ALU funct ion. . .

2. def ine an act ion to be executed, i . e . state
a pa r t i cu l a r data t rans fer through the data-
path.

The f i r s t level of microprogramming, which cor-
responds to the f i r s t par t , is v e r t i c a l . Thus, the
e f f o r t of the LEM compiler is less important and the
size of the mic ro ins t ruc t ions can be shortened. In
add i t ion , t h i s reduces the amount of microcode to be
swapped during contro l switches.

The second par t , f i xed fo r a given act ion, s t i l l
requires much more b i t s fo r the d i r ec t control of the
gates. The repe t i t i on of such a long dead-bi t se-
quence is cumbersome. Thus, the act ion tobeexecuted is
speci f ied by the second level of microprogramming,
in a s ing le hor izonta l word where each b i t d i r e c t l y
contro ls the gates. I t is ca l led the executive•

The format of a m ic ro ins t ruc t ion is

8 32

. I P n l

opc represents the code number of an execut ive and
the P i ' s are the arguments. The size of micro ins t ruc-
t ions is 32 b i t s . To the operation code (opc) can
correspond up to 256 execut ives. Theo re t i ca l l y , a
great number of executives can be def ined, but prac-
t i c a l l y , the f a c i l i t i e s of a datapath are never com-
p le te l y put on use : our s imulat ion of a LISP system
required 60 executives only. The executives reside in
fas t PROM memory (t A= 50 ns) wi th 256 words of
lO0-b i t length.

The cycle time of the mic ro ins t ruc t ions is f i xed
to 500 ns. I t may seem to be long fo r a modern tech-
nology but wi th regard to ~he power of the microins-
t ruc t ions i t is a good speed : the cycle s ta r ts wi th
the mic ro ins t ruc t ion Fetch (i00 ns). Then, i t i nc lu -
des some reg is ters moves and always a main control
phase (200 ns). As the case may be t h i s phase performs:

- an access to the p a i r - c e l l s memory
- an ar i thmet ica l operat ion on the ALU
- a context switch wi th an access to the stack

m~nory
- a refresh cycle

Hence, the mic ro ins t ruc t ion cycle includes the access
to the d i f f e r e n t memories. This resu l ts from the fac t
that the s imulat ion has shown that most of the
accesses to the p a i r - c e l l s memory are performed, on
an average, each three mic ro ins t ruc t ions . Thus, M3L
can be viewed as a memory-to-memory a rch i tec tu re .

108

4 - THE PAIR-CELLS MEMORY

The pair-cel ls memory is the main memory of
i43L. I t contains 64 K of identical cells with the
following format :

(CAR) (CDR) (DES)

In tne 1~3L prototype, the s ize of FO (in LISP :
CAR) and Fi (in LISP : CbR) f i e ld s is equal to the
datapath s ize (16 b i t s) , The f i e ld F2 (a byte) ser~
ves as a descriptor of the pair, These f ie lds can
be accessed to independently in the read/write mode,
Thus, we have the equivalence between :

the LISP functions

(SETQ X (CAR 'Y)I

(RPLACA 'X 'y)

the LEM microinstructions

X÷FO(Y)

FO(X) ÷ Y

(X and Y are M3L registers)

The measurement of the memory accesses has
shown that a CAR access is often followed by a DES
ana then a COR one, This corresponds to the "decor
ding" of the cel l , Therefore, the read access to the
di f ferent parts of the cells has been thoroughtly
elaborated. This fact is emphasized by the addition
of the FETCH microinstruction :

FETCH X INTO y AND Z

Y ~ FO(X)

Z ÷ FI(X)

DES ÷ F2(X)

DES is a pseudo-register devoted to the descriptor
f ie ld .

