
A TEMPORAL ORDERING SPECIFICATION OF SOME SESSION SERVICES

Vincenza Carchiolo, Alberto Faro , Gluseppe Scollo

Istltuto di Informatica e Telecomunlcazionl
Facolt~ di Ingegneria - Universit~ di Catania

viale A.Doria 6, 95125 CATANIA (Italy)

ABSTRACT

The achievement of widely accepted standards for
Open Systems Interconnectlon (OSI) is closely
tied to the ability of producing unambiguous and
implementation independent specifications of re-
lated protocols and services. LOTOS, the L_anguage
fOr Temporal Ordering Specification, is a Formal
Description Technique (FDT) whose definition,
though not completed, has already reached such a
state as to allow trial specifications of rather
sophisticated services and protocols. Thls paper
explores the specification In LOTOS of some of
the session services whose discussion is underway
within various standardization bodies. Concise-
ness of specification is tried by adopting a few
notational variants which are guessed to be use-
ful at various OSI layers. The session services
selected for this trial specification comprise
the Basic Combined Subset (BCS) enriched wlth the
Expedited Data service.

I. INTRODUCTION

The challenging goal of producing a set of inter-
related standards for Open Systems Interconnect-
ion (OSI) has already forced the standardization
bodies mainly involved with it - ISO and CCITT -
to set up ad-hoc groups for the definition of
Formal Description Techniques (FDT's) such as to
allow the production of unambiguous and imple-
mentation i n d e p e n d e n t s p e c i f i c a t i o n s o f OSI
p r o t o c o l s and s e r v i c e s .

The narrative form in which those standards are
currently being defined will be necessary anyway
for helping their understanding "at a first
glance"; however, formal definitions must be pro-
vided if one wants to give a precise meaning to
concepts llke "integration of a protocol with an

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 A C M 0 - 8 9 7 9 1 - 1 3 6 - 9 / 8 4 / 0 0 6 / 0 1 0 7 $ 0 0 . 7 5

underlying service for offering an h i g h e r layer's
service" or "OSI conformance assessment of pro-
ducts"; while the former concept comprises the
verification of a protocol specification, the
latter opens the scope of validation of products
implementing the protocols.

It is desirable that both the verification pro-
blem and the validation one might employ a common
notational framework so as to directly relate,for
instance, the definition as well as the results
of testing sequences (which constitute the typi-
cal validation runs) to a formal conformance
statement which should be a major constituent of
the (hopefully verified) protocol specification.

Integration of verification and validation in a
common notation is one of the major motivations
for the development of the temporal ordering
specification approach <V 83>; various authors
<B 83>, <K 83>, have defined languages showing an
algebraic flavour which owes much to Mllner's
Calculus of Co~mmnlcatlng Systems <M 80>.
The Subgroup C of the ISO Ad-Hoc Group on FDT's
has produced a Draft Tutorial on the Language fOr
T_emporalOrderingS_pecification (LOTOS) <ISO 83a-->
which, though lacking features llke value speci-
fication facilities <CFMS 84>, can be considered
as having reached a rather stable definition of
the kernel concepts as well as of the relevant
notation. Thls language Is currently being check-
ed against trial specifications of OSI draft
service and protocol standards.

Clear formal specifications can be used in a
variety of situations, e. g. by implementors as a
guidance both in the design and in the testing
phases of their products, by service users for
understanding at t h e desired l e v e l o f d e t a i l what
the service can provide them with, by third-party
check agencies for industrial or legal certifl-
c a t i o n .
The a v a i l a b i l i t y o f m e c h a n i c a l t o o l s f o r c h e c k i n g
t h a t an i m p l e m e n t a t i o n c o m p l i e s w i t h t h e r e q u i r e -
m e n t s of its specification will greatly facili-
tate thls process. The development of such tools
for LOTOS is planned for the near future.

The aim of thls paper is to present a temporal
ordering specification of the Basic Combined Sub-
set (BCS) of the Session Service (SS) enriched
w i t h t h e E x p e d i t e d D a t a s e r v i c e <ISO 83b>. T h i s
c h o i c e i s m o t i v a t e d by two c o n s i d e r a t i o n s : f i r s t ,

107

http://crossmark.crossref.org/dialog/?doi=10.1145%2F639624.802067&domain=pdf&date_stamp=1984-06-01

among t h e OSI layers, the Session one is well
known for being a rather complex one, with a va-
riety of services and so-called functional units
(the top-down taste induced the authors to st=art
with the Service); second, the specification of a
richer target (llke, e.g., Synchronization or
Activity services specification) was inhibited by
the available time and space.

A formal description technique is proposed which
i s based on LOTOS extended by a few notational
variants to gain in conciseness and readability.

Thus sect.2 gives a brief review of LOTOS and of
some extensions. Sect.3 discusses the se~rlce
model adopted. Finally sect.4 gives the target
formal specification. Appendices A and B provide
some definitions which are necessary for a com-
plete understanding of the target specification
and in order to obtain a self contained paper.

