
A ~0D0~EGY K)R PROTOCOL 
E~Z~ ~ S~IFIC.ATION 

BA~nON~EX~ENDED 
STATE TRANS~I~ ~D~L 

~ a~mg 
CNCP Telec~,,-,unica~ons 

Toronto, Ca~ 

ABSTRACT 

A lot of effort is being dedicated world- 
wide to defining Open Systems Interccnnection 
(OSI) protocol standards and tools for formally 
describing them. Hc~ever, little work is done in 
developing methods for applying these tools to 
the development of new protocols. 

This paper presents such a methodology 
based on OSI and software engineering principles. 
It provides general guidelines for designing pro- 
tocols based on an extended state transition 
formal description technique (FDT). It enEoha- 
sizes a systematic, analytical and algorithmic 
approach to achieve ~t~letaness of protocol 
specification during the protocol design process. 
Its possible application to the development of 
OSI protocol standards is discussed and suggested 
for study by the standards cu,,Lunity. 

1. Introduction 
Due to the complexity of designing and 

specifying a complete set of standards for OSI 
[Zim~, there has been a growing interest in both 
the International Telegraph and Telephone Consul- 
tative Committee (CCITT) and the International 
Organization for Stardardization (ISO) in 
developing methods for formally describing the 
services and protocols of OSI. Of these methods, 
the Extended Finite State Machi~ Specification, 
also called the Extended State Transition (EST) 
model [ISO/TC97/SCI6/ N1347], has reached the 
higher level of maturity and acceptance because 
of its familiarity to protocol designers and 
implementors. The EST method has two forn%s of 
representation: a graphical form and a program- 
like linear form. This paper presents sane user 
guidelines for applying the linear form to the 
design and specification of protocols. 

The S.70 Teletex transport protocol [$70] 
was d~osen as the example in this paper because 
a) it is a well-known protocol which is inte- 
grated in the OSI transport protocol standard 

Permission to copy without fee all or  part  of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or  specific permission. 

© 1984  A C M  0 - 8 9 7 9 1 - 1 3 6 - 9 / 8 4 / 0 0 6 / 0 0 3 4  $ 0 0 . 7 5  

as Class O, b) transport protocol Class O is used 
within the CCITT and ISO FDT groups as basic trial 
example specification, and c) it is complex enough 
to demonstrate bow the user guidelines can be 
applied. Reference is also made to OSI transport 
protocol class 1 [Tran] when required. 

Section 2 presents a short description of 
the extended state transition FDT used. 

Section 3 presents the major steps in the 
design of OSI protocols as the basis for a 
methodology. These steps are service analysis and 
specification, and protocol specification. 

Section 4 elaborates on a protocol design 
metlXX~oiogy which consists of mathods for a) 
partitioning service and protocol elements, b) 
developing a formal service specification, c) 
deriving protocol elements from the service speci- 
fication, d) stepwise refinement of tb~ ixutocol 
specification to represent the relationships 
between protocol elements and service primitives, 
and e) choosing data structures. It suggests that 
campleteness of protocol specification should be 
achieved during the design process and not through 
post-design analysis and maintenance. An al~>- 
rithmic approach to achieve the completeness of 
the stepwise refinement process and hence the 
protocol specification is presented. 

Section 5 outlines bow the extended state 
transition model FDT could possibly be applied to 
tb~ development of OSI protocol standards. It is 
finally suggested that such a methodology be 
studied and defined within the standards 
c~,~nity. 

2. Extended State Transition Model FDT 
This paper is restricted to an FUr for 

protocol specification. The more general 
applications of KE are cove.red m [Boeh 82]. 
FIE ix~vides the means for precisely specifying 
oat,mmication protocols in the form of an abstract 
representation of their essential requirements and 
aspects. It should allow the production of 
accurate, unambiguous, sufficiently ccmplete, 
implementation-independent specifications which 
could hopefully be automatically verified and 
implemented. 

The FD~ used in this paper is a preliminary 
version of the extended state transition model 
developed by Subgro~o B of the ISO/TC97/SCI6 WGI 
ad hoc group on FEE [ISO/TC97/SC16~1347]. This 
is a descriptive method ~hich combines the e v e n t -  
driven finite state machine model of protocols 
with the power of the high-level programming 
language Pascal. Pascal is used to express the 

34 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800056.802057&domain=pdf&date_stamp=1984-06-01


processing routines and data structure qoez-atione 
associated with each state transition. 

In the extended state transition model, a 
system is viewed as consisting of interconnected 
modules, ~ch of which is an extended finite 
state transition machine. For example, Figure 1 
shows a model of a transport layer service 
provider (or "system") cc~prising of a transport 
entity module, a mapping module and a local 
buffer module. 

A module may participate in two types of 
interactions, n~nely: 

a) an exchange of control information with 
a local module to initiate or coordinate the 
execution of some function in a user/provider 
relationship (a "service primitive" interaction) ; 

b) an exchange of a Protocol Data Unit 
(P~J) with a remote peer module to cooperatively 
execute some procedure (a PDU interaction). 

