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AlmU'met 
Foe any set X of ix~ms Cm any dimension) aul any 

k = 1,2 ..... we in tvyh~  the concept of the k-hu.ll Of X. This 
unifies the well-known notim of 'conve~ hulls' with the not/on of 
'centers' recently introduced by F.F. Yao. The concept is inti- 
mataly related to some mher concepts (L-belts, k-sets) studied by 
Edehbrunner, Welzl, Lov~sz, ErdiSs and others. 

Several computational problems related to k-hulh are stu- 
& ~  here. Same of our algcn/thm~ ate of interest in themselves 
because of the t,~'h,~ClUm, employed; in particular, the 
'parametric' searching technique of Megiddo is used in a non- 
u-ivial way. We will also extend Megiddo's technique to Las 
Vegas algot/thm~ Our rresul~ have appl/catiom to a variety of 
problems in mmputafional geom~, :  efficient computation of the 
'cut' guaranteed by the classical 'I-Iron Sandwich theorem', faster 
preproe~tln~ time f ~  polygon retrieval, and theoretical improve. 
me~tS to a problem of ~ lines and points posed by 
H,,pa~.  

1. Introduction 

In this paper we study the computational prol~'tim of three 

related concepts: k-hulls, ,,-partitioners and the 'Ham Sandwid~ 

cut'. The naturalness of these notiom is reinforced by the faa 

that they axe infimatdy ralat~d to other concepts studied 

where. Furthermore, efficieat algorithms related to these objects 

have applications to problems arising in diffe~mt waD. In this 

introduction, w~ defin~ these concepts. 
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L c t X b e a s e t o f n p l a n a t p o i n t s .  A point p inside the con- 

v ~  hull OfX ~m I ~ ~  by tin ~operty that mmy l i e  

through p bm at lmst a ix~nt of X in each of the dosed half- 

planes determined by the line. Gener~li,~%o t.hb, we define the 

t - /ud /  (k>O)  o f x  as the set of poiats p sud~ that any line 

p has at least k ~ of X on each dosed half-plane. 

C~early the k-hull contains the k+ 1-hull, and/f k > n/2 then the 

t-hull is empty. An easy consequence of Hcny's theorem [YB] 

shows that the k.hun is always non-empty for k = In/3] - I; the 

k-hull will be known as the center of X in this (extreme) case. 

Henceforth we assume 1 ~ k ~ In/3] - I (unless otherwise 

noted). It is dear that these definitions may be modified for 

dimensions above two. 

The concept of a k-hull is apparently new but it is infi- 

mataly r~lmed to other concepts which have been studied. 

turns out to be (essentially) the dual of the notion of 'k-belts' 

recently introduced by H. Edelsbrunn~ and E. WeM [EW2]. 

The notion of 'center' is first introch_,ce~ by F.F. Yao [Y]. The 

concept of k-sets, previously studied by LovAsz ~md others 

[L,ELSS,EW1] is also (dearly) ~ e c t e d  to k.h,dl~: a k-set of X 

is defmed to be a subset of size k of the form X N H for some 

half-space H. ~ mg1"imum n ~  of k-SetS foe 8 ~ of ?1 

points in the plane will be denoted by S,(~). ~zse  ~ , - , ,~s  are 

important in bouadlne the rurmlng time of our alg~thm,~ The 

best known bounds are ~k(n)= O(,~  ~) sad = w(nloSt) 

[ELSS,EW1]. A possible applica~on of k-hulR is as a new tool in 

stalh~cs: they give an alternative measure of the ~nteriorness' of 

an arbitrary point with respect to a fLxed set X. Previoualy, 

'/t ~ iterated amv~r hull' (see [OVL]) is used fox this purpose; a 

~salble disadvantage of the iterated hurts (in contrast to t.huns) 

is that there may be no k~ iterated hull for k > 1. 

To motivate the next concept, we recall there are 'divide- 

and-mnquer' algorithm~ on a set X of points in which the 'divide' 

step cans f~  pere~onlns x huo four (reug~y) equal pare u ~  

apaitoflines.  Mmegenerally, l e t 0 <  a < 1/4. A pair of lines 
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Ll ( i  = 1, 2) is caned m a-lmrationer of X lf the subsets of X in 

each of tt~ four quadrants (pcints on L, are not counted in any 

of the s~bsc~:s) Ires slze at most an. W~]ard [W] shows tlmt U4- 

pmlitionen always exist. The previous best algorithm f =  com- 

puting t~= z/4-p=.titic=~ takes O(N~(,,)]o~n)= O(n~o~) 
time JEW3], ~ improvemmt on W'tllard's solution. Yao [Y] 
first shows that one can find =-parlilloners from ~ n t m  (she. 

actually did this in 3-dixmmsiom). Wdlm'd and Yao n=xled pani- 

lionea's ill constl~lcli~g the data-sllalctm~ four their half-space 

retrieval algorith~ (in 2 and 3 dimensions, rcspecavely). 

The conm~on between k-hulls and a-pa~itione~s can be 

seen in the following two facts: dearly the inunsecaon of a pair 

of lines which form an a-parUfioner is in the an-hull. Con- 

versely, it is not ha~d to show that a point in the an-hull is the 

intersection of some pair of lines which form an a/2-partitioner. 

