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ABSTRACT

This paper presents and analyses a simple algo-
rithm for setting an adaptive timeout value at a
source Host for end~to—end retransmission on a
packet-switched connection. The algorithm allows
the recipient Host to acknowledge arriving data in
either original transmission order or out-of-
order. The timeout at the source Host is deter-
mined from current estimates - using exponentially
weighted moving averages — of the mean and vari-~
ance of successive acknowledgement delays. We
show that when these delays are random variables
forming certain stationary or non-stationary sto-~
chastic processes, the ensuing timeout gives a
near-minimum retransmission delay, subject to some
specified limit on the amount of wunnecessary
retransmission. This property is illustrated for
a simulated sequence of acknowledgement delays
obtained from loop delay measurements.

1. Introduction

End-to-end retransmission in a packet switching
network usually occurs in a transport protocol,
such as the Tramsmission Control Protocol (TCP)
[Cerf 74, Postel 80] or the recent ISO protocol
[ISO 82]. 1Its main purpose then is to provide a
reliable communication path on a connection
between two communicating processes.

The retransmission mechanism normally used in
transport protocols - e.g. in TCP and the ISO pro-
tocol - has been called Sequencing Positive Ack-
novledgement Retransmission (SPAR) [Sunshine 75].
With this, the data stream for each directiom on a
connection is logically subdivided into data units
- e.g. packets or bytes - each implicitly or
explicitly carrying a sequence number. This
sequencing allows arriving data to be correctly
ordered at the receiver with any duplicates being
removed. Reordered data is then acknowledged by
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the receiver by returning the sequence number of
the next expected data unit. This implicitly ack-
nowledges all preceding data. At the sender,
unacknowledged data units are retransmitted fol-
lowing & certain timeout period since their previ-
ous transmission or retransmission. In some cases
- e.g. the IS0 transport protocol - only the ear-
liest unacknowledged data unit would be
retransmitted in this way. '

Another retransmission mechanism, commonly used
inside a network but also possible in theory for
end-to-end use [Edge 83], is unsequenced Positive
Acknowledgement Retransmission (PAR). This can
behave identically to SPAR at a sender, but at a
receiver each data unit must be acknowledged indi-
vidually. However, this can occur on arrival
rather than after data reordering.

The timeout algorithm presented here applies to
both SPAR and PAR. Its general aims are described
in the next section, and the algorithm itself is
defined in section 3. Section 4 validates the
algorithm analytically under both stationary and
non-stationary conditions. The algorithm is then
tested in section 5 against a sequence of simu-
lated acknowledgement delays obtained from local
area loop delay measurements.

2, The Aims of Adaptive Timeout Estimation

An end-to-end timeout has two possible aims: to
ensure adequately low retransmission delay and to
avoid most unnecessary retransmission. While the
former requires a small timeout, the latter
demands a timeout in excess of most acknowledge-
ment delays.

When unnecessary retransmission alone is impor-
tant, a timeout could be set to the largest possi-
ble acknowledgement delay, as obtained from the
maximum combined lifetimes of any packet and its
acknowledgement in transit and at a receiver
[1S0 82]. However, such a timeout would almost
certainly be several seconds or more, since even
normal end-to-end response times can be around one
second [Clipsham 76, Kleinrock 76 p.457, Rajara-
man 78]. This delay could be unacceptable for
interactive or real time traffic if uncorrected
data loss occurred frequently - e.g. from
transmission errors in a packet radio network or
from buffer depletion in nodes, Gateways or the
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receiving Host.

A smaller retransmission timeout allowing a lim-
ited amount of unnecessary retransmission may thus
be desirable in certain cases. However, such a
timeout cannot necessarily be determined from
advance calculation, since it would depend on the
distribution of acknowledgement delay, requiring
both foreknowledge of the latter and stability.
To avoid these prerequisites, we define the fol-
lowing adaptive algorithm.