2. BRIEF REVIEW OF LOTOS AND SOME EXTENSIONS

LOTOS u s e s the model of event algebra introduced
by Milner in <M 80> and allows one to describe
the behaviour of an information system by descri-
blng the temporal ordering of its interactions
with its environment.

In LOTOS a system consists of a set of parts
interacting each other and/or with the environ-
ment. The interaction is the basic concept of
LOTOS. It is defJ~ed as a common activity of
parts on information. The simplest kind of inter-
action is called "event". An event consists of
the synchronized passing of a value at a gate
from a part to another one at a given moment in
time. Thus, one can associate with an event: the
time of passage, the value passed, the gate of
passage and the direction of passage. An event
generally has a non-null time duration but it is
atomic in the sense that it cannot be disrupted;
the time associated with an event is the time at
which it is terminated.

The event expressions of LOTOS allow one to spe-
cify the behaviour of a system (or part) by de-
scribing the temporal ordering of the events ob-
servable at its event gates. A process is any
behaviour specified in LOTOS. An event is a part-
icular kind of process. LOTOS uses the following
simple ordering principles: a process can be
i) enabled by t h e termination of
2) disabled by the starting of
3) unrelated to
another process; in addition a process can be
influenced by the values of events in different
processes.

A LOTOS expression defines only one of the pro-
cesses involved in an event, so it gives only the
perspective that a process is prepared to parti-
cipate in this event. In particular the following
principal cases are possible :

- a process can be prepared to accept the value x
of type t at gate a. x denotes a free variable
which is bound by the occurrence of the event to
the value accepted by the process when the event
has taken place. This is expressed in LOTOS by

u s i n g t h e n o t a t i o n : a ? x : t .

- a p r o c e s s c a n be p r e p a r e d t o p r o d u c e t h e o u t p u t
v a l u e e a t g a t e a . T h i s ~s e x p r e s s e d i n LOTOS by
u s i n g t h e n o t a t i o n : a l e (~)

The concept of event at some internal gate is
also used in LOTOS to represent unknown internal
conditions which can influence the observable
behaviour at the outside, obtaining in this way a
certain degree of internal nondeterminism. LOTOS
has only one representation of the events at
internal gates by means of the notation i.

E v e n t e x p r e s s i o n s a r e b u i l t by u s i n g t h e o p e r a -
t o r s o f s e q u e n c e , c h o i c e , c o m p o s i t i o n , d i s a b l e
and r e s t r i c t i o n d e f i n e d i n a p p e n d i x A, w h e r e some
other features of LOTOS are also shown which make
more easy and expressive the representation of a
system behaviour. Finally appendix B presents
some operators which might be added to the
language without affecting its kernel in order to
obtain some gain in conciseness and readability
of specifications, at least for OSI, as discussed
by the authors in <CFMS 84>. These operators are
mere notational variants of the kernel language
definition (in the sense formalized in <BPW 81>).

LOTOS still lacks value specification facilities
for both function and type definitions. Currently
a PASCAL-l ike t y p e s p e c i f i c a t i o n n o t a t i o n i s
provisionally adopted with a few extensions llke:

string m ... M of <type>
representing a sequence of elements of type
<type> whose length can range from m through M; M
can be "undefined": in this case, when m-0 the
shorter notation string of<type> is adopted. The
function definitions needed for the specification
tried in this paper have been introduced inform-
ally.

3. A MODEL OF THE BASIC COMBINED SUBSET OF THE
SESSION SERVICE

In this section a brief informal description is
given of the session service model which will be
formalized in the next section. Session services
are offered to the Presentation Layer at Session
S e r v i c e A c c e s s P o i n t s (S S A P ' s) t h r o u g h d e f i n e d
s e r v i c e p r i m i t i v e s . The c o m m u n i c a t i o n a t two
SSAP ' s i s a s s u m e d a s a m o d e l o f t h e s e r v i c e (f i g .
1) , w h i c h i s s p e c i f i e d a s a s i n g l e c o n n e c t i o n
b e t w e e n a p a i r o f s e s s i o n s e r v i c e u s e r s .

The s p e c i f i c a t i o n i s p u r e l y e x t e n s i o n a l : i t
c o m p r i s e s t h e o f f e r i n g o f s e r v i c e p r i m i t i v e s
e x e c u t i o n a t S S A P ' s ; t h e s e e v e n t s a c t u a l l y t a k e
p l a c e when t h e s p e c i f i e d s e r v i c e i s e x p e r i m e n t e d
by i t s u s e r s ; e a c h SSAP h a s b e e n s p e c i f i e d a s a
p a i r o f g a t e s .