The third and final concept studied here comes from the 

following dassical result. 'The 'Ham San~vich Theorem' (in a 

form relevant to us) asserts that given d disjoim sets of points in 

d-dlmextsional space, there is a hyperplalle (the 'ham sandwich 

cut') which simuitancously divides each point set ev~ly. It is 

intuitively dear that this cut is related to pm"tition~s. Only 

recemtly, [D~ shows that this theorem implies the existc~ace of a 

1/8-pattition~x in 3-dlmen~ons (the corrcslxmd~g result in 2- 

dimensicm is easy). 

Then  are two mamiqum underlying all cm algorlt~. 
The first is a type of 'parmnfa~ se.archln, which c~vm'ts a suit- 

able parallel sem.chlnS algoritlmx into an effi(ient sequential algo- 

ritlma. This is due to Meziddo [MJ although it win be seea that 

our use of the teclmique is non-obvious. Furthm'more, we win 

mttend his technique in a new way to obtain fast pmbabilisfic (ie. 

Las Vegas) algorjtl'Inm~ The otlmr technique t has ~ loots ill a 

paper by Lov~sz [L]. We will show a partial gener-1!,~ion of 

Lov~sz's algoritlun in 3-dlmemions. In the remainder of this 

paper, we give algorffhm~ for omnputing the k-hull in two and 

d i m ~ m s ,  for finding the 'ham sandwich cut', and for 

finding a point in the omter. These algorithms will each illustrate 

one of the tedmiques. We conclude the paper by showing 

several applica~om of these results. 

We end this introduction by summarizing our results. Most 

of our bounds are in the worst case sense but note that some 

bounds are (I_as Vegas) probabilislic. 

~as Prc~ess~ ~ poim~ out to us. 

PROm :1~1 

c ~ . ~ g  ~ t-hun 

in the plane 

F'mdins =a 
a-parti~oner 
(a ~ 1/4) 

PREVIOUS 

o(~',(.)Io~) [Ev¢2] 

o(N.~(.)1o~.) [Ew3] 

NEW RESULT 

O(Nk(n )log2k ) 

o(,1o~0o#ogn) 2) 

(detcrm;,;qicany) 

O(,,) 

(probabilistically) 

REMARK 

[EVO.] solves the 

dual problem. 

Preprocessing time 

for polygon retrieval 

in [W,EW3] is now 

O(nlog2n(lo~ogn )2). 

F'mding a point in O(n 4) [Y] O(nlog~n) (2-clim) Recttrsive application of 

the center I (3-dim only) O(nZlogt°n) (3-dim) /vl~giddo's technique. 

Computing the k-hull O(n31ogn) Partial generall,mion 

in 3-dimensions Lov~sz's algorithm 

Ham sandwich 

cuts (2-dim) 

Detecting intersection of 

n lines with n points 

O(.1ogn0oglo~)~) 
(d, terml-i~tically) 

o(.) 
(tn'obabilislically) 

O(n1.O71ogn) 

o(~ 3) 
(naively) 

O(nl.51o~) 

~ t  
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z. Com~eng e ~  t.hun 

.Our algorithm fox computing the k.hull X, of a planar set of 

points, has an extremely simple and appealing structure, 

dmcdbed thus. Defme a ( ~  l ineL to be a k - d / v ~ e r  i l l  

has < k - 1 points of x strictly to its right and ~ n - k points 

of X strictly to its left (so L must contain some Ix~nt of X). 

Note that for any orientation 0 < 0 < 2~r, there is unique k- 

divider which we denote by L e. Assume (for simp!icity) that no 

three points of X are colinear. 

nou,tz0,g ~ AZgorteun. (Lov~z) 

Assume that the horizontal k-divider L 0 passes through a 

unique point P0 of X. Let L be a 'rotating line' and p its 

'pivot'. Initially, let L := L c Rotate the line L antidockwise 

about p until it meets a new point q. (Note: q may be 'for- 

ward' or 'backward' with respect t o p  onL. )  Se tp  := q and 

repeat the rotation until L becomes horizontal again. 

Note that this 'algorithm' leaves out details of implementing 

the rotation. But first let us show how it can compute the k-hull: 

let H be the collection of half-spaces wh~e  each H in H is the 

half-space to the right of L formed at the instant when the pivot 

changes from p to a new q with q 'forward' of p ;  call the k- 

divider" at that instant a spec/a/k-divider, and the correspondin8 

half-space, a spec/a/half-since. Define H~ tO be the intersection 

of the half-spaces in EL Let L1,//.,2 be two special dividers which 

determine co~w~o___,live sides of Hr. Let G t (i = 1,2) be the dosed 

hatf-p~me to the right of L~ 0~gure 1). 

/.j 

Figure 1. 

~ 1. As L rotates from Lz to L2, it r e ~ a i ~  in the ~gion 

G ~ Gz U G~. 

Proof. It is enough to show that as L rotates from L z to L2, the 

intersection of L and L z lies in the region G 2. Otherwise, if L 

violates this condition for the first time, it must be pivoth, 4 at a 

point in Ol -- 6 2 at that moment. Then we see that it must 

eventually reach a spe~al divider which intersects L z outside of 

G2, contradictin 8 the fast that Lz and L 2 are consecutive sides of 

Hr. 13 

Core~ary. All k-dividers He outside H~. 