At the interpretative step, this microinstruc~
tion, similar to the fetch~operation of the Von Neu-
laann systems, real ly speeds up the decoding operas
tions and the passage of arguments to the microinter~
prefer procedures. I t permits 31 percent of the me-
mory accesses to be avoided,

The pair~cells memory is block organized, The
three blocks correspond to the CAR, COR and DES
f ields respectively~ As CAR and CaR blocks are 64 K
words of 16 bi ts, i t is clearly implied that the
pointers deal with real addresses, As a matter of
fact, we have implemented no CDR-coding mechanism
because we think that the prof i t in memory space
should be lower than 10 percent of the prototype
cost, and i t does not j us t i f y the complexity intro-
duced by i ts management, As we wished to validate
tile 3L-model rapidly, the prototype only features a
16-bit addressing and a re la t ive ly small main memory,
Presently, a new version of M3L with a 24-bit ad~
dressing is studied.

The DES block is 64 K words of 8-bits. Logically,
each F2 f ie ld can be divided into contiguous or su~
perposed sub-fields (F3,F4 . . .) . They can also be
accessed to independently in the read/write mode.

DES
7 6 5 4 3 2

/ ,
i ~ i 1, /'%' , , / / /

/ / I

F2

F3

F4

F5

F6

..

The access functions to the pair-cel ls are
generalized to :

X + Fi(Y)i=O,n or Fi(X)i=O,n ÷ Y

The slicing capabil ity of the descriptor byte
results in a good optimization of descriptors enco-
ding. I t allows a direct access to any pair-cel l
f ie ld and yields a good output environment for the
editor (DES encoding) and a good input environment
for the interpreter (DES decoding) because, in these
two steps, there are no sh i f t , compacting or decom-
pacting to perform.

The access functions to the DES block are achie-
ved in hardware by a gadget (MPX) whose basic prin-
ciples are developed in [8]. I t performs parallel
just i f icat ions on the DES sub-fieds in a purely com-
binatory way. The sub-fields are defined by a mask
sourced From the executives. We said above that such
tools are unaesthetic but, as the operation f ie ld is
only 8-bi t wide, i t can be achieved very easily and
i t offers an access to the DES sub-fields as fast as
that of the FO and F1 f ie lds.

The technology used for the pair-cel ls memory
is the dynamic-MOS RAN (TMS 4116). Its fast access
time (t A=150 ns) has enabled the inclusion of the
read/write cycle in the microinstruction cycle. The
drawback of dynamic memory is that additional refresh
operations are required. In M3L, they are mainly per-
formed during register-to-register moves. Note that
new technologies wi l l eliminate this inconvenience
rapidly and wi l l strenghten the trend to d i rect ly
access the main memory in the microprogramming envi-
ronment.

5 - THE STACK MEMORY

1. The recursivi ty in the LEM language
LEM is a r ecursive language, this is absolutely

necessary in tree processing. A LEM module is compo-
sed of l i t t l e procedures which are independent and
not ordered. They can refer to each other and even
to themselves. In control switching from a micropro-
cedure to another, the Ai global registers are used
for parameters passing and the R i local registers
are automatically saved.

109

l

AI AI P2

R

P1 picks i ts input arguments into the A i registers
and outputs i ts results to P8 via Ai 's . The object
of the R i registers is to maintain the value of A i
registers in the environment of PIo Thus, their
value cannot be erased by the application of P2.

To the r e c u r s i v i t y an automatic escape mechanism
was added. Wr i t t ing top/down recurs ive parsers re-
quires such tools . They are s im i la r to the software
in te r rup ts (l i ke ON condi t ions of PL/l).Escapes and
r e c u r s i v i t y are two concepts which are c lose ly rela~
ted, hence they were merged in order to o f f e r a bet-
ter systematizat ion of the control t rans fer between
the microprocedures. I t is thus stated that in LEM:

- ca l l s are recurs ive
- returns are escapes

2. The stack memory management
The object of t he - recu rs i v iLy stack is to save

the context of the ca l l i ng microprocedure during a
CALL i ns t ruc t i on and to restore i t on the corres~
ponding return i ns t r uc t i on , A 'context comprises
mainly : the local reg is te rs (R i) , the microprogram
counter (~PC) and the escape tag (ESC),