I n p a r t i c u l a r t h e SS p r o v i d e s i t s u s e r s w i t h t h e
m e a n s t o e s t a b l i s h a c o n n e c t i o n , t o e x c h a n g e d a t a
i n a s y n c h r o n i z e d m a n n e r , t o o r g a n i z e t h e d a t a
e x c h a n g e i n t o a c t i v i t i e s and d i a l o g u e u n i t s an d
t o o r d e r l y r e l e a s e t h e c o n n e c t i o n . A n e g o t i a t i o n
i s p e r f o r m e d i n t h e c o n n e c t i o n e s t a b l i s h m e n t
p h a s e i n o r d e r t o l e t t h e u s e r s a g r e e u p o n t h e
q u a l i t y o f s e r v i c e (d e f i n e d by p a r a m e t e r s l i k e
t h r o u g h p u t , e r r o r r a t e , t r a n s i t d e l a y e t c .) , t h e

108

initial assignment of tokens - which control the
exclusive right to request the associated servi-
ces -, the service elements to be available after
the connection is established (users' session
requirements).

ua ub
USER_A session connection' ,__ USER_B

pa pb

SSAP A SSAP B

Fig.l

The token concept can be recalled as follows: a
token is defined w.r.t, a set of associated
services; a token is either available, in which
case it can be assigned to only one user (its
"owner") who has the exclusive right to request
the associated services, or not available, in
which case either both or none of the users can
request the associated services (hence none of
the users has the exclusive right to request
them).

Service elements are provided by distinct Funct-
ional Units (FU's): the kernel one comprises
connection establishment, normal data exchange
and orderly release which are essential and not
negotiable; either duplex (two way simultaneous)
or half duplex (two way alternate) normal data
exchange has to be agreed during the negotiation.
The other FU's provide the optional service
elements; they are selected according to the
negotiated session requirements () . Any combin-
ation of the kernel FU with either duplex or
half-duplex FU and with optiona~ FU's may be
defined as a service subset (~). The Draft
International Standard <ISO 83b> (hereafter
termed "DIS") proposes three different subsets:
i) Basic Combined Subset (BCS)
2) Basic Synchronized Subset (BSS)
3) Basic Activity Subset (BAS).
Only the "data" token can be available in the
BCS, which comprises the following FU's:
- kernel
- half duplex
- duplex.
The expedited data FU provides the corresponding
additional optional service element. None of the
subsets proposed in the DIS comprises it expli-
citly. The authors argue ~hat it can be optional-
ly added to any of them ('). This service element
can be provided only when the transport expedited
data service is available.

According to the service conventions outlined in
<ISO 83c> a service element can be of type
confirmed, unconfirmed or provider-initiated;
Tab.1 summarizes the service elements and types
of BCS+expedlted data FU's. The service elements
are denoted by the names of the corresponding
service primitives, abstracted from their type.
The following simplifications have been assumed
in the formalization of the next section:
- the interactions denoted by service primitives

are modeled as atomic events;
- no quality of service negotiation is modeled.
Short informal descriptions of the specified ser-
vice elements are given in the form of comments
throughout the formal specification.

FUNCTIONAL UNIT SERVICE ELEMENT SERVICE TYPE

kernel

half duplex

duplex

expedited data

S CONNECT confirmed
S--DATA unconfirmed
S--RELEASE confirmed
S--U ABORT unconfirmed
S P ABORT prov.-init.

S TOKEN PLEASE u n c o n f i r m e d
S--TOKEN--GIVE unconfirmed

no additional service elements

S EXPEDITED DATA u n c o n f i r m e d

T a b . l

4. FORMAL SPECIFICATION

The specification is organized as follows:

a PASCAL-like type declaration which defines
all the used types but one, the abstract type
"nxqueue", which has been formally specified in
<CFMS 84>; the latter consists of a sequence of
two distinct kinds of objects, "normal" (N) and
"expedited" (X): Fig.2 gives a pictorial repre
sentation of its access functions; the function
"nox" returns the number of expedited objects
in the sequence; the symbol * denotes the empty
sequence;

a temporal ordering specification which consti-
tutes the "body" of the specification: here the
processes are defined in a top-down fashion,
hence the definitions of the atomic ones are
placed at the bottom; these may be looked at as
a quick glossary of the abbreviations of serv
ice primitives.

rest
nin t I

I ' £ [NIXININI IXlNI N 1

xln [
' ~ '

restx

~flrst

: firstx

Fig. 2

In order to allow a nice use of the restriction
operator, each SSAP has been specified as a pair
of gates (a "channel"), one for request and
response primitives, the other for indication and
confirm ones: if c is a channel, the functions
u(c) and p(c) return its respective gates, and
the function remote(c) returns the channel to
which the remote user is attached.

Comments are inserted in the form (* comment *)
as an aid to understanding the formal expressions
which follow them.