Tlue'ea I. Tbe k-hull is the intenection d the hdf-Sl:e:es in II. 

Preef. We show that H k is the k-hull. C~eady the k.hull is 

included in H~: f~ if p is in the k-hull and L' h a spedal k- 

divider then p must lie either on or to the left of L ' .  To see the  

reverse inclusion, if p E H t then any line L' through p has ~e k 

points to its right since the k-divider with the orimtalion of L' 

must l ie to  the right o f p ,  by the above curollary, o 

The obvious implementation of the rotafic._~ in the above 

algorithm calls for a sorting of the rotalional order of X about 

each p E X,  costing O(n21ogn). This preproc~ ine  is the most 

expensive p~'t of the algorithm. Finding the k-hWl takes an addi- 

tional O(N~(n)Iogn) time. This actually proves a stronger result: 

Theorem 2. All k-hulh of X can be (simultaneously) computed 

in O(n21ogn) fim~o 

If only one k-hull is asked for, we can do better: 

Theorem 3. A single k-hull can be computed in time 

o(,%(n)1o~k + nlo~) time. 

Proof. Consider the rotating line L as in our original algorithm. 

At each instent exce~ when the pivot changes L is pivoting about 

a point p and partifiom X - {p} into two sets, X 0 and X1.. Note 

that the next pivot point q is on the convex hull of either X 0 or 

X z. Assuming that each X s is stored in a dynamic convex hull 

structure of [OVL], we carl easily determine q ill O(log.n) lime. 

Thzn we update p to q, and if  q E Xj (i = O or l )  we  in.,a~'t p 

and delete q fx~n X.  in O0og2n) time. Thus we take 

O(Nt(n)log2n) ~ to do all the rotalioxl. Forming the intea~c- 

fion of the ~ Nt(n ) half-planes takes time O(N,~(n)Iog2Nk(n)). 

proves a nmrdn~ lime of  O(Nk(n)log2n) which is not quite 

theorem3. 

To improve this asymptotic bound, we fi.nt -_eecl a defmi- 

tion of the k-~rat~d convex hull (t ~h hull, for short). If k = I, 

this is just the usual convex hull. For k > 1, t im is the ocravex 

hull of the point set after excluding those poinm in the j~ hull, 

j = 1, 2 . . . . .  k - 1 .  In [OVId] it is shown that all iterated con- 

vex hulls can be oomputed in time O(nlo~n).  Recently (3mtzeHe 

has improved this to o(nlo~) [c]. 

We now have two observations. The first is that the k-hull 

contains the /~  hull, In particular, for each k-divider there is 

some r e~ k such that the cSvider intersects the j~  hull for 

j = 1, 2 . . . . .  r but no other I "h hulls. Using this fact, it is not 

hard to replace the sets X~ (i = 0, 1) used in the above algorithm 

by subsets ¥1 G Xi which have size at most 2r. Thus the time to 

do a single rotation is O(log2k). We also have to keep track of 

where the current divider may cut the r+ lst-hull. This is just a 

matter of determirfing when the divider becomes a masent to this 
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hull. To do this we traverse the r+ls : -hul l ,  keepin 8 track of the 

vertex which has • tangent parallel to the divider. Since ~ 

divider turns through en angle of 2,u we go round each ith-hun at 

most once, so the traversal time is at most O(n + Nk(n)). (We 

only advance the vertex on the r + l s t  hull - if the value of r 

chanses we then 'catch up' on the new r+lst-hull.) 

' Ihe second observation is that we can form the intersection 

of the special hatf-p~es in time o0ogk) (r=ber t ~ .  o0ogn)) 

per plano. We represent the intersection of an the spefial half- 

planes found so far in the algorithm by the Ugluence (in the 

order of their discovery) 

t~, t2 . . . . .  t= (m z o) (2) 

where the t /s  are the non-occluded special k-dividers: we say a 

special k.divider 1 is occluded if the special half-plane which it 

determines contains the intersection of all the other special half- 

planes found so far. Now suppose 1 is a newly found speded k- 

divider. It is not haxd to see that it will occlud= some suffix of 

the sequence (2), say t h, l~+ z ..... t m for some 1 < h ~ m+1 

(h = m + l  means nothing is (xr.lud~.l). We claim that 

m - h $ O(k2). Consider (see figure 2) any occluded special k- 

divider l#, h ~ i ~ m. 

Rgore 2. 

R is not hard to see ij is determined by some pair of points in X 

which lies to the right of ! or of lh-~. But there are O(F)  such 

pairs, provin 8 our claim. From this we see tlmt a biaary search 

of tbe suffix of (2) of length O(F)  will determine h. This shows 

our theorem. Note. Actually, the O(k 2) bound can be improved 

to N2~(t). a 

"I'hb improves dlght,ly the result of JEW2]. The cr=:ial 

technique here (as ~ as in JEW22]) is the dynamic ma/ntenance 

of the convex hull of a point set due to van Leeuwen and Over- 

man [ O V L ] .  

The generaliT~on of LovMz's algorithm to h igh~ dimen- 

sions has been mentioned as an open problem in [ELSS]. We 

shah give a partial genezalization (in ' 2 . 5 ~ m ~ i o n ' ) .  This can 

be vividiy d e s ~ b e d  in the fonowing way. 