The set of interactions (or interaction 
primitives) between a given module and another 
module in its environment is called a channel. 
The specification of a module includes an 
entm~ration of the interaction ~oints through 
which it interacts with its enviror~ent. 

Each module is defined in terms of: 
a) a state space, which defines all the 

(internal) states in which the module my be at 
any possible poilfc in time; 

b) the possible transitions from each 
state to a "next" state. 

The state space of a module is specified by 
a set of variables. A possible state is 
characterized by the values of these variables. 
One of these variables is called "STATE". It 
represents the "ma~or state" of the module. 

In a given major state, the possible 
transitions which may occur depend on the values 
of some of the state space variables (an enabl~g 
predicate), and possibly on the receptio~ 
input interaction. If several transitions are 
possible at some given time, the model asstmles 
that an in~plementation will execute only one 
transition at the t/me. The choice is not 
specified but the transitions my be assigned a 
relative priority. The operation of executing a 
transition performs some action which may change 
the values of variables--and------may initiate some 
output interaction(s) with the envircrm~ent. 

Tb~ possible transitions of a module are 
defined by the specification of a number of 
transition types. Each transition type is 
characterized by: 

a) the enabling condition- this includes: 
- the present mawr state (FROM clause) 
- an optional input interaction (~ clause) 
- an optional additional enabling predicate 
(PROVIDED clause) 

b) the operation of the transition- this 
includes: 
- the next major state (TO clause) 
- the action (BEGIN stat~,ent ~hich my include 
the generation of output interaction(s)) 

The syntax of the FUr gives the specifica- 
tion writer total flexibility in presenting the 
definition of transition types. However, there 
are two mawr approaches to organizing the 
transitions, namely: 

a) an interaction-oriented approach, in 
which transitions are ordered according to the 
input interaction. Transitions with the same 

clause are collected and possibly nested 
together; 

b) a state-oriented approach, in %4hich the 
transitions are ordered according to their present 
major state, that is the FROM clause. 

The interaction-oriented approach provides a 
disciplined approach to the stepwise refinement of 
the protocol specification as elaborated below. 

This paper provides some user guidelines for 
developing a cc~plete specification of the transi- 
tion types. They are based an the state diagrams 
shown in Figure 2 for the error-free connection 
establishment procedure of the S. 70 transport 
layer procedure (class 0). Separate diagrams are 
shown for the calling end and called end for 
simplicity of presentation. 

3. Elements of Protocol Design and S~cifica - 

The major work on FUr in the OSI context has 
so far been in defining the model, concepts and 
language for transcribing and formally represent- 
ing or analysing existing protocols such as X.25 
or S.70. There has been little work on using the 
FUr as an aid in the design and development of new 
protocols. We believe that it should be possible 
to start formalizing protocol design through an 
FDT and OSI principles. 

Protocol design encompasses all these 
activities ccncerned with refining the definition 
of some u~,,i~nications service requirements into 
the specification of a protocol whose hnpl~menta- 
tion will satisfy those requirements. It is 
usually preceded by a service definition step 
which consists of identifying and producing a 
formal statement of the service requirements from 
the user point of view. Protocol design consists 
of two mjor steps: a) service analysis and 
specification, and b) protocol specification. 

The service analysis and specification step 
focuses on the protocol functions which would be 
required to realize the user requirements. It 
identifies in more technical details what is to be 
done but not how it is to be accc~plished. The 
service specification defines all the functions 
from the point of view of the system as a whole 
independently of its internal layered structure. 

The protocol specification step completes 
the analysis and produces a protocol description 
in terms in which it can be i[mpl~mented and 
tested. In this respect, protocol specification 
is an inherent aspect of protocol design. The 
protocol specification defines the distribution of 
f~%ctions to the various entities in each layer of 
the syst~n and the %ray they operate. 

There is a close analogy between these 
protocol design steps and certain stages of the 
software life cycle [Wass]. The service analysis 
and specification step corresponds to the software 
requirements analysis and definition stage. The 
protocol specification step covers both the soft- 
ware architectural (or preliminary) and part of 
the detailed design stages. 

During the design of pre-OSI protocols (such 
as HE,C, X.25, S.62, S.70), no formal service 
specifications were available. At best, there 
might have been a definition of the service in 
user-oriented terms (e.g. Recommendation F200) for 
which the protocol (e.g. Recommendation $62)was 
designed. The practice typically consisted of 
defining the functions and protocol elements in a 

35 



piecemeal, indeperdent manner, then consolidating 
them together, if required, in a procedural 
description. State diagrams would typically be 
left out (e.g. HDLC or S.70) or added as an 
afterthoughtl Then, the rigorous analysis of the 
protocol or in~lementation experience would 
uncover inconsistencies and ambiguities bet%~_n 
the different parts of the specification. Much 
time and effort would be spent in enhancing, 
unifying and harmonizing these parts. 