3. The Adaptive Timeout Algorithm

The timeout algorithm has two parts. In the
first part, measurements of successive SPAR or PAR
acknowledgement delays are used to update esti~

mates, Tn and Vn, of the average and variance,

respectively, of acknowledgement delay, where n
(n 2 0) gives the number of previous updates and
To and V, are the initial estimates. In the
second part, a suitable retransmission timeout,
Rn, is obtained from Tn and Vn'

The first part proceeds as follows. Each time
that a returning acknowledgement acknowledges one
or more outstanding data units (e.g. bytes, pack-
ets or letters), the time period, ty,, is obtained
since the initial transmission of the first of
these data units. This is used to update T,-1 and

vn-l as follows:

= 2
T, an—l + tn/a (a21, n21) (1)
2
Vo= av o+ (e -1 _)%e (c21, n21) (2)
where
b = (a-1)/ a (3)
d = (c-1)/¢ (4)
The second part updates the retransmission

timeout, R, for some retransmission limit, Y, by:

1/2

R =T + e[Vn(l—Y)/Y] (0<Y<1l, e£1) (5)

Later analysis shows the parameter ¢ in Eq (2)
should be large (e.g. between 10 and 20), whereas
a8 in Eq (1) should be determined dynamically to
minimise V,. The parameter Y in Eq (5) defines
the maximum probability of unnecessary retransmis-
sion for SPAR between two consecutive updates of
R.. Under certain conditions, it also defines the
maximum probability of unnecessarily retransmit-—
ting the data associated with t, for SPAR and PAR.
To make this guarantee, the parameter e should
equal one. However, for certain distributions of
acknowledgement delay that can occur in practice,
e = 0.4 will reduce R, without significantly

exceeding the retransmission limit.

When retransmitted data is acknowledged follow—
ing an earlier loss, the updates of Tp-1s Vp~1 and

R,_; should be excluded since t, could be
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unrepresentative of normal acknowledgement delay
even when measured correctly from the time of
retransmission. However, updates must be included
for large acknowledgement delays causing unneces-
sary retransmission. To distinguish these alter-
natives, retransmissions and their acknowledge-
ments could be labelled -~ e.g. using an extra data
sequence bit. Otherwise the following assumptions
can be made: assume unnecessary retransmission
(and include retransmission updates) for a low
frequency of loss; assume necessary retransmission
(and exclude updates) for a high loss frequency
(e.g. exceeding Y); otherwise assume unnecessary
retransmission only when th < RET, ), where RETn_l
is an updated estimate for the minimum ack-
nowledgement delay of 2 retransmission
(e.g. RET ;) =R,y + MIN[t}, &5, ... t _;]).

In the second and third cases above, T, and V,
would be mean and variance estimates for the ack-
nowledgement delay distribution truncated at
approximately R,_; and RET, i, respectively, This
will reduce T, and (most likely) V,, thereby also
reducing R (and RETn) and allowing more unneces-
sary retransmission. This is illustrated later.

4, Analysis of the Algorithm

In this section, we validate the algorithm when
the acknowledgement delays are derived from some
stochastic process. We begin by analysing the
mean and variance estimates, Tn and Vn, for a
weakly stationary stochastic process of order two
and a non-stationary random walk. We then derive
the timeout formula in Eq (5). Throughout, E, VAR
and COV will denote expectation, variance and
covariance, respectively, and E®, VAR® and COV®
will denote these terms conditioned at any time on
all previous acknowledgement delays.

4.1 Weakly Stationary Acknowledgement Delays

‘We assume here that the acknowledgement delays
t, (n21) are random variables with the same

positive and finite mean, ¥, and variance, V. We
also assume that the correlation coefficient, v.,

of t, and tn—j is independent of n (1 £ j £ n-I,

n 2 2). To analyse Eqs (1) and (2) under these
conditions, we restate them as follows:
n-1 . n
T = = ble ./a + bT (n21) (6)
n o n-j 0
3j=0
el 2 n
v, = j=Zod (:n_j-rn_j_l) le + d7vy ()
(n 21)

The right hand sides of the above equations are
called exponentially weighted moving averages
(EWMAs) [Box 76 p.l145 Cox 65, p.303], due to
their being weighted averages with geometrically
decreasing weights. EWMAs are particularly useful
for statistical forecasting, as shown later. Tak-
ing the expectation, E, and variance, VAR, of
Eq (6) using (0 < b < 1) yields:



n-1 . n
E(T) = & biT/a + b"T (n21)
n . 0
j=0
= T + b“(To—'r) (a 20)
-~ T (n > o0) (8)
n-1 .
var(t ) = = blvy &
n .
j=0
n-2 n-1 .
+2 5 £ p™oowte _, :n_l_)/a2
j=0 k=j+l J ¢
(n22) (9)
n-1 . n-1
< = bl £ ¥vse? 2D
j=0 k=0
< Vv (10)