A Rotaflag SU'tp A I g ~ t h m  for • bkolored set of pelms. Let X 

be a sel of n plenur points colored e/ther red or black. For any 

(oriented) line L and p E X, we say p is 'good' with respect to L 

if p is red and sUictly on the right side of L or if p is black and 

strictly to the left. 'Bad' points are those not on L which are not 

'good' (so points on L are neither good nor bad). Call L a 

k -d i v~ev  of X iff it has at most k - 1 good points and at most 

n - k + 1 bad ones. (In contrast to the oriL~nn| dlviden for a 

monochromatic so% L need not pass through a tx~nt of X and is 

not unique for a gzvexz orientation.) Let r , b  >" 0 where 

k - 1 = r + b. For a given orientation there is at most one 

(perhaps no) strip of k-dividers which have r good red points. 

We can generalize the rotating line algorithm to a 'rotating strip' 

('strip' because the potenl~al k-dividers lie within a strip) algo- 

rithm to t'md all the k.dividers which have r good red points, and 

which pass through two points of X. We say an r-dividt~ passing 

through two points of X with r = k - 1 or r ' =  k - 2 is a spec/a/ 

k-divider. Our algorithm finds all special k-dividers (we need 

these to fred the k-hull in 3 dimensions, as explained below). 

Let LR(O , i) (resp. LB(O , i)) be a i-divider (as defined for 

the original problem) of the red (resp. black) points with orienta- 

tlon e. For • = 0 ..... t-l, u.(e, r) denotes the (dosed) strip 

bo,,~ by Ls(e, r+1) and Ls(e+cr, t-r). We ,,~k~ the fol- 

lowing observation: 

O ~  For each orientation O, and r = O, . . . .  k - l :  if 

the interior of LL(O, r)  contains any point of .~, or if 

Ls(e+~r, k-r)  lies strictly to the fight of LR(O, r+l) ,  then the 

set of k-dividers of ~ with r good red points and with orientnfion 

O is empty. Otberwise this set consists of thosa lines with orien- 

tation O lying in the strip LL(O, r). 

It follows from this observation, and from the non- 

degeneracy- assumption on X, that for each O and r, there is at 

most one special k-divider of ~ with orientation ,e end with r 

good red po~ts.  We can now give a ximple edgorithm to find ag 

special k-dividers with r good red points: Begin by findin 8 

Ls(0, r + l )  and Ls(~,  k - r ) .  This determines three subsets of 

the red (resp. black) points, the subsets corresponding to points 

lying in the strip LL(0, r)  or lying to one side of the strip (red 

points on LR(0, r + l )  and black points on Ls(~,  k - r )  are not ia 

any subset). These 6 sets are maintained in dynamic convex hull 

structures of [OVL]. Now we can rotate L~ and L a (say, anti. 

clockwi.se) simultaneously, upda~ng each of the sets in the obvi. 

ous manaor. Each time one of these lines passes through a spe- 

,'ial k-divider of X, we record its ix)silJon. Each step of the rota- 

tion can be done in time O0og2n). 
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It is not herd to extend the just-described ~ota~ng strip' 

algorithm to snow the simultaneom rotafiun of the sups  for 

r = O  . . . . .  k -1 .  Instead of rotatin8 2 perailel lines, we now 

rotate 2k parallel lines. Thh d e t e r m i ~  k + l  subsets of the red 

(resp. black) ixiuts which we again m ~ t a i n  in dynamic convex 

hull structures. By suitable bookkeeping of the evolving informa- 

tion, we cun detect an spedal k-dividen of ~ as they are passed 

through. FEach step of the rotation takes O0og2nlog t )  time: the 

log k factor comes from haviog to take the minimum of 2k po~i-  

ble ~ t s  of the current orientation. 

Let m m u m  the complexity of this algorithm_ We count 

the number of 'events' where an event occurs when one of the 2k 

dividers passes through two points of .~. To count the number of 

'dichromatic' events we f ~ t  show 

l.,mmzm 2. Let p be an arl0itrary point, which does not coindde 

with a red point aad is not colinear with two red Ix~nts. The 

number" of times, m, during the algorithm when p crosses any of 

the k rotafiog dividers of the red points is O(k). 

Pred. Consider L ,  the r+l-divider (for some r) of the red 

lx,ints Let q~ (i = 1, 2) be the pivots of L, during any two 

of p over L,. If the two crossings are consecutive in 

time (ie. there are no other c ~ i n ~  durin 8 the interval between 

these two crossings) then we claim that L r is orimted from qt to 

p (during the first crossing) iff L, is oriented ~cm p to q2 (durillg 

the second crossing) (see ~ - ~ ]  for a ~imilm- rrestdt). Let Q, be 

the set of points q such that q is the pivot of the rotating r +  1- 

divider of the red points ~ariog some instance when p croues L,. 
t-1 

LetQ = UQ, .  Thus IQI ~ m, end es each q ~ Q is a pivot for 
r-0 

j e t  unecro~ing, Iq[ = m .  For any lineL throughp, tha above 

z (0, q, - 3} points of ~,  Ue on dstim shows that at least .~max 

each side of L. Thus at least max {0, r~3___._k.} points of Q lle on 

each side of L. ~Yaoosing L to be Lr for some r, w e s e e t h a t  

there are at most r points strictly to the right of L. Thus 

k - l ~ r ~e --m ~ 2~k , m" m < 5k. a 

P~-h dichromatic event correspondin 8 to a red divider 

cro~¢n~ a black point can be charged to the black lx~int; con- 

versely when a black divider crosses a red point, the red point is 

charged. The number of charges to each point is O(k) by th= 

lemma. Thus there are 0 ( ~ )  dichromatic events. A simple 

modification of the above lemma to ~ o w  p to be one of the red 

points leads to the fol~owiog: 

Corebry .  ~ are O(nt) monochromatic events. 