We f i r s t thought that the size of the context
would be important because of the number of local
registers required For tree processing, Therefore,
our preliminary architecture included a complex
memory stack processor for the management of CALLs
and ESCAPEs. I t consisted in a disk f i l e , which
simulated the v i r t u a l stack m~nory, and a c i r c u l a r
queue which simulated the real stack memory and was
implemented in a fas t memory, In order to save a
r~aximum of memory space, only the used R i reg is ters
were saved when a switch occurred,

Fortunately th i s "gas-works" processor was only
achieved in software, We were surprised when the f i r s t
LISP in te rp re te r was wr i t t en , As a matter of f ac t ,
only four Ri reg is te rs were required (see table i) ,
The reason is that in tree processing the use of the
r e c u r s i v i t y resu l ts in very concise contextual i n f o r -
mation : genera l ly , She cu r ren twork (Ai) is done on
the CAR and we only have to save the CDR (see also
the sect ion 6,1), This fac t was confirmed b y t h e dy-
namic measures ; the average number of pushed Ri
reg is te rs is 1,3.

F inal ly , we chose the simplest solution, The
number of R i registers is stated to four and the con~
text is located in a single pseudo register wilere
Ri=O, 3,~PC, ESC can be accessed to. Therefore, the
status register is 90-bit wide, During CALL and

ESCAPE operations i t is simply stored into (or res-
tored from) the stack memory. In one microinstruc-
t ion cycle the micro-context is pushed or popped.

The stack memory consists of 16 K words which
are 90~bit wide. This allows the performing of
16 000 recursive CALL successively. Our dynamic mea-
sures, upon l i t t l e LISP programs, have shown that
the number of contexts increases rapidly and then
seems to become stable a f te r 100. However, because
of the low cost and the fas t access time of the dy-
namic~MOS m~nory we used the same technology in the
p a i r - c e l l s memory and in the stack memory, thus d ic -
ta t i ng the 16 K s ize. Because of t a i l - r e c u r s i v i t i e s
e l im ina t ion and of the small size of the p a i r - c e l l s
memory, the stack is ce r t a i n l y too large fo r t h i s
version of M3L. This fac t w i l l have to be confirmed
in fu r the r measurements.

3, The CALL microinstruction
The CALL. Mechanism of M3L is i l lus t ra ted in

the figure 3.

ESC code

I
1
In

ESC

STACK

out

=

LOAD
command

I
in

~PC

STACK

e~

Y
] MICROPROGRA. I COUNTER +

116

out

116

Figure 3 : THE MICRO-CONTROL UNIT

The call microinstruction has the-following
format :

0 78 13 16 31

l i co, I
when a call microinstruction is executed, both the
escape number (passed as argument) and the return
address (uPC) are saved and a branch operation is
done according to the address specified as second
argument (~). The execution goes along with three
phases :

"1"10

- return address computation : incrementation of uPC

context, saving : ESC code ESC stack ;
uPC÷~PC stack

i n i t i a l i sa t i on of uPC : m÷uPC

which correspond to two register moves and an access
cycle to the stack memory.

4, The escape microinstruction
The object of the escape microinstruction is

to make a branch to the last microprocedure of the
current process which has previously set up the same
escape code• Its format is :

0 78 13 31

i ESCAPE I E SC code ~////////~
The execution cycle is d iv ided in to two phases:

- fetch of the preceding context from the stack
memory

- i f the ESC code,which is passed as argument,cor-
responds to the restored ESC code then i n i t i a l i z e
uPC with the return address.

Notice that wi th t h i s algor i thm, the same
escape mic ro ins t ruc t ion is performed as many times
as the ESC code of the mic ro ins t ruc t ion is d i f f e r e n t
from the fetched one. This process enables the stack
to be scanned un t i l the searched context is found.