Equation (8) shows that the expectation of T,
approaches the mean acknowledgement delay, T, for
large enough n, while Eq (10) shows that T will
fluctuate less than the acknowledgement delays,
due to a smaller variance. This variance can be
reduced further if the correlation coefficients,
cov(e,, tn_j)/ V, are bounded by some non-negative
value, m, according to:

T
T cov(t , t D)/ V £ m (11)
31 n’ n-j
(1£¢r <£n-1, n22)
Equation (9) then gives for (n 2 2):
n—-1 .
var(t ) = % b2iv/a? 4
n X
j=0
n-2 . n—j-1
2 £ b2l bkCOV(tn_., :n_._k)/a2
=0 k=1 ] ]

00 . 00 .
s b2iysal + 25 v bmuvysal
j=0 j=0

A

< (2m +1) v/ (2a - 1) (12)

Provided 1 is correlated strongly with no more
than a few of the preceding delays, m in Eq (11)
could be small. This is not unrealistic: ARPANET
measurements in [Kleinrock 76, p.458] indicate
m £ 2, while independent delays would give m = 0.
A large value for the parameter a (e.g. a 2 20)
would then greatly reduce the variance of T, in

Eq (12), making T, itself an accurate estimate for
T.
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We now obtain the expectation of V, using
(0£b<1), (0S$d<1) and (for the first time)
v; = COV(tn, tn_j)/ V with (-1 £ \f < 1). We begin
from Eq (6) to obtain:

|l o (n = 0)
|
| v/ az (n=1)
VAR(T ) = |
n
| n~1 23 2
| = b*I v/a® +
5
n-1 ., j-1
| 25 bd's bhv, v/a? @22
[_ j=1 k=0 J
thus for (1 £ i <n, n22):
|vAR(T ) - VAR(T _.)I
n-1 . n-1 . j-1
= | sy s 25s i x bkv._kV/az|
j=n-i jen~i k=0 3
jto

Ci-l L. , .
<« p2 2l s p2iy 2 4 2™l s piyy,

j=0 j=0
< b»tv/(a-1) + 2b%tvy
Also from Eq (6) for (n 2 1):
n-1 K
cov(e ., T)) = k=ZO b™ cov(e ., t )/ a
n~-1 K
= Z b w v/a
k=0 k+l
so for (1 £i<n, n22):
leov(e ., T)) = covle ..., T .l
n-1 Kk
= | T b vk+1V/a|
k=n-i
< btv
Finally for (n 2 2) in Eq (7):
3 -1
E(Vn) = izid [VAR(tn_i+1 - Tn—i) +
2 n
(BCt, ;g ~ Tp-i)) 1/ e + &V,
2 -l
i§1d v + vaR(T _.) - 2cov(e . 1o Ty

+ b2 (g TO)Z] [c¢ + 4a% Y

)



giving:

s |
IE(Vn) - i§1d v + VAR(Tn) - 200V(tn+1, Tn)] / cl

n i~1 s 2
< w4t b“[v/(za-l)+4v+(r-ro)1/c

i=1
+ d“vo
a i-1 ,,,n-1 n
= ¥ (d/b) o(b” ") + o@d")
i=1
and thus:

n
|E(Vn) - (1 -4 )VAR(:I1+1 - 'rn)l

< 1Towb™™) + 0® (b= a)
|

[_oCIb® = a1 + o(d™) (b # 4)
E(Vn) > VAR(e ) - Tn) (n > o0) (13)
Equation (13) shows that the expectation of Yy
approaches the variance of (tn+1 - Tn) for large
enough n. In order for V, to approximate
VAR(t .y - T,) as well, VAR(Vn) should be small.

Provided VAR[(t, - Tn_l)zl (n 2 1) is either con-

stant or replaced by some upper bound, the deriva-
tion of VAR(Vn) is identical to that of VAR(Tn)

previously. This is due to the functional
equivalence of Eqs (6) and (7), with a, b, Ty and

t, (n 2 1) in the former corresponding to ¢, d, Vy

and (t, - Tn_l)z, respectively, in the latter.
The V -analogues of Eqs (11) and (12) then imply
that VAR(Vn) would be reduced by a large parame-

ter, c, if the updates (t, - Tn-l)z (n 2 1) were
correlated weakly by an analogue of Eq (11).