We provide another view of the corollary w h i r  is of 

independent interest. Recall Nt(n ) = ~ Nt(O), where Nt(G) 

is the number of k-sets for the point arrangement O. We define 
t - I  

~,(o) = ~ N~(~). ~ d  ~, ( . )  = ~ ~,(0). Then we have 
i-O 

shown ~k(~) = O(b,). 

Thus the total number of events (monochromatic and 

dichromatic) is O(nk). Since each event incurs O(]og2nlog k) 

work, we condude that finding all speaal k-dividers of ,~ takes 

O(nklog2nlog t) time. 

n If k is ( log n ) '  it is slightly more efficient to first prepro- 

cess the rotational order of X about each point p in ,~, usin 8 time 

O(n21og n). YOuth t i n  p r e p r o c e s ~ ,  each event can be processed 

in O(]ogn) time and so the rotation takes a total of O(nklogn) 

time. We have now shown: 

Theorem 4. The special k-dividers of a bicolored set of n points 

in the plane can be mmputed in time 

O(nlog n.min{n, klog klog n}). 

In 3-dimensions, the k-huH of a set Z of points is defined to 

be the set of points p such that any plane throughp he= at least k 

points on each side of the dosed half-space det=mincd by the 

plane. Again by HeIly's theorem [YB], we know that the k-huU 

is non-empty if k ~ In/4] - 1. Again we call the k-hull in thh 

(extrema]) case the center of the set of points. We want a du~. 

actefization theorem ~imilar to theorem I but the generalization 

of special k-dividers is not obvious. Since we do not have an 

edgorithm similar to the one above, we will first give an alterna- 

tive proof of theorem I which can be generalized. 

The non-u-ivial direction of theorem 1 is to show that the 

intersection H t of the special k.half-planes is cow,rained in the k- 

hull. Let p be any point not in the k-hull and L a line through p 

such that there are less than k points of X in the (dosed) positive 

half-plene L+ to the right of L. To show that p is not in H t, 

translate L in the negative direction until a line M paraIleJ to L is 

reached such that there are k Ix)ints in the positive half-plane 

M+. Le tC z (resp. C~ be the oonvex hull of those points of X in 

M+ (resp. mmplement of M+). Consider the two oo-taogents of 

C z and C 2 which separate them. They are special k-dividers. It 

is easily seen that for at least one of the special half-planes deter- 

mined by these spedal dividers, p is not in the speda] half-plane 

- proviog that p is not in H k. 

We are now ready to generalize the above proof. Phnes 

are assumed to be oriented and the points of X are 

non-de&enerate in the sense that no 4 points are co-planar. We 

define a k-divldin& plane (or k-divider) to be a plane with at 

most k -  1 points of X in the (open) positive side of the plane and 

at most n - k  points of X on the (open) negative side. Again, 

note that each orientation in space determines a unique k-divider. 
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The k-divider is Jpecia/if  it covtAi-~ 3 points of X and is at the 

same time a t +  l-divider. Nine that a special k-divider has either" 

k -1  or k - 2  points of X on the open positive side. The dosed 

half-space on the negative side of a special k-divider is ca]]~cl a 

spec ia /k-ha / f - space .  

Thmrem S. 'lhe k-hun is the intersection Hk of aU the special k- 

half-spaces. 

Proof. It is easy to see that the k-hull is contained in Ht. Con- 

versely, let p be a point not in the k-hull and P a plane through p 

with less than k points of X on, say, the dosed positive side of P. 

We show that p is not in H k. Translate P to the parallel plane (2 

wi~h exactly k points in its dosed positive side. Form the convex 

hulls of the two subsets of X determined by Q (with k and n - k  

points, respectively). Now consider the set of 'separating planes' 

P (ie. the convez hulls lie on opposite sides of P)  where P is a 

supporfin 8 plane for both convex huUs and is also a special k- 

divider. It is not hard to see that p is not in at least one of the 

special half-spaces determined by this set of special dividers, o 

In 3-d, there is no obvious 'rotating plane' algorithm gen- 

eraliTJn 8 the algorithm in 2-d. To simplify the problem, we fix 

an arbitxary point P0 E X and consider rotating a plane P such 

that it continuously contains Pc. Without loss of ge~erafity, 

assume Pc is the only point of X which lies on the : = 1 plane. 

We now re~ucu to the "2.5 dimensional' algori thm. 

