
SECURITY AND PROTECTION OF DATA IN THE IBM SYSTEM/38

Viktors Berstis
IBM General Systems Division
Rochester, Minnesota 55901

ABSTRACT

The IBM System/38 machine architecture provides
data security through addressability control and
protection domains while minimizing overhead for
this service. This paper describes the addressing
mechanism, basic data organization and process
structure of the System/38. These constructs are
fundamental to the operation of the security
mechanism. A description is given of security in
the architecture and how it can be extended.

INTRODUCTION

Security as used in this paper refers to the
control of access to data by multiple users of a
computing system. With the increased concern in
the data processing community for security, new
computing systems are being developed which
address this subject. In the IBM System/38, the
security mechanism is part of the basic machine
architecture as opposed to the operating system.
This paper describes the System/38 machine
architecture and its implementation of security.

The primary goal of the security mechanism in the
System/38 is to provide control of access to data
while minimizing overhead. Among the wide range of
potential System/38 users are many who will have
no immediate need for the full range of security
functions. These users will experience little
overhead in a minimum security environment.
Secondarily, the security mechanism helps contain
programming errors, thereby increasing the
reliability and integrity of the system. It is
with these goals in mind that the System/38
security aspects of the machine architecture were
defined.

SECURITY PRINCIPLES

Three basic principles underlie the security
architecture of the System/38. The first is the
implementation of capability based addressing. The
second is that objects called User Profiles
determine the protection domain of a process. A
user profile contains a set of access rights to
system objects. The third is that processes are
isolated from each other. The implementation of
these principles is shown in light of the
addressing structure and the way the instructions
are supported.

STORAGE AND OBJECTS

The System/38 storage consists of semiconductor
memory and secondary disk storage with up to 2.6
billion bytes in a maximum configuration. This
storage is organized as a single virtual address
space divided into 16-megabyte segments, further
subdivided into 512-byte pages. The 64-bit virtual
address is composed of a 40-bit segment identifier
and a 24-bit offset.* A single microcode component
manages the virtual storage, its allocation and
paging. The remaining components of the system,
including the channel, all use the same virtual
addressing mechanism for referencing storage.
Segment identifiers of destroyed objects are never
reused. (It is assumed that all of the segment
identifiers wi~l never be consumed in the life of
the system.)

Objects, which are high-level constructs such as
programs, queues and indexes are stored in one or
more segments. The segments have header
information, seen only by the microcode, which
identifies the object type contained in the
segment and contains all of the attributes
pertinent to that object. The header information
also identifies additional segments which may be
required for a given object type. The segment
identifier of the base segment is used internally
to uniquely identify an object.

Table 1 itemizes the various types of objects
defined in the architecture. High-level machine
instructions are used to operate on objects. These
instructions maintain the integrity of the
object's internal data structures and permit
different implementations of their functions
without impact to their users. Except for one type
of object called a space, no provision is made to
address bytes within objects. The contents of a
space are directly addressable and operations at
the bit level are allowed.

* The hardware only supports 64K-byte segments and
a 48-bit address. The microcode extends the size
of the virtual address to 64-bits at the cost of
not allowing more than 16 million segments to
exist at any given time.

CH1494-4/80/0000-0245 $00.75 © 1980 IEEE 245

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800053.801932&domain=pdf&date_stamp=1980-05-06

Program variables are typically stored in a space.
A space may be optionally associated with any
other object type and is then referred to as an
associated space. These spaces are used as a
convenient place to store user defined data
pertinent to that object. They are usually
allocated in a separate segment since their
allocated size may vary.

ADDRESSING

Addressability to objects is supported using
tagged pointers. Pointers are capabilities in that
they represent a unique identifier for objects and
bytes in the system. Pointers, however, do not
always contain access rights, as will be described
later.

POINTER
(CAPABILITY) 16 BYTES

I
VIRTUAL I ACCESS OTHER
ADDRESS I RIGHTS INFORMATION

\

%

VIRTUAL ADDRESS

I I 1
0 39 40 64

SEGmeNT OFFSET
IDENTIFIER

OBJECT

BASE SEGMENT

SEGMENT ~ L ~ SEGMENT

HEADER " I I HEADER

OBJECT I I M ° ~
CONTENTS I I OBJECT

Lif

Figure I. Addressing

Pointers are stored in spaces as 16-byte, quadword
aligned entities which contain a virtual address
and other information. The memory hardware
supports tag bits which are used to authenticate
pointers. The tag bits cannot be set on by the
user so that addressabillty to arbitrary virtual
addresses cannot be counterfeited. Any attempt to
alter the contents of a pointer causes the
associated tag to be removed and hence it is no
longer recognized as a pointer. The mlcrocod~
creates only valid pointers to addresses for which
the user is authorized.