To obtain weakly correlated updates for V, we

argue as follows. If the acknowledgement delays
t, are extended by fictitious additions
{to, t.» t.ps ..} 8nd derived from a strictly
stationary process (where the joint probability
distribution of any set {tn1+j' .e tnr+j} is
independent of j), then any delay t_ ., will be
uniquely represented by an infinite linear regres-
sion, (kjt, +kyt, ) +kyt, o +..), plus an
uncorrelated residual, Xn+1, derived from another
strictly stationary process with zero mean and no
autocorrelation [Cox 65 p.286, Wold 54 p.84 p.89].
The infinite regression (kjr, + kyt 1 + ... )
gives the best linear forecast for th+l given
{tys ty_q» ¢+« )}, since the mean square of the
forecast error, Xo41s is less than for any other

linear forecast [Cox 65, p.302]. Although the
EWMA formula for T, in Eq (6) cannot provide this
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optimum linear forecast for a stationary stochas-
tic process, examples show that it can sometimes
produce a similar mean square forecast error
[Cox 61]. This would occur by setting the parame-
ter, a, in Eq (6) to minimise El(t . - Tn)zl and
thus VAR(t,., - T,) = E(V,). Prediction errors,
(tp4) = T,)s close enough to X,,; would then pro-
duce the required uncorrelated updates,
(l:n+1 - 'l'n)2 = xﬁﬂ, for V , if the residuals, X,
were independent of one another.

Since obtaiming V, accurately turns out later to
be more important than reducing fluctuation in Tps

we are lead to propose a large value for the
parameter, ¢, in Eq (2), and a dynamically
adjusted value for the parameter, a, in Eq (1) to
minimise V,. However, to ensure rapid convergence
of E(T;) and E(V)) in Eqs (8) and (13), neither
b=1-1/a nor d =1 - 1/c can be too close to

one. As an example, to obtain b® or 4" < 0.1,
a<9or c<£9 is required for n = 20 updates, and
a £22 or ¢ £ 22 is required for n = 50 updates.
These indicate suitable maximums for a and c.

4.2 Non-Stationary Acknowledgement Delays

Here, we consider acknowledgement delays with no
steady mean or variance. One simple case occurs
when the previous weakly stationary delays change
suddenly to a new stationary sequence after the
mth (m 2 1) update. The values of T, and V,
immediately preceding the change then become the
initial estimates for T, and V, (n > m) for the

new sequence. The subsequent behaviour of T, and

V, is then covered by the previous subsection.

Another case occurs when the acknowledgement
delays are formed from a random walk according to:

-1
£, = a + h z o+ j‘::() zn-j / g (14)
where (g21, n21D
h = (g-1)/ g (15)

Ao is an arbitrary positive number
and {zl, Zy oo } is a sequence of independent

random variables with mean 0 and variance U

Equation (14) allows the acknowledgement delays
to drift from an initial value Ao by incremental

additions, zn/g. Transitory "shocks", hz, also

produce temporary fluctuation. We show in the
Appendix that T, and V will then satisfy:

E(Tn) -> E(t_,,) (n > o0) (16)

n+l

E(Vn) > VAR(tm_1 - Tn) (o> oo0) (17)



and

c
T, > E (tn+1) (n 300, b=10h) (18)

[
E(vn)—> VAR (:n+1 - Tn) (n > o0, b =h) (19)

Equations (16) and (17) match Eqs (8) and (13)
in the previous subsection, with convergence also

depending on terms of order b2 and d®. When the
parameters b and h are equal, Eqs (18) and (19)
show that !Ifn and Vn become much more reliable con—

ditional mean and variance estimates for the par—
ticular preceding delays {tj, ty, ... tp}. At the

same time, we show in the Appendix that the mean
square forecast error E[(t . - Tn)zl, which
equals E(V ) by Eqs (16) and (17), is minimised at
VAR(z,)) = U. This optimum forecast by the EWMA
formula for T, is well known for the stochastic
process of Eq (14) [Box 76 p.l44, Cox 65 p.303,
Muth 60]. It gives (t . = T,) =z, for large
enough n, so the updates (t, . - Tn)2 for V,
become independent random variables with constant
variance provided E(zg) is also constant. This
allows a large parameter ¢ to give V, = E(Vn), as

discussed in the previous subsection. The prior
condition for this, b = h, can then be ensured by
dynamically setting the parameter, a, to minimise
E(V,) and thus (approximately) to minimise V.