Using P0. as the center of projection, the rest of the points 

are projected onto the : = 0 plane. The projected points on the 

: = 0 plane are colored "black" (reap. "red") if the ori~,~ql point 

lies above (reap. below) the z = 1 plane. Let .~ denote t im set 

of (bicolored) projected points. Simi1~rly, any plane P thr'ongh 

P0 is projccted onto the z = 0 plane as a straight llne L = L(P). 

Then a plane P is a special k.divider if and only if L(P) is a spe,. 

dal k-divider of R. 

To find the special k-half-spaces of a set o f n  points in 3- 

dimensions, we find the special k-dividers for the projected prob- 

lem using p as the center of projection, for each p ~ X. From 

these we obtain the corresponding special k-dividers in 3 dimen- 

siom. Since there are O(n 3) spedal k-half-spans, their intersec- 
tion Can be found by a divide-and.conquer method in time 

O(nSlogn); here we rely on an algorithm of Preparata and Muller 

[PM] for intersecting two polyhedra in time O(mlogn) where m is 

the total number of faces. This proves 

Theorem 6. The k-hull of n points in 3-dimensions can be 

oomputed in time O(n~logn.min {n, klogklogn)). In particular, 

the center (ie. the ( I n / 4 ]  - t ) -hu] ] )  can be found in O(n31ogn) 

t ime.  

3. On Megldd~s T_~ue: General Ibmrmdks 

In the next two sections we illustrate the 'parametric' 

se.=-~n~ technique introduced by Megicklo [M]. Our ~se of his 
technique is quite striking because (I) it is nat apparent that our 

problems are parametrized and (2) in some of our algorithms, we 

have to apply his technique recursively in a way that is quite 

non-trivial. In order to be able to use his tedmique we shall need 

efflciant parallel sorting elgorithm% in particular, either the n- 

processor, (log n)-depth network of [AKS], or the O(nlogn)- 

processor, OOogn) paraUel time algorithm of l~rata [P]. 

In gev~al terms, his tech~que provides a way m search a 

partially ordered space, of polynomial size, without actually con- 

sU~dng  the space (the polynomial may be large). Instead, an 

/mp//c// binary search of the space is rancid. We use a sorting 

algorithm tO guide this search (Megiddo's technique is not res- 

tricted to sorting algoritluns). Typically, a sorted order will 

correspond to a region of the space being searched. So resolving 

a comparison in the sort corresponds to reducing the size of the 

space in which a solution is ]mown to He. As might be expected, 

a single comparison is expensive; the surprising observation is 

that several comparisons can be hatched relatively cheaply. This 

leads us to use a parallel sorting algorithm, for we (in our serial 

algorithm) can batch the comparisons that are carried out 

simultaneotaly by the parallel algorithm. A f a . ~ t l n  8 feature of 

this implicit search is that it can be applied recursively, each level 

of the recarsion nddlr~g some poly.logarithmlc factor to the ccm- 

plexlty. These remarks are most easily understood by consider. 

in8 some examples, such as the problems we solve below. 

4. l~ndt~2 a Ham Sandwich Cut 

Instead of compu~ng the emlre k-hull, same applications 

require just a single point in it. For k "< n/4, we can reduce this 

• impler problem to the following: given X, a set with n red points 

and n black points in the plane, fred a line (called. a q'air cut') 

which simultaneously separates each of the monochromatic sub- 

sets evenly. The existence of a suitable line is guaranteed by the 

Ham Sandwich theorem. It is easy to see that each fair cut can 

be associated with some line through two points of X. By check- 

in8 each puir of points in turn, the desired cut can be fonnd in 

O(n 3) lime. We shall drastically reduce this bound. 

To simplify the discussion, we may assume that n is odd 

and no three points are colinear. A halver of a set Y of n points 

(recall n is odd) is an (oriented) line with at most ~ points of 

Y in each of the open half-planes it determines. (Thus a halver is 

n+ l -d iv ide r  as defined in the last section.) For each orion- just a 
z 
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ration O, let ~ be the halve~ of the red subset of X with orimta- 

~on  e.  Simi]arty ~ is the ha]v= of the b~a,:~ subset. Let r (e )  

denote the c~stanoe that Lf  ]im to the right of Lf. TMs fftstance 

is nesafive (resp. zero) if Lf actually lies to the left of (resp. 

coincides with)L~. Thu~, our goal is to fred some (any) orienta- 

tion O" such that r(O*) = 0. Nora that a fair cut is easily cledved 

from 0", in linear 'diner We note r(O) varies continuously with O. 

Foe any point p and orieatafion O, let p(O) denote the pro- 

jection of p along the direction O onto the x-axis. For the orien- 

tation O', let p" be used instead of p(O*). Although we do n o t  

know the value of 0% we shall show how we can sort the points 

in X* = {p" : p E X} (which wig allow us to deduce the value of 

e*). Let us indu~vely suppose that an angu~ interval 

@ ~ [0, ,r] b known such that either 4, h a single angle e with 

the property r(e) = 0, or • is an ope~t interval (01, 02) Sudt that 

r(et) > 0 and r(O~ < O. (And thus there is a value e" ~0, with 

r(e*) = 0.) In/aally, we may take q~ to be (0, a) unless r(O) = 0 

inwhlch cesewe let ¢ = [0,0]. Clearly @ contaim some e with 

r(O) = O. Suppose that in sortin 8 X*, we compare p~' : p~, where 

pt, pl E X. Let 04/ denote the angle of the line from p~ top/.  