Due to the ever-increasing complexity of 
OSI protocols, there is a need for a more disci- 
plined approach to the protocol design process. 
The objective is to produce a better unified and 
h~zed protocol right from the start. This 
could be accomplished by a methodology ~hich is 
based on sound OSI principles. It should follow 
rigorously the steps in the protocol design 
process and require specific deliverables for in- 
depth review at the completion of each step. 

.The com~x)nents of such a methodology are: 
a) partitionirg principles; 
b) rules for formally defining protocol 

functional requirements in terms of service 
primitives. A service primitive is "an abstract, 
i~plementation independent element of an inter- 
action between a service-user and the service- 
provider at a service-access-point". The result- 
ing deliverable is a service s~ecification [Boch 
80], for example t21e transport service definition 
domanent [Trans]. 

c) rules for deriving protocol elements 
from the service specification, and completely 
describing the behaviour of the interact/rig 
modules in terms of the relationships between 
protocol elements, service primitives and pos- 
sible orders of execution. A protocol element 
may be a protocol data unit, which is inter- 
changed between peer ocrmmalication entities, or a 
mapping to a local function, e.g. a service 
primitive. The resulting deliverable is a 
~rotocol s~ecification [Boch 80], for example the 
transport protocol specification document [Tran]. 

4. FDT User Guidelines for Protocol Desist and 
S~cification 

The guidelines are based on existing 
practices and principles. Some of the proposed 
rules have actually been informally used in the 
development of new protocols such as for access 
to message handling systems [~$23. However, the 
major examples given in this paper are in terms 
of how the S.70 transport protocol could have 
been formally developed because S.70 is a well- 
known simple protocol suitable for illustrating 
the principles. 

4.1 Partitionin~ Methods 
Partitioning is a key technique which is 

extensively used to master the complexity of 
protocol design. It is tb~ conceptual deccmposi- 
tion of a system or specification into smaller 
ccnponents in order to facilitate its understand- 
ing, validation and implementation. Two major 
partitioning methods used in protocol design are: 
logical phase partitioning and functional partit- 
ioning. 

Logical phase partitioning is the basis of 
the proposed methodology for the design of OSI 
protocols. It consists of grouping the service 
primitives to derive protocol elements. It also 

provides the framework for the stepwise refinement 
of the protocol specification as presented below. 

However, in order to effectively apply the 
stepwise refinement process, the internal 
structure of the service provider needs to be 
elaborated. This requires a form of functional 
partitioning which decomposes a system into 
relatively independent components. These 
components could also be modelled as individual 
finite state machiD~s. Service primitives could 
be defined to express the interactions between the 
components. 

An appropriate functional partitioning 
structure is normally evident from the functional 
analysis inherent in the process of deriving 
protocol elements after logical phase partition- 
ing. A simple functional partitioning structure 
which is applicable to S.70 and Class 0 is shown 
in Figure i. If necessary, further decomposition 
is possible through a more in-depth analysis of 
the protocol elements and their interrelation- 
ships. An example is the decomposition of the 
H~uC Classes of procedures into the functional 
crmi0onents called link set up, source (of data), 
sink (of data), PF-control (poll/final bit 
procedure), clock (timer operation), transmission 
(FCS error check, buffer management), and d~eck- 
pointing (poll/final bit error recovery) [Boch 
773. The structuring concepts used in that 
example seem generally applicable to the specifi- 
cation of OSI protocols ~hose components are reus- 
able in several contexts, e.g. the transport 
protocol classes. However, such a level of 
decomposition is not required for simpler proto- 
cols such as those for Teletex (S.62, S.70). 
4.2 Developin 9 the Service S~ecification 

It is desirable that the user service 
requirements definition be presented in, or at 
least d ~ a b l e  into, atomic, user-oriented 
capabilities called service elements ~MHSI]. This 
identification and definition of the most elemen- 
tary functions required wpuld ensure ccrmplete 
coverage of the service requirements. 

As an example, some service elements which 
could be defined for the Transport Layer Service 
[Trans] are: Called Address, Calling Address, 
Expedited Data Option, Quality of Service, and TS- 
user data. These are some capabilities which the 
Transport provider allows the Transport users to 
interchange. 

4.2.1 Service Primitives 
The objective of the service analysis step 

is to produce a more formal representation of the 
capabilities corresponding to or realizing the 
service elements. There should be some guidelines 
for developing this representation in terms of 
service primitives. One guideline is to define 
service primitives by logically packaging ~ogether 
the service elements in a n~nner that the occur- 
rence of the primitive represents a logically 
indivisible event which has some meaning to the 
service-user. Effectively, the service elements 
become parameters in one or more service primi- 
tives [~$2]. For example, the transport layer 
service elements mentioned above are ccmponents of 
the T-Connect request and T-Connect indication 
primitives. 