There are four types of pointers: System Pointers
address objects; Space Pointers address a byte
location in a space; Data Pointers are like space
pointers except they also contain attributes of
the data they locate; and Instruction Pointers,
which act as label values for variable branches
within a program.

Addressability to objects is initially obtained by
using the object's name. An object called a
Context contains names of other objects and their
associated virtual addresses. When a pointer to an
object is required, it can be obtained by using
the Resolve System Pointer instruction, which
searches a specified set of contexts for the
desired name. A system pointer is returned
providing addressabillty to the corresponding
object, but not necessarily any access rights to
it. The process must have Retrieve authority for
any context it uses for obtaining system pointers
to objects.

A further authority check must be passed when an
instruction attempts to operate on the object
itself. The checks governing access to objects are
performed by a few common microcode components.
The first component provides a fast way of
fetching a pointer and verifying its type,
validity and the existence of the addressed
object. The second verifies that the process has
authority to use the object, synchronizes multiple
accesses to the object and performs various other
checks. This second set of verifications is only
used for object (as opposed to byte) oriented
functions.

INSTRUCTIONS, PROGRAMS AND OPERANDS

The System/38 machine instructions fall into two
classes. The first class consists of byte-oriented
computation, and branching instructions. These are
very similar to those found in other machines and
include arithmetic, logical and byte manipulation
instructions. The second class of instructions
perform hlgh-level functions on objects. Single
machine instructions perform operations such as
retrieving an entry from an index, enqueulng a
message on a queue or invoking a program. The byte
oriented instructions can only be used on the
contents of spaces. Other objects cannot be
accessed using the computation and branching
instructions. Consequently, the data structures
necessary to support these objects are protected
from arbitrary modification.

Machine instructions are never directly executed
in the System/38. Instead, they are translated
into micro-instructions which either perform the
operation "in-line" or invoke a mlcrocode
subroutine. The translation of a program is
analogous to compiling a low level language
program. The translation is done when the program
is created using the Create Program instruction as
illustrated in Figure 2. The input to the create
program instruction is a string of byte data with
the program's instructions encoded in the usual
opcode-operand fashion and a coded description of
all of the instruction operands (variables and
constants) used in the program. The translated

246

Figure 2. Program Creation

INPUT TO THE CREATE PROGRAM INSTRUCTION DEFINING THE PROGRAM

INSTRUCTION STREAM OPERAND DECLARATIONS

~UTOMATIC BINARY 4-BYTE
S T ~ ZONED 4-BYTE
A U T ~ PACKED 8-BYTE BASED

AUTOMATIC SPACE POINTER

MACHINE INSTRUCTION INTERFACE

PROGRAM

• I

S/38 INSTRUCTION
TRANSLATED INTO
MICRO-INSTRUCTIONS

I

• ~ U T I N E _ ~

CREATE

PROGRAM
INSTRUCTION

~ VISIBLE IN A SPACE OBJECT

~ NOT VISIBLE

~ MICROCODE
/ I SUBROUTINE TO

J I SUPPORT OBJECT

program becomes an object in the system, and in
this form it can be executed by issuing a call
instruction. Programs cannot be modified when in
the form of an object, nor can they be invoked at
any point other than their proper entry point.
This prevents unpredictable results if sections of
a program were bypassed.

The create program instruction is one of the types
of instructions which invokes a relatively large
microcode subroutine. Other instructions may be
translated into just a few micro-instructions. An
example is the ADD instruction which can produce a
large variety of micro-lnstruction expansions. The
description of the program operands is used
(during program creation) to both locate the data
and generate appropriate micro-instructions
depending on the data attributes.

The operands of a program are either constants
stored with the program or automatic or static
variables stored in a space. When a program is
invoked for the first time in a process (task),

the static variables are assigned to an available
region of storage (in a space)and initialized to
the specified values. Similarly, automatic
variables are allocated and initialized

(deallocated) on every call (return) of a program
in a process. These variables and constants are
directly addressed by the translated program. When
instructions reference objects or other regions of
storage, they are always indirectly addressed with
pointers.