Assume 0 ~ e+,/< ~ (otherw/se, take 0s, ~ instead). If 0 4 / <  O z 

or 02 < e~,j t,h=z the relative ordering of p;' and p,~ can 

d ~  at once. If r(O~j)= 0 then O* is determined. 

Otherwise let rCe~,~) > 0 (the rose r(e,.j) < 0 is similar). We 

r ~ ; ~  • into @' = (o,d, 02); since the rdmive ordering of p~(e) 

and p~(e) is fixed foe O > e+~, and hence for O • ~ ' ,  and=; 

is a value of O" • 0 ' ,  we can deduce the relative ordezing of p~ 

and p;. Clearly, fez any e, r(e) (and hence the mmpm'ison 

p~ : p;) ~ be eomputed in linear time (using a linear time 

a]8orithm [AHU]). It b easy tO see that this gives all 

O(s21ogn) time algorithm for computing e'. To obtain a faster 

slgorithm, w~ apply Megiddo's technique. 

We u.q~ a p processor, h time para]]d sorfin 8 algorithm to 

sort Z*. Assume inductively that an angular interwl ~ t  

(k ffi O, 1 . . . . .  k) containing (some) e" h known before 

start of the (k+l)st step, where ¢ ,  is either an open interv~ or a 

sinsle oriemation. In the (k+l)st paragel step of the 

edgor/thm, p comparisons of the form p~ : p; aremade. Thep  

O0~ua.riSO~ detert~ne p orientations Ot,/. As above, we may 

assume that O:./b in the range (0, ~r). For each O~,/lying out- 

side the range 0 , ,  the outoome of the correspondin8 comparison 

is known, as shown in the previous paragraph. Fc~ those orienta- 

tions in ~,  we first sort them (~;ng any straightforward method) 

and then do a 'binary search' of the sorted orlentafib~s: each 

prol~ of the binary search computes rCO~.S) for somz O+, s in ~, .  

Unless r(e~./) = 0 (in which case we are done), we refine the 

mt~val ~ t  m _~_'bed in the last paragraph. Eadl probe 

o01) tim., and O0ow) ~ suffice to determine an angular 

Lnterval q~t+i ~ @t containin8 O* with the property that each of 

the p ~ i s o m  in the pazallcl step is decided. Therefore each 

parallel step is accocq~li~ed in OCnlogp + p l o ~ )  serial steps. 

(This can be redm:ed to O(nlogp + p) serial ste1:~, as follows. 

We do not have to sort the orientations in Or; it suffices to find 

the orienta~ons probed by the binary search, for which we use a 

fast median algorithm [AHU]. Eadl step of the binary search 

reduces by half the size of the set to be ~ sowe only 

need O(p) serial steps to find the orientations to be probed.) 

t.hcre are h l~aI ld  steps, the total time is 

O((nlogp + p)h). If one uses the sorting algoritlun of Prcparata 

with p = O(nlogn), and h = O0ogn), or the asymptotically 

mot= eeffic/ent network of [AKS], the total time complexity 

becomes O(nlog2n). For rderen~e, call the serial algorlthm just 

described the derived algorithm (with respect to any parallel s~'t- 

~sonthm). 

We now prove the correcmess of the dmived algodthm. 

For any orientation O in (0, ~r), let the O-order/~qg cff X refez to 

the total ordcx" on X induced by the ordering of this projection of 

X onto the x-ax/s in the direct/on O. (This ordering is wdl- 

defined because the orientation of the x-rods is 0.) Consider any 

comparison p~ :p.~ made in the tth parcel  step of the parslld 

sor~ng ~gorithm. The outcome of this mmparison depends on 

the re]ative ord~ of Pt ~md P/ in the 0*-orderins. The relative 

order of p+ and pj in the O-orderin 8 b invariant as O varies in 

Ot+z. And thb b the outcclne we have assigned m the c~n- 

l:mzisonp;' :p;. Next observe that 

(0, ~r) = % ~ ~x ~ • • • ~ ~'=, (m < ]og n).  (*) 

Let T be the O-orderin 8 on X for some O in ~ . .  We conlude 

from (*) that the outcomm of an the ~ ot~=-~_ by 

the (parallel or derived) algorithra are consistent with T; the 

correctness of the parallel algorithm then implies that the out- 

comes determine a unique total ordering 2" of X; in fact 2" = T. 

We can say more: 

C e ~  Lemma. The interval ¢, ,  consiset of a single orlm- 

tation e" with r(e') = O. 

Proof. Suppose Om= (0z,Oz), 0~ < 02. Then r(0~) > 0, 

r(e2) < O. Notice that r(e) varies continuously with O. 

there is some value O* such that r(O*) = O; ~ for 0 = O" the 

dividers of the two sets are coincident and thus pass through a 

red point p and a black point q. So the relative order of p(O) 

and ¢(e) depend= on whether e < e" or e > o ° = d  thm is not 

constant over O=. Contradiction. Thus O m is a sins]e 
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orientation, n 

We prove this lemma under even weaker assumptions 

below. 