109

.Syst SS BCS X

(* type declaratlons *)

type

(* Architecture elements *)

(* SSAP channels *) SSAP = (a,b);
(* SSAP gates *) gate = (ua,pa,ub,pb);
(* F u n c t i o n a l U n i t s *) FU = (K,H,D,X);

(* Session Service Primitive *)

SSP = record case code:sspcode o_~f
(*
S CONNECT - This service is used to establish a

se~slon connection and to negotiate the session
requirements and initial token assignment; a
result parameter (accept or reject) is given in
the response/conflrm primitive: a reject value
can he quallfled as due to user or provider (the
latter only in the confirm primitive); a limited
amount of user data can be carried in the service
primitives.
*)
(*S__CONNECTrequest/indication*) Ci:(parms:crlp);
(*S_CONNECTresponse/confirm*) C c : (p a r m s : c r c p) ;
(*
S DATA - This service is used to carry normal

Sesslon Service Data Units (SSDU's) over an esta
bllshed session connection. When the data token
is available (half-duplex FU selected) only its
owner can send data by means of a S DATA request.
,)

(*S_DATArequest/indication*) D: (parms:SSDU);
(*
S RELEASE - This service is used to orderly re

le~se an established session connection without
loss of data; all the available tokens are re
qulred to be assigned to the user initiating tlhls
service; a limited amount of user data can be
carried in the service primitives.
*)
(*S_RELEASErequest/indication*) Ri: (parms:rud);
(*S_RELEASEresponse/confirm*) Rc:(parms:rrcp);
(*
S U ABORT - This service is used t o instant-

- - w

aneously release the session connection; this may
cause loss of data; a few octects of user data
can be carried in the service primitives.
*)
(*S_U_ABORTrequest/indlcation*) AU: (parms:aud);
(*
S P ABORT - This service is used to indicate the

release of a session connection for reasons
internal to the SS-provlder; this may cause loss
of data; a reason parameter is provided which may
assume one of the values: transport disconnect,
protocol error, undefined.
*)
(*S_PABORTindlcation*) AP: (parms:par);
(*
S TOKEN PLEASE - This service is used to request

specific--available tokens; this request can be
issued only by the user who does not own the re
quested tokens. An S TOKEN PLEASE indication does
not constrain the user to give the requested
tokens.
*)
(*S_TOKEN_PLEASErequest/indic.*) P : (p a r m s : t p p) ;

(*
S__TOKEN GIVE - This service is requested by the

owner of--some tokens to surrender one or more of
them to the other user.
*)
(*S_TOKEN__GIVErequest/indic.*) T : (parms:tk);
(*
S EXPEDITED DATA - This service is used to carry

Exp--edited Sesslon Service Data Units (XSSDU's)
over an established session connection. The
transfer of an XSSDU is not constrained by the
right to send normal SSDU's. The SS provider
guarantees that an XSSDU will not be delivered
after any subsequently submitted normal SSDU on
that session connection. The size of an XSSDU is
limited to a few octets.
*)
(*S_EXPEDITED_DATAreq./indlc.*) X:(parms:XSSDU)

end

(* service primitive parameter types *)

(* S CONNECT *)

(*conn. user data*) cudffistrlng 0..512 o_~f octect;

(* the following unspecified types are used for
S CONNECT primitive parameters which are unspeci-
fied also in the DIS *)

(*user-provlded session
connection identifier*) sci = unspecified;
(*SSAP identifier*) ssapid ffi unspecified;
(*reason for failure in
user reject of connection*) urf = unspecified;
(*reason for failure in pro
vlder reject of connection*) prf = unspecified;

(* S CONNECT request/indication *)

(*session requirements: half duplex
FU,duplex FU,expedited data FU*) sr ffi (H,D,X);
(*requestor requirements*) rsr=set of sr;
(*proposed token assignment (by re
questor): requestor side, accept
or side, acceptor choice*) pta=(rqs,acs,ach);

crip ffi record conn__Id:scl; calllng,called:ssapid;
ud:cud ; case s r : r s r o_~f (H) , (H,X) , (H,D,X) :

(i t a : p t a) end;

(* S CONNECT r e s p o n s e / c o n f i r m *)

(* r e s u l t o f c o n n e c t i o n e s t a b l i s h m e n t *)
ru ffi r e c o r d case r : (a c c , u r J , p r J) o f

(*accep t ed*) a c c : O ;
(*user rejected*) urJ:(rs:urf);
(*provider rejected*) prJ:(rs:prf) end;

(*half-duplex allowed
session requirements*) hsr = (H,X);
(*duplex allowed
session requirements*) dsr = (D,X);
(*acceptor session requirements*) asrfunlon of

(set of hsr,set of d sr~,
(*token assignment*) ta = (rqs,acs);

crcpfrecord corm Id:sci; called:ssapld; ru:ru;
ud:cud; case sr:asr of (H),(H,X):

(ita:ta) end;

(* S__DATA *) SSDU = string of octet;

110

(* S RELEASE *)

(* release user data *) rud = cud;
(* release result *) rru = (affirmative);

(* S RELEASE response/conflrm *)

rrcp = record ru:(rru); ud:rud end;

(* S U ABORT *)

(* user data *) aud ffi string 0..9 o_ff octet;

(* S P ABORT *)

(* reason *) par = (td,pe,uf);

(* S TOKEN GIVE *)

(*set of available tokens*) tk = set of (da);

(* S TOKEN PLEASE *)

(* user data*) pud = string 0..64 o_~f octet;
tpp = record tk:tk; ud:pud end;

(* S EXPEDITED DATA *)

(*expedited SSDU*) XSSDU = string i..14 o_~foctet;

(* data transfer and orderly release
phases parameters *)