PROCESSES

A process is a machine construct that executes
programs on behalf of a user. A process is started
with an Initiate Process instruction that accepts
a list of attributes as input to determine the
components and initial state of a process. The
first conponent is an object called a Process
Control Space, which is used to hold all process
related data which needs to be protected from user
access. Data defining the current protection
domain of the process is stored there, for

247

example. The second component is the initial
program to be executed within the process. Next
are two spaces specified for the allocation of
program automatic and static storage and organized
as stacks. As programs are invoked, their
variables are allocated in these stacks. Finally,
the most important component of a process, with
respect to security, is the User Profile which is
the basis for controlling the protection domain.

The principle of isolated processes is
accomplished quite naturally with the addressing
structure in the machine. No process can be
affected by another without intentionally
providing some sort of access to itself
(e.g. addressability to its stack spaces). This
leaves open the "Trojan horse" problem, but few if
any systems have a completely effective solution,
aside from total separation. Since it is
relatively easy to share data in the System/38,
little effort is required for a higher security
level process to pass information to lower level
security processes.

USER PROFILE AUTHORITIES

A user profile is an object used to establish the
protection domain of a process. Each user of the
system is identified with a user profile. When a
user signs on, the operating system positively
identifies the user and initiates a process with
the appropriate user profile as its primary source
of authority. There are four categories of
authority available to a user profile, as shown in

Table 2.

The first is storage resource authorization which
limits the amount of storage allotted to the user
for creating objects. Any objects the user creates
are charged against this limit and are owned by
that user profile. The ownership of an object
implies certain additional rights to an object as
described later.

The second category of authorization controls the
use of privileged instructions. Various machine
instructions are considered privileged and may be
authorized to a user profile in any combination.
Examples of privileged instructions are those
which create user profiles, initiate processes and
perform diagnostic functions.

The third category is the access rights to
individual objects in the machine. There are eight
object authorities which can be explicitly
granted, in any combination, to specific user
profiles for specific objects. For example, one
user profile can be authorized to only retrieve
entries in an index, while another can be
authorized only to insert new entries. The object
authorities represent the most important category
for general data protection.

The fourth category consists of the special
authorities. These represent authority to perform
pervasive functions which are not necessarily
associated with a particular object or type of
instruction. Examples are the ability to modify
machine attributes, perform service functions, and

to implicitly have all of the object authorities
to every object. This All Object special authority
can be used for the system security officer's user
profile, for example.

OBJECT AUTHORITIES

The eight object authorities may be conceptually
placed in three groups. The first deals with
object existence; the second with object access;
the third with access to the contents of objects.
The operations performed by the machine
instructions are classified into the appropriate
groups and the corresponding authority

verification is included as part of their
operation.

For example, the destroy object instructions
change the existence of objects and therefore
require Object Control authority for the object
being destroyed. Similarly, the instruction which
renames an object changes the name with which the
object is accessed and therefore requires Object
Management authority be available to the process.
The object authorities, Retrieve, Insert, Delete
and Update, are appropriate for operations on the
contents of objects which contain entries of
various kinds.

The Space Authority is required by the instruction
which produces a space pointer for the associated
space of an object (giving access to the contents
of the space). Space pointers to bytes within a
space can initially be obtained with only one
machine instruction. An authority check is made to
assure that the process executing this instruction
is authorized to obtain a space pointer to the
requested space. If not, an exception is signaled
and the space pointer is not created. Once a space
pointer is obtained for a space, the pointer may
be adjusted to point to any byte within the space
but not in any other object (segment), nor the
header of the space. The instructions which add
to, subtract from or set the space pointer address
within the space, check for an overflow or
underflow which would make the pointer address a
byte outside the segment. In addition, there is a
"low bound check" to keep the space pointer from
addressing bytes in the segment header.

AUTHORITY VERIFICATION

The object authorities available to a particular
user profile are stored internally as an entry in
an index for each authorized object. There is one
such index for each user profile. This index also
contains entries for all of the objects owned by
the user profile, and entries which indentify
which user profiles have been granted object
authorities for these owned objects. This indexing
supports instructions which produce lists of user
profiles authorized for a particular object and
lists of objects explicitly authorized to a user
profile. Figure 3 shows how these authority
relationships are implemented. Object D owned

by user profile A is authorized to user profiles
B and C.

248

USER PROFILE B

USER PROFILE A /IIOBJECT 1

- / U HORI j

Figure 3. Object Authorization

If every reference to an object required a look-up
in the user profile index, then this would imply a
significant performance penalty. For this reason,
additional measures have been taken both in the
architecture and implementation to minimize the
time required to verify authority.