6 - EXAMPLES OF MICROPROGRAMMING

1. Interpretation o.f.a HLL control construct
When the 3L-model is applied to a HLL language,

the f i r s t task is to design the associated 3L form.
For example, le t us consider the following HLL con-
t ro l construct :

i f boolexp then statementl else statement2

The corresponding 3L form might be :

(IF boolexp statement1, statement2)

which gives, for example, the in terna l form :

\ I , I

",.
I ,,I ,, I, I
/ \

statementl statement2

N : node

F : funct ion

When i t is ca l led , the IF procedure which i n -
terprets the ' i f ' func t ion receives the pointer to
i t s argument l i s t in the A1 reg is te r . In LEi,I :

procedure if ;

begin

fetch A1 into A1 and R1; % to save the CDR in R1%

call exec ;

if A1 ~ 'nil' then A1 ÷ FO (RI~ % CAR %

else A1 ÷ F1 (R1);% CDR %

call exec ;

escape

end

- EXEC : is the general evaluator of the interprete~
I t picks in A1 the pointer to the sub-tree
i t has to evaluate, and returns i t in A1
again to the result

- checking of boolexp is done l ike in LISP,

Seven microinstructions only are required for
the fixed representation of this microprocedure, On
M3L, i ts execution time is 3 us to which we must add
the evaluation time corresponding to the two calls
of exec• They s t r i c t l y depend on the complexity of
the sub-trees to be evaluated,

2. The i n te rp re ta t i on of LISP
---Present ly, a l i t t l e LISP in te rp re te r is opera~

~ional on the simulator of the M3L prototype. This
i n te rp re te r requires 670 32-b i t m ic ro ins t ruc t ions ,
I t includes tile 21 pr inc ipa l standard funct ions of
LISP.

• The EVAL procedure : the ro le of th i s proce-
dure, in our LISP in te rp re te r , is to decode the
objects and pass the argument l i s t to the funct ions.
When i t is applied to the d i f f e r e n t kinds of LISP
objects i t s response-time is :

numbers : 2 us
atoms : 2,5 us
functions; 6,5 us
quote : 5us

• The standard funct ions : the fo l low ing table
gives the response-time fo r the typ ica l LISP func-
cions. This time does not include the inner EVAL
sub-cal ls .

LISP
funct ion us

CAR 2

CDR 2

CONS 10

QUOTE 1

RPLACA 4

LISP
funct ion us

RPLACD 4

LISTP 3

ATOM 3

NULL 2,5

ENDLISP 0.5

t11

The measurement of some standard funct ions is
dependent From the environment in which they are
executed:

EQ i f equal and non-num,
- - i f non-equal and 1 ~hnon-num,

i f non-equal and 2 th non~num,
i f non-equal and non-num,
i f equal and num.

GT s ta r t i ng wi th fa lse
- - fa lse aL the pth level

t rue wi th n arguments

ADO1 i f numerical
else

SETQ wi th n a f fec ta t ions

IF wi th se lect ion true
wi th se lect ion t a r e and n
statemenzs in tTE~SE clause

COND wi thout clause
~ w i t h n clauses whose pth is

selected and involves the
execution of n S~expressions

5 ~s
5,5 ~s
6, 5 ~s
9 us
9 ps

5,5 ~s
4+E (p~l) .5]us
n.5 ~s

I0,5 ~s
2,5 ~s

3+E (n~l) .4]~s

3 ~s

4,5+2+ ((n~1).3.5) ~ s

1,5 ~s

2 ,5+((7+5) . (p~ i))
+7+((n.1).7)~s

These times do not include the inner EVAL sub-
ca l l s , because cheir value depend on the complexity
of the sub-trees which are evaluated, Here are three
complete examples ;

The execution of :

(SETQ X (CONS (CAR X)(CDR Xl))

(RPLACA 'X (CAR 'X))

(IF (EQ X 'A)(SETQ X 'B)(SETQ X 'AI)

requires :

48 ~s

29 ~s

I ~ ' A " 4 3 ~s
'A 50.5~s

In the three examples studied, advantages of
about 14 ~imes speed improvement are rea l ized over
the ClI-HB LISP which is running on an IRIS 80 computer.