(*token availabil./assignment*) taa=(na,rqs,acs);
dtorph = record

(*requestor and acceptor channels*) a,b: SSAP;
(*selected functional units*) sfu: asr;
(*data token availability/asslgnment*) dk: taa;
(*information flows

[source channel] *) S: array SSAP o_~fnxqueue;
(*orderly release *) tel: array SSAP of array
(*phase control: *) (req,lnd) of bo---olean end
(*see data transfer phase *)
endtype

(* temporal ordering *)

spec SS BCS X(a,b:SSAP) :=

~ session connection(a,b) session_--connectlon(b,a)
);SS BCS X(a,b)

(* Hereafter a and b respectively denote
the requestor's and acceptor's channels. *)

(* connection establishment phase

it is specified that a connection can be termin-
ated only after the connection establishment has
been requested. Termination processes starting in
this phase are specified after those of the
normal course of action *)

session connection(a,b:SSAP) :=
~req(a~x);(Cind(b,x);pending(a,b,x)

0early_termination(a,b,x)
)

(*the connection pending process starts after the
S CONNECT indication has taken place, and trans-
forms into the conflrmln~ one after the S CONNECT
response is given; the "gates weak dlsab~e" ope-
rator is introduced in appendix B. *)

p e n d i n g (a , b : S S A P , x : c r i p) :=
let g = any of (a ,b) in
(a b o r t _ t e r m i n a t i o n (g , r e m o t e (g)) >gl<

(C r s p (b l y) ;
if (H in x.sr and H in y.sr)
-----> con~rming(a~,b,x,y,y.lta,**f)
else conflrmlng(a,b,x,y,na,*,f) fl

))

(* in the confirming process the acceptor is
already either in the data transfer phase or dis-
connected, whereas the requestor is waiting for
the connection confirm; sfu: selected functional
units; r becomes true when the acceptor requests
the orderly release before the connection confirm
has taken place *)

conflrmlng(a,b:SSAPpx:crlp,y:crcp,
dk:taa,Sb:nxqueue,r:boolean) :ffi

if y.ru.r=acc
--> let sfuflntersection __°f (x.sr,y.sr) inn

(Ccnf(a,y);data transfer
(a,b, sfu,dk,(*,S~),((f,f),(r,f)))

DD i_~nsfu or (H i_nnsfu and dR=acs)-->
(Dreq(blz);conflrming

(a , b , x , y , d k , n i n ((D , z) , S b) , r)
~ R r e q (b | z) ; (c o n f i r m i n g
) (a ' b ' x ' y ' d k ' n i n ((R i ' z) ' S b) ' t) \ u (b))

DX i__nn s f u - - > X r e q (b l z) ; c o n f i r m i n g
(a , b , x , y , d k , x i n ((X , z) , S b) , r)

DH i__n_nsfu-->i_f dkfacs
--> TGreq(b,(da));confirming

(a,b,x,y,na,nin((T,(da)),Sb),r)
else T P r e q (b J z) ; c o n f i r m i n g
- - - ~ , b , x , y , d k , n i n ((P , z) , S b) , r) fi

)
e l s e Ccnf (a ,y) f l

(* data transfer phase

both requestor and acceptor are in the data
transfer phase which, in this specification,
includes the (orderly) release phase; the latter
is controlled by the values of re1: rel[xxx,~
becomes true when the primitive S RELEASE xxx...
i s execu ted a t SSAP g. The f u n c t i o n ons ide (g)
r e t u r n s r q s , a c s f o r g - a , b r e s p e c t i v e l y . *)

d a t a t r a n s f e r (p s : d t o r p h) :=
wi th ps do f o r a l l g in (a ,b)
(

(* S_DATA request or S_RELEASE request *)

D in sfu or (H in sfu and dkfonslde(g)) -->
(Dreq(gJz);data transfer

(ps where S[g]<-nln((D,z),S[g]))

(* it can be easily verified that a release
co111slon can happen only in duplex mode *)

~not rel[ind,g]-->
R r e q (g [z) ;

i_ff r e l [r e q , r e m o t e (g) J
--> release collision

(ps--where S [g] <-nin ((Ri, z) • S [g]))
else data transfer

(ps wh~re S[g]<-nin((Ri,z),S[g]),
rel[req,g]<-t)\u(g)

fl

iii

(* S DATA i n d i c a t i o n o r S RELEASE i n d i c a t i o n
o r S RELEASE c o n f i r m *)

~S[g]<> * --> with first(S[g]) do
code=D -->Dind-d~emote(g),parms-~;data t r a n s f e r

(ps where S[g]<-~est(S[g]))
0code-Ri-->Pc[nd(remote(g),parms);data transfer

(ps where S~E]<- *,rel[ind,rem~te(g)] <-t)
~codefRc-->Renf(remote(g),parms) od

(* S_RELEASE r e s p o n s e *)

~ r e l [i n d , g] - - > R r s p (g J z) ; d a t a t r a n s f e r
(ps where S [g] < - ~ i n ((R c , z) , S [g]) ,

S [r e m o t e (g)] <- *) \ g

(* S EXPEDITED DATA service *)