Many objects, common system programs for example,
are intended for use by all users. For this
purpose, each object also has a set of public
object authorities defined, which are stored in
the header of the object. A system program may be
authorized with retrieve authority to the public
but not Object Control. This allows all users to
invoke the program but not destroy it. The public
authority check is performed early in the
authority verification sequence. Users not
requiring individual authorization of objects
would use public authorization for minimum
overhead.

Objects which are owned by a user profile also
require little time for authority verification
since the owner's authority is stored in the
object header rather than in the user profile's
internal index. When an object is created, the
process user profile becomes the owner and is
granted all of the object authority rights. (In
this way, the user can continue using the object
without further concern for authority as long as
other user profiles do not require access to the
object.

Objects can be created as permanent or temporary.
The difference between these is that handling
temporary objects requires less overhead.
Temporary objects do not provide authorization
controls and no attempt is made to safeguard their
contents in case of system failure. In fact,, if a
temporary object has not been explicitly destroyed
when the machine is shut down, it is destroyed at
the next IPL (initial program load).

Permanent objects are always owned by a user

profile. The owning user profile always posesses
the implicit ability to grant or retract authority
to the object. Temporary objects are never owned
by a user profile and their storage is charged
against a limit set for the process when it was
initiated.

AUTHORIZED POINTERS

When explicit object authorization is required,
the authority can be stored in the system pointer
used to address the object. This makes the pointer
a capability containing access rights. An option
on the resolve system pointer instruction permits
the user to request particular object authorities
to be stored in the pointer. Of course, the
process is not permitted to store authorities
(into the poiner) which are not available through
some user profile. The object authority
verification process is the fastest for these
authorized pointers because the users profile's
index need only be searched on the first reference
to the object. Subsequent references suffer
negligible overhead.

With authorized pointers, it is not possible to
retract authority to a given object and guarantee
that no user can subsequently access it. This is
because authorized pointers can be copied and
saved indefinitely in spaces for later use. If the
ability to absolutely retract authority is
necessary, then the object can be destroyed making
all existing pointers to the object useless. The
object can never be recreated with the same
virtual address since segment identifiers are
never reused. There may be cases where destruction
is not a desirable alternative (eg. the object is
frequently in use). In this situation, repeated
index searches for authority verification may be
necessary and the storing of authority in pointers
would be prohibited. The Authorized Pointer
authority is used to control which users may or
may not store authority in the pointer.

Note that space pointers need no authority checks
for their use. The access rights to a space are
controlled only at the time the space pointer is
initially obtained.

ADOPTED USER PROFILES

Thus far, the sources of object authority to a
process have been the process user profile, public
authority and authorized pointers. At times, the
protection domain must be altered within a
process. To accomplish this, the process user
profile can be replaced with another, under
appropriate authority controls. Also, it is
possible to add the authority of another user
profile to the one already available to the
process when special programs are invoked. These
programs are created with an attribute which says
they "adopt" their owners user profile.

The Adopted User Profile attribute permits a
program to have more authority than its caller.
This kind of program is useful when providing
system services through a program controlled
interface (a system program to initiate another

249

process, for example). Another attribute of the
program specifies if the adopted user profile's
authority is to be propagated to programs it
calls. If several programs both adopt and
propagate their owning user profile authorities,
then the currently invoked program has available
to it the sum of the authority of all of those
user profiles.

Since a program can be invoked to handle an
asynchronous event or an exception, the
propagation of adopted authorities is stopped and
not available below that point in the program
invocation stack. The event or exception handling
programs may, however, adopt their owning user
profiles and optionally propagate as can the
programs they call. Breaking of propagation at
exception and event handlers prevents a program
earlier in the program invocation stack from
gaining direct control in the protection domain of
a more privileged program.

Although there are many sources of authority, the
architecture does not reveal in which order the
authority sources are examined. This permits
changing the machine implementation as various
hardware and microcode design improvements are
made. In general, the faster checks are performed
first while the slower index searches are
performed last.

GRANTING AUTHORITY

There are various instructions for altering the
authority available to user profiles as well as
those which show what authority is available. The
Grant instruction is used to authorize other user
profiles access to an object. To grant authority
for an object to another user profile, the process
must possess the authority to be granted in
addition to object management authority for the
object. By not authorizing Object Management to
other user profiles, the owner of the object is
assured that further authorization does not take
place. The other categories of authority are
changed with a Modify User Profile instruction.
Again, the issuing process cannot grant more
authority than it itself has.

EXTENSIONS

The security architecture defined for the
System/38 is presently more than adequate for the
projected users of the system. The programming
languages offered are RPG III and the command
language in the Control Programming Facility
(CPF). Since there is no assembler on System/38,
it is not possible to manipulate pointers and
issue machine instructions that would compromise
any of the data structures supported by CPF or RPG
III.