4.2.2 Logical Phase Partitioning 
In a service specification, the service 

36 



primitives should be grouped together according 
to their types and interrelationships [ISO/TC97/ 
SCI6/N897] in order to permit the methodological 
derivation of protocol elements. Primitives 
could be of four types: a) request or response 
by a service-user; b) indication or o0nfim by a 
service provider. 

The primitives are grouped according to a) 
whether the service is unconfirmed or confirmed, 
and then in b) phases of cperation. A service is 
said to be unconfirmed if a request primitive 
originated by a service-user results only in an 
indication primitive to the remote service-user. 
For example, the Transport connection release 
service is an unconfirmed service consisting of 
the T-D-req and T-D-ind primitives. A service is 
said to be confirmed if additionally the r~note 
service-user issues a response primitive which 
results in a confirm primitive to the originating 
service-user. For example, the Transport 
connection establishment service is a confirmed 
service consisting of the T-C-req, T-C-ind, T-C- 
resp and T-C-conf primitives. 

A phase of operation is a set of service 
primitives which together perform some logically 
related services with a well defined meaning to 
peer service-users. Each service primitive may 
form part of unconfirmed or confirmed groups or 
be otherwise unrelated. For example, the 
transport service is divided into three phases: 
connection establishment, data transfer and 
connection release. 

4.3 Deriving Protocol Elements from Service 
S~cification 

The criteria for deriving protocol elements 
are based on the functions performed by the 
layer. These functions are a) those which are 
visible to the user (i.e. service elements or 
service primitive parameters), and b) those which 
are required for the internal management of the 
layer in order to realize the OSI (N )-service 
primitives from the (N-l)-service primitives, for 
exanple to ensure data integrity, synchroniza- 
tion, error control. 

A possible method for deriving protocol 
elements consists of the following steps: 

i) consider each phase in turn; 
2) for each phase, consider each service 

request primitive in turn and 
A) map it directly into one or more 

protocol elements (an E1 set) in association with 
its service indication primitive, if any. 

B) define additional protocol elements 
which are required to cc~olete the interactions 
initiated by set E1 in point 2a). Criteria 
include: 

BI) does an E1 protocol element demand a 
protocol response, e.g two-way handshake? If so, 
the acceptance add rejection protocol elements 
need to be defined though they are not part of an 
end-to-end confirmed service. This is the case, 
in S.70, of TCC as a rejection of a TCR and, in 
class i, the case of DC as an acceptance of DR 
[Tr~]. 

B2) need for indicating an error in 
reception of an E1 protocol element e.g. with 
an incorrect parameter. This is the case of the 
S.70 Transport Block Reject (TBR) or Class O 
Error (ERR) protocol element. 

B3) need for error recovery protocol 

elements. This is the case of the Class 1 RJ 
protocol element. 

C) if the service request primitive is 
part of a confirmed service, the related service 
response primitive is n~pped directly into one or 
more protocol elements in association with its 
service confirm primitive. This is the case, in 
S.70, of TCA in response to TCR. 

3) for each phase, repeat step 2 for any 
primitive not considered in step 2, e.g. un- 
related indication primitive. This is the case of 
the N-D-ind initiated within the network layer. 

The application of this method to S.70 and 
Transport protocol classes 0 and 1 is sum%3rized 
in Figure 3. It also ~ the steps under which 
the protocol elements are derived. 

4.4 Ste~wise Refinement of Protocol S~ecifica- 
tion 

This is a critical step of the protocol 
design process. For a design to be a successful 
solution, it should be simple and closely related 
to the structure of the problem in a natural 
manner. A natural solution to the protocol design 
problem is provided by an interaction-oriented FDT 
approach which also ensures cclmpleteness. 

4.4.1 C~leteness 
A protocol specification is considered to be 

ccmplete when it has defined the effects of all 
possible input interactions from the envirorm~nt 
to the specified module in all relevant situa- 
tions. In a specification, the reception of some 
input interaction (with some specific parameter 
values) in sane mDdule state could: a) result in 
a defined normal or error transition, or b) be 
correctly ignored, or c) be unintentionally 
omitted. The latter case is an "unforeseen error" 
due to incomplete or incorrect asstmptions about 
the possible errors in the real wprld environment 
[Boch 82]. The distinction between the last two 
cases is not always evident. In a complete proto- 
col specification, the possibility of "unforeseen 
errors" should not arise, and the occurrence of an 
undefined context should be intentionally ignored 
and treated as an irrelevant situation. The 
refinement algorithm presented below fulfils this 
condition. 

The ~mount of error situations to be defined 
is subject to debate. It is argued that some 
error cases need not be standardized because they 
may have local significance only. However, it is 
important that protocol standards identify and 
suggest actions for all error cases (including 
local ones) which should not be ignored so as to: 

a) serve as an implementation guide and 
avoid deadlock situations due to unforeseen error 
situations; 

b) allow development of robust and 
resilient implementations. The implementation of 
transitions for handling local errors provides an 
important debugging tool during system integration 
testing. Such transitions could be selectively 
enabled or disabled at run-time. Provided that 
the interfaces (channel type definitions) are not 
changed, it should be possible to isolate the 
protocol module from side effects due to modifica- 
tions, additions or complete redesign of the 
modules with which it interacts. If each ~dule 
impl~_nts this self-protection mechanism then the 
system beccmes easier to maintain. 