0X in sfn-->
(~eq(g[z);data transfer

~ps where S[g]<-xin((X,z),SCg]))
Dnox (s [g]) >o-->

X i n d (g , f i r s t x (S [g]) . p a r m s) ; d a t a t r a n s f e r
(ps where S[g]<:restx(S[g]))

)

(* S TOKEN services (data token) *)

~H in sfu-->
(i _ dkfonside(g)
--> TGreq(g,(da));data transfer

(ps where dk<-na, S[g]<-nln((T,(da)),S[g]))
else TPre---~[z);data transfer

(ps where S[g]<-nin((P,z),S[g])) fi
0S[g]<> * --> wlth first(S[g]) do

codeffiT-->TGind--~emote(g),parms-~;data transfer
(ps where dk<-onslde(r~mote(g),

S [g] <-rest (S [g]))
~code=P-->TPind(remote(g),parms);data transfer

(ps where S[g]<-rest(STg])) od
)

) od

(* release c o l l i s i o n

t h e r e l e a s e c o l l i s i o n i s s p e c i f i e d by t h e a r b l t -
r a r y i n t e r l e a v i n g of t h e p r o v i d e r o u t p u t s .

The execution of the S RELEASE indication at ,each
SSAP enables the involved user to realize the
o c c u r r e n c e of the collision.

Two s o l u t i o n s are t h e n c o n c e i v a b l e : e i t h e r this
e v e n t i s considered as t e r m i n a t i n g t h e connection
(a t t h e SSAP where i t o c c u r r e d) o r a n o t h e r
t e r m l n a t l o n r e q u e s t p r i m i t i v e i s a c c e p t e d by t h e
p r o v i d e r ; no p rob lem i s d e t e c t e d by t h e aut lhors
i f t h i s i s an S U ABORT r e q u e s t , s i n c e i t i s
c l e a r l y s t a t e d i n t h e DIS t h a t d a t a conveyed by
a b o r t p r i m i t i v e s can be l o s t ; on t h e con t rm~] a
n o t a l l o w a b l e l o s s of d a t a o c c u r s i f an S RELEASE
r e s p o n s e i s a c c e p t e d (as t h e s t a t e t a b l e s of t h e
DIS i n d i c a t e) s i n c e t h e i r u s e r d a t a can n e v e r be
d e l i v e r e d . *)

(* release collision as specified
by the DIS state tables *)

release_collision(ps:dtorph) :=
with ps do for all g in (a,b) I~
d ~ a _ t r a n s f e r (p s - - ~ r e m o t e (g) \ u (g) ; R r s p (g [z)) od

(* release collision without
SRELEASE response *)

release__collision(ps:dtorph) :=
with ps d_~odatatransfer(ps)\u(a)\u(b) od

(* immediately release processes *)
(*
three kinds of occurrences are represented by the
following process:
- a "local rejection" of a connection request,
- a provlder-lnltlated abort before S CONNECT

indication,
- a (requestor) user-initlated abort before

S CONNECT indication.
*)

ear ly terminat ion (a,b : SSAP,x: cr tp) :=
i[y:prf);Ccnf(a,x where ru <- (p r J , y))
_~CY: par) ; PAind (a, y)-~----

(~k__~
~Cind (b ,x) ; p a b o r t _ p e n d i n g (b , x , y)
)

UAreq (a l y) ;
(skip

0 Cind (b , x) ; u_abor t _ p e n d i n g (b , x , y)
)

[a b o r t _ p e n d i n g (a , b : S S A P , x : c r i p , y : p a r) : .
y : p a r) ; P A i n d (b , y) ~ P A i n d (b , y)) > <

(Crsp(b[z) ; l_~f (H i n x . s r and H i n z . s r)
--> co-nfirmin~,b,~,z,z.lta,*,f)

else conflrmlng(a,b,x,z,na,*,f) fi\a
)

u a b o r t _ p e n d i n g (a , b : S S A P , x : c r i p , y : p a r) :=
(i__Cy:par);PAind(b,y)0UAind(b,y))><
(Crsp(blz);i_ff (H in x.sr and H in z.sr)

--> c~nflrmlng--~,b,~,z,z.lta,*,f)
else confirming(a,b,x,z,na,*,f) fi\a

)

(*
t h e f o l l o w i n g p r o c e s s r e p r e s e n t s t h e i m m e d i a t e l y
r e l e a s e , e i t h e r u s e r - o r p r o v i d e r - i n i t i a t e d , a t
any moment a f t e r t h e S CONNECT i n d i c a t i o n ha s
taken p l a c e .
*)

a b o r t t e r m l n a t i o n (a , b : S S A P) : -
U A r e q (a l x) ; U A i n d (b , x)
f o r a l l x i n p a r ~ P A i n d (s , x) ; P A i n d (b , x)

(* service prlmitlves *)

(* S CONNECT *)
(* request *)
(* i nd ica t ion*)
(* r e s p o n s e *)
(* c o n f i r m *)
(* S DATA *)
(* r ~ q u e s t *)
(* indication*)
(* S RELEASE *)
(* r~quest *)
(* i n d i c a t i o n *)
(* r e s p o n s e *)
(* confirm *)
(* S U ABORT *)
(* r e q u e s t *)
(* i n d i c a t i o n *)