The machine architecture has been designed to be
extendable so that new functions can be supported
as needs and experience grow. For example, more
protection between programs in a process may be
required. This could be accomplished by providing
another class of variables which would be
allocated in a protected region of storage. Other

programs in the process would not have access to
this data. With such protected storage, authorized
pointers and spaces could be used more freely for
securing data. Since the existing automatic and
static storage areas are contained in single
spaces within the process, any program may gain
addressability to other program's variables within
the process. The protected variables would offer a
safe place to store sensitive data within a
program invocation.

Another possible extension would be to support
read-only authorization of spaces. These could be
used to share commonly used data among processes
in a space without the possibility of accidental
or deliberate modification of that data.

SUMMARY

The System/38 achieves security primarily through
its capability based addressing structure,
authority verification and its inherent isolation
of processes. Memory tags assure that
addressability is restricted to authorized areas
of storage. A flexible authorization mechanism
provides various levels of control over access to
data and certain machine functions. The protection
domains of processes can be altered using
different user profiles as the sources of
authority. The architectural support of
multiprogramming permits sharing data as well as
isolation between users. Finally, the architecture
is extendable so that appropriate new functions
could be added.

REFERENCES

1 Denning, D E, and Denning, P J, "Data
Security," ACM Computing Surveys, Vol ii,
NO. 3, September 1979, pp 227-249.

2 Fabry, R S, "Capability-Based Addressing,"
Communications of the ACM, Vol 17, No. 7,
July 1974, pp 403-412.

3 IBM, "IBM System/38 Functional Concepts
Manual," (available with machine shipment).

4 IBM, "IBM System/38 Functional Reference
Manual," (available with machine shipment).

5 Linden, T A, "Operating System Structures to
Support Security and Reliable Software,"
Computing Surveys, Vol 8, No. 4, December
1976, pp 409-445.

6 Utley, B G, et al, "IBM System/38 Technical
Developments," IBM GS80-0237, 1978, pp I-II0.

250

Table I: System/38 Object Types

Object Type Description

SPACE

PROGRAM

USER PROFILE

DATA SPACE

DATA SPACE INDEX

CURSOR

QUEUE

INDEX

CONTEXT

PROCESS CONTROL SPACE

LOGICAL UNIT DESCRIPTION

CONTROLLER DESCRIPTION

NETWORK DESCRIPTION

ACCESS GROUP

Byte addressable storage

Internal form of a program consisting of an instruction
stream and operand descriptions

Indentification of a user and the user's authority

Homogeneous file of data entries

Logical file of entries in one or more data spaces

Access path to data space entries

Message queue for interprocess communication and
synchronization

Index containing up to 120 byte data records in
ordered sequence

Index for gaining pointer addressability to objects
by their names

Identification of a process (task) and repository for
internal control information

Identification and attributes for an input/output device

Identification and attributes for a device controller

Identification and attributes of a communications line

Groups objects physically together to improve paging
characteristics

25-1

Table 2. Authority Categories

Category
Authority Description

RESOURCE
Storage allotment Limit on storage space for permanent

objects

PRIVILEGED INSTRUCTIONS
Create user profile
Initiate process
Terminate machine processing
Create logical unit description
Create network description
Create controller description
Modify user profile
Modify resource management control
Diagnose

Initiate a user in the machine
Start the execution of programs in a task
Shut down machine operation
Configure a device
Configure a communications line
Configure a device controller
Change the authority of a user profile
Change various tuning parameters
Perform certain diagnostic functions

SPECIAL AUTHORITIES
All object
Dump
Suspend

Load

Process control

Service
Modify machine attributes

Implicit object authority to all objects
Make offline backup copy of an object
Truncate object to minimum size without
destroying, cannot use until loaded
Replace an existing object of create a
new object using a backup dumped copy
Allows the control over the execution
of other processes
To use internal service functions
Change system clock time, etc.

OBJECT AUTHORITIES -
Existence:

Object control
Access:

Object management

Authorized pointer

Contents:
Space
Retrieve

Insert

Delete

Update

Authorized on a per object basis

Control object existence: destroy, suspend

Control object access: rename, grant
authority, change addressabillty ...
Permits storing of authority in system
pointer to object

Required to obtain space pointer to space
Retrieve entries from an object: retrieve
entry from data space ...
Insert new entry in object: add entry
to data space ...
Remove an entry from object: delete entry
from data space ...
Modify an existing entry in object:
update entry in data space ...

252