37 



4.4.2 Al~orithm f~- Interaction-Oriented Speci_fi- 
cation Refinement 

In an interaction-oriented approach, there 
is a need to consider all the possible states for 
each input interaction together with the relevant 
context variables. These variables are those 
associated to the sequence of preceding interac- 
tions ~hich led to the state under consideration. 
The proposed methcxl shown in Figure 4 to achieve 
this o~leteness has the following basis: 

a) by following the logical sequence 
inherent in the methods described above for 
logical ~ partitioning and protocol element 
derivation, we have a stepwise algorithm for 
identifying all possible input interactions. 
These should include interactions for possible 
exception ocmditions. The latter are service 
primitives used by the (N+l)-entity to reject the 
(N)-entity's output interactions or by the (N-I)- 
entity to indicate significant events. 

b) the algorithm is refined by providing 
rules for considering all the situations in which 
an input interaction may occur. Situations are 
categorized as: noz~al, rejection, abnormal. A 
normal situation exists when the interacting 
entities cooperatively and correctly execute the 
interaction in the correct state(s) as defined by 
the protocol. A rejection situation occurs when 
an entity receives an input interaction in 
conformity with the protocol (that is, in the 
correct state(s)) ~It cannot execute it. If this 
is due to some acceptable or defined cc~itions, 
the receiver then issues an output interaction to 
indicate the rejection to the requestor. The 
rejection conditions include parameter errors in 
received interaction, internal constraints of the 
receiving entity, inability of receiver to 
satisfy requested function. An abnormal 
situation occurs when an input interaction is 
received in an incorrect state(s). It may arise 
due to an incorrect implementation of the 
p~i/interface (i.e channel) specifications 
or unforeseen perturbations cr failures of the 
environment. 

c) a systematic, disciplined approach to 
the consideration of each category of situations 
separately for each input interaction eliminates 
"unforeseen errors". The algorithmic structure 
and presentation format of the specification 
implicitly provide guidelines as to the context 
variables to be considered. 

d) as a global check of oa~leteness, the 
interaction-oriented specification for an (N)- 
entity should contain a ~ clause for all 
protocol data units (P~J' s) and all service 
primitives, which may be issued by the (N+I) or 
(N-I) entities. The (N)-entity issues its 
service primitives as output interactions. 

The stepwise l~rotocol specification refine- 
ment method illustrated by the algorithm in 
Figure 4 refers to J/~ut interactions only. The 
service primitives are first partitioned in 
phases of operation as described above. The 
major steps of the algorithm for each l~hase in 
turn are: 

AI) derive or extend the state transition 
diagra~description for normal operation; 

A2) for each interaction occurrence, 
consider the possible rejection and abnormal 
situations and note any new interactions or 
states introduced; 

A3) extend the state transition diagram/ 
description with new interactions from step A2; 

A4) extend the state transition diagra~ 
description with interactions used for exception 
conditions. 

When all the phases have been considered, 
the actions corresponding to the cccurrem~e of 
each interaction in each of the new state, intro- 
duced in steps A1 to A4, are def~-~. 

Figure 5 shows a partial specification 
resulting frcm the application of this algorithm 
to the connection establishment and release phases 
of S. 70. It also indicates the order in which the 
refinement was progressed. Its purpose is to show 
the mapping between input and output interactior~ 
and the clear separation between normal, rejection 
and abnormal situa~ons. All other details are 
abstracted out. A cause parameter of the T-D-ind 
primitive is used to formalize the treatment of 
local error conditions for the guidance of imple- 
mentors. Such a usage is possible because the 
primitive can be invoked at any time by the TS- 
provider. 

Step A1 is performed by a straightforward 
refinement of the service specification according 
to the groups of primitives within the phase as 
defined above. An ~K~R%firmed service group is 
refined by formally defining the mapping of its 
service request primitive into local f u n c t i o n s  and 
P~J's end the m~pping of these PDU's into service 
indication primitives. A confirmed service group 
is refined by formally defining the mapping of its 
additional service response primitive and associ- 
ated PDU's into service confirmation primitives. 
This is illustrated by substeps 1 to 4 in Figure 
5. 

Step A2 may result in new interactions, 
typically the PDU' s defined during protocol 
element derivation for rejecting other PDU's or 
indicat/ng errors. This is illustrated by sub- 
steps 5 to 8 in Figure 5. 

In step A3 the handling of these new input 
interactions (substeps 9 to ii in Figure 5) may 
lead to new states. The i~pact of these new 
states on existing interactions is postponed to 
the end of the phase refinement process in order 
to simplify and minimize the mm~er of iterations. 