C r e q (g : S S A P j x : c r l p) : -
C i n d (g : S S A P , x : c r l p) : =
C r s p (g : S S A P J x : c r c p) : -
C c n f (g : S S A P j x : c r c p) : =

Dreq(E:SSAPlx:SSDU):=
Dind(g:SSAP,x:SSDU):-

Rreq(g :SSAPIx : rud) :=
R i n d (g : S S A P , x : r u d) :=
R r s p (g : S S A P l x : r r c p) : =
R c n f (g : S S A P , x : r r e p) : -

U A r e q (g : S S A P l x : a u d) : -
U A i n d (g : S S A P , x : a u d) : -

u(g)?(Ci,x)
p(g)~(Ci,x)
u(g)?(Cc,x)
p(g)l(Cc,x)

u (g) ? (D,x)
p (g) ! (D,x)

u(g) ? (Ri ,x)
p(g) I (R / ,x)
u(g)? (Re,x)
p(g) I (Rc,x)

u (g) ? (AU,x)
p(g) I (AU,x)

112

(* S P ABORT *)
(* tn--di--cation*) PAind(g:SSAP,x:par):- p(g) l(AP,x)
(* S TOKEN PLEASE *)
(* r~quest-- *) TPreq(g:SSAPlx:tpp):= u(g)?(P,x)
(* indication*) TPlnd(g:SSAP,x:tpp):ffi p(g) l(P,x)
(* S TOKEN GIVE *)
(* r~quest-- *) TGreq(g:SSAP,x:tk) :ffi u(g)?(T,x)
(* ind ica t ion*) TGind(g:SSAP,x:tk) :ffi p(g) r(T,x)
(* S EXPEDITED DATA *)
(* r~quest "7 Xreq(g:SSAPIx:XSSDU):- u(g)?(X,x)
(* ind ica t ion*) Xind(g:SSAP,x:XSSDU):= p(g)!(X,x)

5. CONCLUSIONS

The secret aim of this paper consisted of showing
how an event algebra can effectively be employed
for the specification of rather complex abstract
services.

The goal can be considered reached, in the opi-
nion of the authors, at least for the specified
subset. This effectiveness remains to be shown
for more complex target applications like the
whole SS or the Session Protocol.

Some pitfalls of the current draft definition of
LOTOS have been compensated in this example by
the definition of some additional operators which
do not affect the kernel language semantics,
while seeming to be very useful at various OSI
layers for the purpose of their concise specifi-
cation.

Work is underway to complete the LOTOS definition
with funct ion and abs t r ac t type s p e c i f i c a t i o n f a -
c i l i t i e s .

6. ACKNOWLEDGEMENT

The authors llke to acknowledge the contributions
of Chris Vissers, Ed Brinksma, Jan De Meer and
GUnter KarJoth, with whom they cooperate both in
the COSTII bis project on Temporal Ordering
Specification and in ISO/TC97/SCI6/WG1/FDT/-
Subgroup C.

7. REFERENCES

<B 83> E. Brinksma, An Algebraic Language for
the Specification of the Temporal Order
of Events in Services and Protocols,
Proc. of the European Teleinformatics
Conference, Varese, Italy, Oct.3-6,
1983, North-Holland (1983) pp.533-542

<BPW 81> M. Broy, P. Pepper, M. Wirsing, On
Design Principles for Programming
Languages: An Algebraic Approach, in:
De Bakker, Van Vllet (eds), Algorithmic
Languages, North-Holland (1981)

<CFMS 84> V. Carchlolo, A. Faro, F. Minlssale, G.
Scollo, Some topics in the design of
the s p e c i f i c a t i o n language LOTOS, to
appear.

<ISO 83a>

<ISO 83b>

<ISO 83c>

<K 83>

<M 80>

<V 83>

ISO, Information Processing Systems,
Open Systems Interconnection, Draft
Tutorial Document, Temporal Ordering
Specification Language, ISO/TC97/SCI6/
/WGI/N 157, August 12, 1983

ISO, Information Processing Systems,
Open Systems Interconnectlon, Basic
Connection Oriented Session Service
Deflnltion,Draft International Standard
DIS8326, 1983

ISO, Information Processing Systems,
Open Systems Interconnection, Proposed
DP for Services Conventions, IS0/TC97
/SC16/WG1/N 122 revised, October 1983.

G. KarJoth, BDL,a Behavlour Description
Language,IFIP WG6. l,Thlrd International
Workshop on Protocol Specification,
Testing and Verification, ZurlchMay
1983, (North Holland).

R. Milner, A Calculus of Communicating
Systems, LNCS 92, Springer - Verlag,
Berlin (1980)

C. A. Vlssers, Architectural Require-
ments for the Temporal Ordering Speci-
fication of Distributed Systems, Proc.
of European Telelnformatics Conference,
Varese, Italy, Oct. 3-6, 1983, North-
-Holland (1983), pp.79-95

NOTES

(i) A type specification for e is not needed
since e is a defined value at the time of occur-
rence of the output event; however, it might be
useful, in some cases, to allow for a concise
notation of internal nondetermlnlsm in the output
value generation: this could be expressed by a
typed notation, where the type identifier would
denote the range of the values that the output
event may transfer.