CONCLUSION

The archi teczure of M3L is not spectacular .This
machine is equipped wi th no black boxes performing
super-Functions, nor complicated processors. I t qui te
consists o~ memories : the pa i r~ce l l s memory and the
stack memory deal wi th 70 percent of the prototype
chips. However, we th ink that t h i s a rch i tec ture is
innovat ive and ~hat i t s e f f i c i ency in l i s t processing
is great. The reason fo r i t is that the top/down
st rategy used here has resul ted in a good d i s t r i b u -
t ion of the emulation funct ions at every step of the
model : 3L form, LEM, hardware sLructure.

Rather than developing a LiSP-machine our aim
was to inves t iga te emulation in a more general con-
tex t . Today, the LE,4 micro-software fo r the in te rp re -
ra t ion of PASCAL is in the phase of achievement.Fol-
lowing the LISP example, we focus in ed i t i on proces-
sing so as to improve i n t e r a c t i v i t y , Thus, the s imp l i -
c i t y and the v e r s a t i l i t y of M3L lead th i s machine
towards the range of i n te rac t i ve app l ica t ions . In
t h i s area, M3L and in a more general fashion X~archi-
tectures can improve h igh ly the man/machine communi~
cat ion.

ACKNOWLEDGEMENTS

This work was done at Paul Sabatier Un ivers i t y
in the laboratory of Professor R. BEAUFILS who encou-
raged our research in t h i s way and is sponsored by
the french IRIA under grant #79-027 fo r the achie-
vement and evaluat ion of a prototype o f fe r i ng PASCAL
and LISP c a p a b i l i t i e s .

REFERENCES

[1] Y. CHU
Direct~execut ion computer a rch i tec ture
IFIP Congress - Montreal - 1977

E2] L.W. HOEVEL
"IDEAL" D i rec t l y Executable Languages. An ana-
l y t i c a l argument fo r emulation
IEEE Trans.on Computer-Vol.C-23 n°8 - 1974

[3] J.P. SCHOELLKOPF
A t u t o r i a l on high level language machine fo r
PASCAL
ENS-IMAG Report 131-Grenoble-Oct .1978

[4] W,T. £JILNER
Design of the Burrought Bi700
FJCC AFIPS Montvale,New Jersey - 1972

[5] G~J. MYERS
Advances in Computer Arch i tec ture
John Wiley & Sons Interscience Pub. 1978

E6] W.T. WILNER
Bi700 Memory U t i l i z a t i o n
FJCC AFIPS Montvale, New Jersey - 1972

[7] E.J. ORGANICK, J.A. HINDS
In te rp re t ing machines : Arch i tec ture and program-
ming of the BI700/BI800 series
Elsevier North Holland - 1978

[8] D.LITAIZE, B.LECUSSAN, J.P.SANSONNET, J.PETIT
An e f f i c i e n t hardware tool fo r b i t pat tern
manipulat ion
EUROMICRO Congress - Venise 1976

[9] J. Mc CARTHY
LISP 1.5 Programmer's Manual
MIT Press - Cambridge - 1962

EIO] A. LUX
Etude d'un module abs t ra i t pour une machine LISP
et de son implantat ion
Th~se de 3 eme Cycle - USMG - Mars 1975

[11] M.L. GRISS, M.R. SWANSON
A microprogrammed LISP-machine fo r the Burroughs
B1726 SlGMICRO NEWSLETTER VoI.8 n°3 - 1977

[12] G.L. STEELE J r . , G.J. SUSSMAN
Design of LISP-based processors o r , . . .
MIT AI MEMO n°514 - March 1979

[13] A. BAWDEN, R. GREENBLATT, J. HOLOWAY
LISP machine progress report
MIT Report n°444 - August 1977

[14] E.J. ORGANICK
New d i rec t i ons in computer systems a rch i tec tu re
EUROMICRO JOURNAL - September 1979

[15] J.P. SANSONNET, II. CASTAN
Un exemple d'emulateur : M3L
Progress Report LSI # 131 Toulouse - June 1978

¢12