In step A4 (substeps 12 to 14 in Figure 5), 
care should be taken on the possibility that the 
service primitive used for rejection could also be 
used for another function, such as entering a ne~ 
phase. This provides a natural basis for choosing 
the order in which phases are to be considered. 
For S.70, it is natural to consider the release 
phase (substeps 13 to 14 in Figure 5) after the 
establishment phase. 

4.5 Choice of Data Structure Re~resent@tions 
During the interaction-oriented refinement 

process, new context variables need to be defined 
to represent the states. While defining the 
semantics (actions) of the transitions, the 
protocol syntax (data representation, coding) has 
to be developed in parallel. In particular there 
is a need to choose intermediate data structures, 
such as data buffers. These are used in mapping 
the user data representation, given in the service 
primitives, into the protocol data representation 
which is transferred in the PDU. Such a d~oice 
could also be made in the partitioning step. 

The formalism of abstract data types 

38 



developed for software engineering seems to be 
applicable to the FUr based on the extended state 
transition model [Boch 82]. General guidelines 
for selecting appropriate data structures 
include: 

a) the chosen data structure should give 
the user a clear appreciation in the siniolest 
manner possible of the capabilities available in 
the protocol and their possible usage; 

b) the operations on the chosen data 
structure should closely reflect the functions 
invoked by the PDU's. As an example, in a 
Teletex ~ t  protocol formal specification, a 
CC,~,L~d Document Start may cause the receiver to 
open a doctm~ent file in which subsequent text is 
written. A Command Document Continue after a 
d ~ t  interruption my cause the receiver to 
reopen a selected ~ t  file and posit/on it 
to the point where the document is to be linked 
and c~erwritten, as needed; 

c) the chosen data structures should help 
a protocol implementor in understanding the 
protocol and deriving a straightforward data 
mapping to his memory and file management 
systems; 

d) they should be i~plementation-indepen- 
dent and acc(lalrx~ate a wide range of in~plemen- 
tation environments. As an example, in a Teletex 
dooanent protocol formal specification, a docu- 
ment may be implemented as a file of records in 
which each record represents a Teletex page or a 
set of linked files each of which represents a 
Teletex page. 

5. A~lication to OSI Protocol Development 
The development of any protocol of some 

complexity is highly iterative. Protocol stand- 
ards are usually developed by sizable committees. 
A cc~mittee would typically design a protocol by 
successively defining the functions (from the 
service definition), semantics, syntax and state 
diagrams. Each step may be developed by several 
parallel independent subgroups and the steps may 
overlap. An editor is appointed to consolidate 
the natural language descriptions produced by all 
the subgroups into a single ~ t .  His role 
is to ensure a tmiformity of style as well as 
identify any iD~onsistency between the different 
texts or any omission and ambiguity. However, 
the imprecise nature of natural languages and the 
complexity of the protocol make the editor's task 
rather difficult. 

The extended state transition model FUr 
provides a useful tool for the editor to formally 
analyze and record the agreements made by the 
different groups. The resulting formal 
specification could act as a catalyst for ~-ifom 
understanding of the agreements. An interaction- 
oriented format would provide a check on tb~ 
correctness of the relationships between the 
service specification and the agreements. This 
parallel development of natural language and FUr 
specifications would reduce inconsistencies and 
promote cccmpletenes s. 

In order to benefit most from the 
methodology, it is suggested that: 

a) sub-groups be assigned to study, in 
parallel, functions for each specific phase; 

b) sub-groups record their agreements ~n a 
standard format such as the following: 
- Name of protocol element 

- Description of function 
- Condition for and action to be taken on 

- Condition for and action to be taken on 
reception 
- Special considerations 

c) editor integrates the different subgroup 
reports by applying the interaction-oriented 
specification refinement algorithm to produce a 
formalized specification which identifies the 
abr~rmal situations; 

d) whole group reviews the formalized 
specification for consistency, accuracy and 
ecnlsleteness. It decides whether aknormal situa- 
tions can be ignored and, if not, identifies them 
specifically with possibly a suggested action to 
guide the implementor. 

6. Conclusion 
A lot of effort is being dedicated to 

defining 0SI protocol standards and tools for 
formally specifying them. However, little work is 
done in developing methods for applying these 
tools to the design and specification of ccx~plete, 
accurate and correct protocols. 

Internatior~l standards development commit- 
tees should give deeper consideration to this 
topic so that ccmpatible, as well as truly robust 
and resilient, implementations could be developed. 
The methodology proposed in this paper could be an 
input to such a study. It enphasizes a systematic 
analytical approach to achieve completeness during 
the protocol design process. The desirable result 
of the study should be user guidelines ~hich could 
be part of the standards on formal description 
techniques. Guidelines on tb~ formalization of 
protocol functions, such as multiplexing and flow 
control, within this framework are also required. 