This treatment of the parameters a
corresponds to that proposed previously.

and ¢

In [Edge 84], we show that Eqs (16) and (17)
also apply when the acknowledgement delays t, are

the sum of a weakly stationary stochastic process
and an uncorrelated non-stationary process defined
as in Eq (14). This may be the most realistic
case, since the stationary component can include
delays subject to rapid fluctuation - e.g. delay
at the receiver - while the non-stationary com—
ponent can include more gradual delay variation
due to changes in network traffic.

4.3 The Timeout Formula

The two previous subsections have shown that the
mean and variance estimates, T_ and Vn, satisfy
E(T)) > B(t ;) and E(V)) > VAR(t . - T, ) for
large enocugh n. A probability 1inequality in
[Feller 66, p.150] - that is slightly tighter than
Chebyshev”s inequality - then gives for large n:

2.
Pr(t  -T >X) < E(V)/ [E(V) +x7]
(X >0) (20)
giving
2
< "
Pr(t ., >R) E(V) /O [EC(V) + R -1 )7]
(R > Tn) (21)
Now suppose that only the current timeouf value
initiates retransmission and that this occurs

(unnecessarily) for R,. Provided data is ack-

nowledged sequentially, as for SPAR, and the meas-

ured delay ¢t .y updates R, immediately, then
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th+l > Ry is implied, since th+l is then obtained
for the earliest unacknowledged data unit during
the lifetime of R . Thus if Pr(t ., >R ) <Y
(0 <Y<1), the probability of R,

unnecessary retransmission would not exceed Y.
The latter is then guaranteed for large n from
Eq (21) if:

causing

R >T with B(V)/ [B(V) + (R ~T)%] € ¥
n n n n n n
requiring

1/2
R, 2 T, * [E(Vn) (1 -v)/ 7Yl

Thus, assuming Vo is an accurate estimate for
E(V,), the minimum timeout, R, , giving a maximum

probability Y of unnecessary retransmission during
its lifetime should be obtained as:

1/2

R = T (n 21) (22)
n

o + [vn (1 -Y)/ ¥yl

This is the formula given earlier in Eq (5) for
e = 1. Notice that while V, must approximate

E(V,) accurately, T, need not approximate E(T),

since both its variance and its covariance with
t 4] 8re included in V, by Eq (13). This leads to

our distinct treatment of the parameters, a and c.

The above retransmission guarantee for SPAR can
be both improved and applied to PAR if the random

duration, X say, of R, satisfies
Rn-xn £ Rp-p — e.2. due to infrequent ack-
nowledgement. In this case,
(tae1 - Xy = Kpog oo = X4 > RY) implies
(b >Ry for (i <n). Thus, unnecessary
retransmission of the data associated with t .y on
any previous timeout R, (i £ n) implies

i
(tpey > Ry). Such retransmission then has a max-

imum probability, Y, with Eq (22). This directly
limits the amount of unnecessary retransmission.

In general, Eq (22) will give larger values of
R, than the exact velue satisfying Pr(t ., >R )=Y

since it guarantees Pr{(t ., > R;) £ Y for any dis-
tribution of (t_ .y - T.) in Eq (20). TIllustra-

tions of this phenomenon are given in Table (1)
for an exponential and two Erlangian distributions
(with mean T and variance V) of the acknowledge-
ment delays, t,. To obtain lower more accurate

values of R, in Table (1), the following alterna-
tive formula is also shown:

1/2

R = T + 0.4([V (1-7Y)/Y] (23)

n n n
Equation (23) corresponds to Eq (5) with
e = 0.4. Although it has no widespread generality

(the constant 0.4 being purely arbitrary), the
tendency of measured acknowledgement delays to
assume an Erlangian-like (bell shaped) distribu-
tion [Gien 78, Kleinrock 76 p.457] could make it
useful.