(2) A distinguished feature of the FU's definit-
ion is that their I/O dictionaries (in terms of
parameterized service primitives) are disjoint.
Nevertheless the high number of interdependencies
among the FU's makes unpractical a model of the
service which would describe it as the parallel
composition of processes representing the FU's.

(3) There are some restrictions concerning the
selection of related FU's: for instance, the
exception reporting FU can be selected only if
the half-duplex FU is included.

(4) Clause 10.12.1 of the DIS, on "extended
control parameter", states that " the extended
control parameter allows the SS user to make use
of the resynchronize, abort and activity (discard
and interrupt) services, when normal flow is
congested. Note - when the expedited functional
unit has been selected the extended control QOS
is always provided to the SS user". The "always"
adverb in the note should be referred to the ser-
vices present in the agreed subset.

113

APPENDIX A: KERNEL LOTOS

This appendix shows the operators and o t h e r
features of the kernel LOTOS now being developed
by Subgroup C of ISO/TC97/SC16/WG1/Ad-Hoc group
on FDT's.

LOTOS operators:

- sequence operator denoted by ";": i f p and q
are processes, also (p;q) is a process which
initially behaves like p and, when p terminates,
then it behaves like q.

- choice operator denoted by "~ ": if p and q are
processes, also (p D q) is a p r o c e s s which beh~es
either like p or like q. The choice may be ex-
tended to an indexed set of processes by means of
a construct of the form:

for all <index> i_~n <type> ~ p(<index>)

- composition operator denoted by [B[where B is
a set of gates; if p and q are processes, then (p
[B[q) is a composed process which transforms
complementary offers at gates in B into internal
events, whereas arbitrary interleaving is allowed
of events of p and q at gates not in B.

- d i s a b l e o p e r a t o r d e n o t e d by >< ; i f p and q a r e
p r o c e s s e s (p >< q) i s a p r o c e s s wh ich b e h a v e s
l l k e q u n t i l t h e o c c u r r e n c e o f t h e f i r s t e v e n t o f
p ; a f t e r t h i s o c c u r r e n c e t h e p r o c e s s may o n l y
c o n t i n u e w i t h t h e r e s t o f p .

- r e s t r i c t i o n o p e r a t o r d e n o t e d by " \ B " where B i s
a s e t o f g a t e s ; i f p i s a p r o c e s s , p \ B i s a
p r o c e s s wh ich b e h a v e s l l k e p w i t h o u t d e r i v a t i o n s
s t a r t i n g w i t h an e v e n t a t a g a t e o f B.

Other language features are:

- g u a r d e d commands in t h e form:

e --> p

which establishes that process p may be executed
only if expression e is true. Mutually exclusive
guards can be expressed in the form:

if e --> p else q f i

- behaviour identifiers in the form :

alfa := p

which establishes a way to start the process p
simply by using in the language expressions the
identifier alfa. The identifier can be also
parameterized in such a way as to give rise to a
(possibly infinite) number of identifiers simul-
taneously.

- recursion t h a t means that we may use the
behaviour identifier itself in defining the
language expressions.

- substitution either in the form:

let <let substitution llst> in (<LffFOS
e x p r e s s i o n >)-- -- --

or w.r.t, an identifier of a parameter list:

<identifier> where <where substitution list>

The Pascal with clause is adopted.

Finally we note that a high degree of flexibility
in modularising our specifications can be obtain-
ed by using the notions of export values list and
import values list.

The export list of a process p is a set of
parameters having a defined value for every
termination of p.

The input list of a process p is the set of
parameters which must be defined before the
execution of p.

These lists are represented in LOTOS by using the
following notation :

P (i I i N [e I e M)

where i. is a generic imported value and is a
genericXexported value. The symbol "[" ~ used
instead of "([" when the import list is empty.

Process p may be the internal "unobservable"
event i, in which case the internal value gener-
ation~s represented by the export list.

APPENDIX B: LOTOS EXTENSIONS

This appendix presents some of the new operators
proposed in <CFMS 84> to be added to the kernel
LOTOS in order to obtain more readable and
concise specifications. In the sequel A denotes a
set of gates. When A consists of one gate, A=[aJ,
a will be used instead of A.

I. ">[<" :"weak disable"; if p and q are process-
es, then p>l<q is also a process which behaves
like p[[q until the last event of either p or q
takes place; this event actually terminates the
resulting process.

2. ">A]<":"gates weak disable"; if p and q are
p r o c e s s e s t h e n (p>A[<q) i s a l s o a p r o c e s s w h i c h
b e h a v e s l l k e q u n t ~ l t h e f i r s t e v e n t o f p t a k e s
place; after this event it behaves like
p'>l<(q'\A) where p' and q' are the processes in
which p and q respectively transformed.

114