The systematic aD~ consistent application of 
these user guidelines to the design and specifica- 
tion of OSI protocol standards would ensure a 
uniform understanding by all interested parties. 
This would prcmote their wider acceptance and 
timelier implementation, thus bringing OSI a step 
closer to realization. 

AckDxDwled~ement 
The author expresses his deep appreciation 

to G.V. Bochn~u%n for his valuable comments on 
the preliminary outline which gave birth to this 
paper, and his continuous support. 

References 
[ Boch 77] G.V. ~ and R.J. Chung, "A 

formalized specification of HDLC classes of 
procedure". Proc. Nat. T e l l .  Conf., Los 
Angeles, C~, Dec. 1977, Paper 3A.2. 

[Boch 80] G.V. Bochmann and C.A. Sunshine, 
"Formal methods in communication protocol design". 
IEEE Trans. O0mmun., vol. COM-28,pp. 624-631, Apr. 
1980. 

[Boch 82] G.V. ~ et al., "Experience 
with formal specifications using an extended state 
transition model", l~:~'.~: Trans. C~L,L~n., VOI. 
COM-30,pp. 2506-2513, Dec. 1982. 

[ ISO/TC97/SCI6/N897 ] "Data Processing-Open 
Systems Interconnection-Service conventions". 

[ISO/TC97/SCI6/N1347] "A FDT based on an 
extended state transition model (Working 
Docu~_nt, November 1982) ". 

39 



[MHSI] "Draft ]~-~a~.~ndation X.400: Message 
Handling Systems: System M0del-Service Elements 
(Version 2)". Dec. 1982. 
[~S2] "Draft R_~ecmmm~ation X.411: Message 

Handling Systems: Message Transfer Layer". Dec. 
1982. 

[S70] "Recommendation S. 70, Net',~rk-indepen- 
dent basic transport service for Teletex". 
CCITT, Yellow Book, Fascicle VII.2, 1980. 

[Tran] "Information processing systems-Open 
systems interconnection-Transpor t protocol 
specification". ISO/ DP8073. 

Trane rt-User 

TSAP 

Local Transport- 
Buffer " Entity 
~ule Module 

mapping 

Mapping I Module 

NOte: Channel 

Interaction 
Network-Service 
Provider 

[Trans] "Information processing systems-Open 
systems interconnection-Transport services 
definition". ISO/DP8072. 

[Wass] A.I. Wasserman, "Information system 
design methodology". In: P. Freeman, A.I. 
Wasserman (Ed.), "Tutorial on software design 
techniques (third edition)", rRRR, pp.25-44, 1980 

[Zimm] H. Zimmermenn, "OSI reference model - 
the ISO model of architecture for Open System~ 
Interconnect_ion", ~ Trans. C~m~., Vol. G3M- 
28, pp. 425-432, Apr. 1980. 

TCA AND TCA-ok T-C-resp AND T-C-resp-ok 

T-C-conf TCA 

Note: Each transition is labelled as follows 

input interaction AND ~redicate 
output iNteractlon 

Figure I - Model Of Trans~o~-t Service Provider 
Figure 2 - State Diagrams for S.70 Error Free 

Connection Establishment Procedure 

Phase 

Connection 

Establishment 

Data 

Transfer 

I . . . .  

Connection 

Release 

Service 
Primitives 

T-CONNECT 
request 
indication 

response 

confirm 

T.-DATA 
request 

indication 

T-DISCONNECT 
request 

indication 

T-C-req 
T-C-ind 

T-C-resp 

T-C-conf 

T-DT-req 

T-DT-ind 

T-D-req 

T-D-ind 

Protocol Elements 

S.70 

TCR(A),TBR(B2) 
TCR(A) 

TCA(C),TBR(B2) 

TCA(C) 

TDT(A),TBR(B2) 

TDT(A) 

TCC(BI),TBR(B2), 
N-D-req(A) 
TCC(BI),N-D- 
ind(A,3) 

IClass .0 
CR(A),ERR(B2) 
CR(A) 

CC(C),ERR(B2) 

CC(C) 

DT(A),ERR(B2) 

DT(A) 

DR(BI),ERR(B2), 
N-D-req(A) 
DR(BI),N-D- 
ind (A,3) 

Class 1 

CR(A),ERR(B2) 
CR(A) 

tCC(C),ERR(E2) 

CC(C) 

DT(A),ERR(B2),AK(BI), 
RJ(BI,B3) 
DT(A) 

DR(BI:A),ERR(B2), 
OC(al) 
DR(BI,A) 

Note: The references in parenthesis correspond to the steps in section 4.3 

Figure 3 - Derivation of Protocol Elements from Service Primitives 

40 



I 
i mr~ N~ ~ ~ P ~ I 

J 
flow, e.g I interactio~ and S state~: N:-I 

I 
= x ~ o m i t y  with the ~-oe.ocol in  ~a te  ~ J 

1 
Define r~ tran~iti~ ~ to sltuati=m 
~,ere ~ i ~ De Lx~ceued in stete 
suDeet J. These are rejection situatlcxm. 

I 

~mo~ml s l b ~ t i = ~  ~ a ~ of  I ~ :m.  