} Ack. Delay { } Timeout Rn/ T :
: Distribution } Y ]' Exact Eq(22)* Eq(23)* l
| | | |
| Exponential | .1 | 2.30 4,00 2.20 |
| | .05 | 3.00 5.36 2.74 |
| | .02 | 3.91 8.00 3.80 |
| | | |
| 4-stage | .1 | 1.67 2.50 1.60 |
' Erlangian l .05 I 1.94 3.18 1.87 |
| | .02 | 2.27 4.50 2.40 |
| | | |
| 25-stage | .1 | 1.26 1.60 1.24 |
| Erlangian | .05 [ 1.35 1.8 1.35 |
| | .02 | 1.45 2.40 1.56 |
] 1 ] |

¥agguming T =T and V_ =V
n n

Table (1) Normalised Timeout for a Probability Y

of Unnecessary Retransmission

5. Illustration of the Algorithm

In this section, we apply the timeout algorithm
to a sequence of simulated acknowledgement delays
obtained from loop delay measurements over a Cam—
bridge Ring. These measurements were obtained for
the double loop journey shown in Fig (1) in which
each packet and its (sequentially received) echoed
reply execute a round trip [Alfano 83]. The delay
distribution for 1980 packet transfers - spread
over 52 minutes of heavy ring usage - is shown in
Fig (2). This distribution has the Erlangian-like
shape mentioned above. The average delay for the
echos received over consecutive one minute inter-
vals is also shown in Fig (3).

To apply the algorithm to these measurements, we
take the nth delay measurement as th and use

initial estimates for T, and V, of Ty = 4 seconds

and Vg = 4 seconds?. Following an initial rum up

period of n = 100 updates, we obtain the average
values of V  and R, (101 £ n £ 1980) and the

minimum fraction of packets "retransmitted" due to
(¢, >R _;). These statistics (in seconds or

sec.2) are shown in Table (2) for several values
of the parameters a and ¢, and for both (e = 1)
and (e = 0.4) in Eq (5). The maximum required
retransmission probability is Y = 0.1,

Table (2) shows that with (e = 1), retransmis-
sion is well below the maximum level of Y = 0.1,
whereas with (e = 0.4), it approaches or exceeds
this limit due to smaller timeouts, R_. This

n
behaviour agrees with Table (1). Varying the

parameter a as suggested earlier to minimise Va
maximises retransmission in Table (2) and minim
ises R;. This is desirable when (e = 1), since
retransmission is still less than 0.l. However,
for (e = 0.4), there is less benefit, since
retransmission can exceed the limit. Increasing
the parameter ¢ (with a = 6 minimising Vn) has no
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Figure (1) Double Loop Delay Measurements
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Figure (2) Delay Histogram (0.1 sec. bins)

4
Delay
sec.s 3
2
1
0 4 —
4.39 5.00 5.31 pm
Wed. 28/9/83
Figure (3) Average Delay at 1 Minute Intervals
effect on V,, but increases R, and reduces
retransmission. Our recommendation for large c

thus makes the algorithm more conservative. As
large ¢ should reduce the variance, VAR, of Vo

rather than its expectation, E, no change in the
aversge of V, is unsurprising. Conversely, the
increase in R, can be attributed to increased V}\/z
in Eq (5) (on average) due to less variation of V,

in the identity B(vllllz)2 = B(V,) - VAR(vélz).

Table (3) shows similar results for some other
retransmission limits, Y. For the lower results,
the acknowledgement delays are truncated at Rn—l
(see section 3), with (tn>Rn_1) then giving
To = Tp-1s Y ™ Vp-1 and B, =R, ;. It can be
seen that without truncation, the retransmission
limits, Y, are, at worst, only slightly exceeded.
With truncatiom, T, anlnd Rn are reduced, caus—

n
ing retransmission to increase. This effect is
greater with either (e = 0.4) or large Y, due to

the reduction of the truncation point R, in



{ Averages 101Sn $1980 Averages

| ] ]
{ [ |
| ¢ al v R Retran. | R Retrarn. |
I 1 ® o 41" I
: : e=1 l e = 0.4 ‘
110 1] 0.96 4.62 .018 | 3.19 .079 |
| 21 0.81 4,39 .023 | 3.10 .087

| 4] 0.77 4.33 .024 | 3.07 .093 |
| 6 | 0.77 4.32 .023 | 3.07 .09 |
| 10 ] 0.77 4.34 .023 | 3.08 .103 |
| 15 | 0.78 4.36 .022 | 3.09 .101 |
| 30| 0.8 4.42 .021 | 3.12 .09 |
] | { |
|l 2 61 0.77 3.89 .052 | 2.90 .140 |
| 5 | 0.77 4.14 .036 | 3.00 .120 |
| 10 | 0.77 4.32 .023 | 3.07 .096 |
{ 20 1 0.77  4.50 .019 | 3.14 .08 |
1 30 | 0.77 4.58 .017 1 3.18  .073 {
| ]

Table (2) Algorithm Performance with 1980 updates
[T0 =V =4 secs.(2), Y =0.1]

Bq (5). This behaviour suggests that in practice,
Y should be reduced or e increased (if e < 1) if
truncation produces excessive retransmission.
There should also be a short period without trun-—
cation in case Tg and ¥V are initially too low.