I 
end of Z interacti~ 

I | 

Define transitlone ~..£xx~/ng to occurrence of each I 
of the N interactlo~ in each of the ~ stat~.intro- 

l 

1. ( ~ TS~.T-C-reg 
( FR~4 cal lirg-idle 
( pRmm_~ T-C-reg-~k TO ~ait-for-TC~ 
( S~GIN mRping.TCR;... ~: 

5.( ~ NU~ T-C-req-~ TO SAME (* ~ar~ter error') 
~ I N  TS~.T-D-ind (T-C-req-error ) : . . .  ~,~; (*suo~mtion*) 

FR~ Cwa i t - f i =c~ ,  cal l ing-data- t rar~fer ,  cal le~-ta]e, 
~ait-for-TC-r.~,~ae, called--4~ta-trar~ fer ] 

TO Idle (* initial state, no~ in Figure 2*) 
~IN ~aRplng.~-D-~g (lo~1-er~r-ty~e) : ... 

T~P .T-D-ind ( local-error-type ) ; 

////////////////////////////////////////////////////////////////// 

2.( ~ ~ . ~  
( ~ celle~-J~le 
( PK)Wr, m~ T~R-~ TO ~ait-~om4~=-re~L~nse 
( ~ TSAP.T-C-Ind (cck-lnectic~-req~est); ... ~2~); 

6.( Ra:~IU~ ~[E TCR-~ TO SAME 
( ~ ~.TOC (_-~_u,--):... E~D; (* s.70, 5.5.6.1 *) 
( FR:M [calllng-idle, wait-for-TQ%, call/rig-data-transfer, 
( walt-~or-TC-ru~, calle~]ate-trans f~'] 
( TOS~E 
( SSSIN ~ g i n g . T S R ; . . .  ~',~; / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

3. ( ~ TSAP.T-C-resp 
( ~ ~alt-for-TC-~ 
( PR3~q~ T-C-remp-~k TO called-data-transfer 
( E~SXN maRging.'r'C~: . . .  ~ , ;  

7. ( ~ HOT T-C-resp-~ TO called-idle 
• sRping.~:c (cause): ... 
TSAP.T-D-ind (T-C-resp-errcc); (*suggestion*) 

FK~M [calling-14Lie, %~t-f~, calling-0ata-trans~r, 
called-idle, called-date-trans£~] 

TO idle 
E~GI~ maRping.N-4)-req (lc~:al-er:~r-type);... 

TSAP.T-D-i~ (l~cal~ype) : 

//I/I/I/I////////////////////////////H////////////////////////// 
4.( ~ ~i~.~c.~ 

( FR~4 ~ait- for-T~ 
( ~ ~ TO callir~ta-transfez 
( 88~N TSAP.T-C-~x~f;... ~; 

8.( ~ ~Ur TOR-~k TO calling-iale (*,my re=7 ~ ~*) 
( l~srs %~saP.T-D-ira (L~ametez-~Ba~b...~a); 
( FRCM NOr wait-for-~ TO 
( ~ w~=;~. ~m;... 
( ( *  a c ~ a t e  e r r ~  r~ova ry  *) 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  
9.( ~ ,~oFtrg.TCC ( c a ~ )  

( FROM ~t-for-ToA TO calllng-iale (*may retry cr clear*) 
( -~n-IN T~P.T-D-ind (cauu);... ~): 

11.  ( ~ ~ ~mlt-~o~ ~o SN4E 
( ~ZN m~pin~.~e~;... 
( (*a~-.ivate e r r ~  r~overy* )  
( E~;  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  

10.( w ~  ~ . * m ~  
( ~ A N ' I S ' ~ . T E T O S ~ , ~  
( ~GINo..  
( (*ex~Ine reject ~ause a~ 6 a ~  ~:ti~n*) 
( E~: 

IIII/111/1111/1111111/11111/I/11111111111/11111111111111111111111 
12. ( ~ TSAP.T-D-req 

( PR~H %mit-~or-~C-re~i=(mse ~0 called-idle 
( ~ ~ . T C C  (cauae);... ~; (*rejectic~ of T-C-ind*) 

13. ( F~CI4 H~? v~it-for-TC-resp~me TO idle 
( ~ I ~  mapping.N-~-reg ( n o r m l - c l e a r ) ; . . . ~ ) :  (*p'~u~ d~u~e*) 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

14. ( a~ .aRping.~-P-i~ (cause) 
( FR~4 ~/~ATE TO idle 
( ~ TSAP.~-P-L~ (eause) ; . . .~ ) ;  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  

Note: Numbers to  the left indicate the ~ in ~ refk~nt was progTesud 
in accor~nce wi~h Figure 4 in~ associated set of tradition. 

Figure 5 - Partial Specifica~ for S. 70 
Ccx~ecti~ EstahLishm~t and Rnlea~ Phuu 

41 