We note finally that without the algorithm and a
static timeout, R, retransmission (without the
run up) would equal the proportion of delays in
Fig (2) exceeding R,. Limited retransmission with
low Ry will thus require knowledge of the delay
distribution, while the changes in Fig (3) would
make this difficult to determine in advance.
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APPERDIX

Analysis of Non-Stationary Acknowledgement Delays

We consider the acknowledgement delays, t
be defined as in Eq (14) by:

o to

n-1
t = A+ hz + 2 z ./g
n 0 j_onJ
where (g21, n21)
h = (g-1)/ g

Ao is an arbitrary positive number
and {zl, z, .. } is a sequence of independent

random variables with mean 0 and variance U

The mean estimate, Tn, in Eq (6) then becomes:

n-lj n-j-1
T = Sbl[A, + hz . + = z . /[glle
n =0 0 n=j k=g 073 k
+ b“TO (a21)
n~-1 . i X
= A+ = [bIn + Zb/glz _./a
j=0 k=0 =3
n
+ b ('1'0- Ao)
n-1 . 101
= A+ £ a0 -p) + A-pTHGa-B2 .
j=0 n=j
n
+ b ('1‘0— Ao)
n-1 n-1 5
= A+ Xz ./g + Z bl(h-b)z .
0 =0 n-j =0 n-j
n
+ b (To- Ao)
giving
(tn+1 - Tn) = { z; - (To - Ao) (n=0) (24)
! n-1 3
| Zael = .Z bY (h - b) i
| 3=0
|

- b“(ro -4) (a2 1)

and thus
n
E(tn+1) = E(Tn) - b (To - Ao) (n 2 0) (25)
> E(Tn) (n > 00) (26)
¢ n~1 j
E(e ) = T, - j>:—0b (h - b) Z0 3
n
- b (TO—AO) (n21)
n
=Tn-b('1‘0-Ao) (b = h)
> T (n~> oo) (27)

Equations (26) and (27) lead to Eqs (16) and
(18) in section 4.2, The condition (b = h) in
Eq (27) also minimises the mean square forecast

error E{(t ; - Tn)Z], since Eq (24) gives:

2 - 2
E(tm_l - Tn) - { U + ('J:o - Ao) (n=0)
|
. n-1 .
Eu + 5 b¥i(n -y
| j=0
2n 2
- >
I_ + b (To Ao) (n21)
= U+ (1-b)n-b)lus1-b2)
+ b3 (r -4)% (a20) (28)
0™ “
:”—91! (b=h, n > oo)
} >0 + (h-b)2U/Q -b2)
I_ (bfh, n > oo0)
To show that E(V,) converges to either
VAR(t ) = T,) or VARS(t ,; - T,) if b = h, we use

Eqs (25), (28) and (24) to obtain:

vaR(E  -T) = U+ (1= (h-p)2 U/ (1-b7)
(n 2 0)
= U (b = h)
[44
= VAR (cIMl - rn) (29)

Taking the expectation of Eq (7) using Eq (28)
with (0 £ b < 1) and (0 £ d < 1) then gives:

n-1

Bv) = = ad[w+ (1-p2"2 -2 us (1-b?)
i=0
B S C AW PR A R S

=(1-d[U + (h-0)20/U -]
n~1 .

+ £ b2 2 carvhd g - ap?
j=0

- -2/ -bH1/¢

0

= (1-d®) vaRCe , =T ) + 0(b®™) + 0(d™)

+1
t |T0ab?™?) (=1

{
_0(b2® - a®) (4 £b)

> vm?.(:n+1 - Tn) (n > o0) (30)

Equation (30) corresponds to Eq (17), while com-
bining Eqs (29) and (30) gives Eq (19).
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