Aa Improved allem4thm derived born ImmUel medbm algo- 

ritlnm. As noted above the parallel algorithm used for sorting 

need not be from the 'Network Model'; the more general 'adap. 

five' model of Valiant [V] can be used. Better still, we can use a 

parallel median rather than a parallel sotlin 8 algorithm. These 

remarks open the way for even faster algorithms since a faster 

than O0ogn) time median algorithm is possible in Vallant's 

mode.l (this is not so in the network model). Indeed, [CY] 

d~ibes  an u(n) = o(0ogiog.) 2) t i e  alg~thm for rmdi~ 

median with n prtxzssors. The method for deriving an algorithm 

(for flnclln s a fair cut) fron~ parallel median algorithms is exactly 

the same as above: at the beginning of the t th  paraUel step, we 

inductively assume that we have an angular interval • t such that 

(i) either % is an open interval (Of 02) with r(Ot) > 0 > r(O2) 

or O t consists of a single orientation O with r(0 ) = O, (ii) for all 

a3mparisons p~ :p]  in the (k-1)st step, the relative order o fp j  

and p / i n  tha e-ordering is invariant as 0 varies ove~ Or, and (iii) 

Ok ::) (~/+1, k ~-" O, 1 . . . . .  m ~ M(n). 'me correctne,~s of the 

parallel median algorithm implies that the derived algorithm will 

find a unique element p* in X such that the median of X under 

the 0-ordering is invariant as 0 varies over q~=. (Actually, it 

finds two median dements,  for there will be a fie for median at 

ansle O'.) We can still prove the Correctness ~ m a ;  the only 

chanse to the above proof is to note the points p* and q* (in the 

proof of the correctness lemma) are the two medians. This 

results in: 

Theerem 7. A fair cut for the ham sandwk:h problem can be 

found in time O(nlognM(n)) -- O(nlogn(]oglogn) :z) time where 

M(n) is the parallel time tO fred the median of n alements using 

n processors in the Variant model. 

If we make the further assumption that there is a unique O* 

we can extend Megiddo's technique to obtain even faster algo- 

rithras which are probabilisfic. 

Our approach is based on the following idea. We choose a 

random point p,  which with probability 114 lies between the 

n/2+lst  and the 3n/4th point in the O*-ordering. We check this 

by finding two sets of points; one consisting of at least n/22 lXfints 

guaranteed to be before p in the O'-ordering, the other (denoted 

S) of at least n/4 points guaranteed to be after" p in the 0"- 

ordering. I f  we do not find hhese sots we choose another random 

point p. The set S cannot include the median point, for there are 

at ]east n/2 points be.fore p and hence there are at least n/2 + 1 

points before any point in $. So we can restrict our search to the 

temalnln~ at moat 3n/4 points; however this is no longer a 

median problem, so we axe forced to ¢xmsider a slightly more 

general proUem. 

We give an algorithm to find a cut with r red points and b 

black points to its left, the cut passing through one red and one 

black point. We define Le R to be the line at orientation 0, passing 

through a point in the red set and having r red points strictly to 

its left; ~imi!Afly, Ls e passes through a black point and has b black 

points suictly to its left. r(0) is the distance that Lee lies to the 

rlght of L[. Our 8onl is to fred an angle 0* such that r(0*) = 0. 

As above, we assume that r(0) > 0, and r(~) < 0. Ill general, 

such a cut need not exist. But in the instances we consider, a cut 

always exists. 

Our algorithm follows the intuitive outline given above. 

Suppose we have n Ix3ints altogether, let k : r + b + 1, and 

without loss of generality sup lx~  k <In/2].  The cut passes 

through the kth and the k+ lst points in the O'.orderins, wlfich 

we shall find. For ~timpli~ty, suppose n is even ( the ctmn~es to 

be made for n odd are straightforward). We select a random 

point p ;  with probability 1/16 it will lie in the range 

(10n/16, 11a/16]. We confirm that p lies in the ranse 

(n/2, 3n/4], as follows. We compare all the other points to p and 

seek to show that at least n/2 of them precede p,  end at least n/4 

follow p ,  in the O'-ordering. On comparing these n - 1  points 

with p we obtain n - 1  ensles 0 t < . . .< 0,_ t, say. By perform- 

in8 4 m m ~  (the first 4 i n a  binary search) we either deter- 

mine O', or find en i such that O" • (O, Oj+aa~). Ia the latter 

case we have determined the relative order of p and 15n/16 of 

the points. If p is in the range (10n/16, lln/lb'] then at least 

15n/16 - 6n/16 > n/2 of the points are shown to preax|e p;  like- 

wise, at least 15n/16 - l ln/16 = 11/4 are shown to follow p.  If 

we have not shown that p is ~____~_ by at least W'2 points and 

followed by at least n/4 points, we randomly select another p.  

The work in this step takes expected time O(n) (note we do not 

have to sort tim angles 0r). 

Either we compute a 0 for which r(O) = 0 or we find a p 

for which we show that it is preceded by at least n/2 points and 

followed by at least n/4 points (denoted S), in expected time 

O(n). Since k < n/2 we deduce that the points in $ cannot 

include the kth or the k + l s t  points; so points in $ can be dis- 

carded. We rccursively solve the problem on the rem~nlng set 

of at most 3n/4 points, using the same values of r and b. (If k 

had bean greater than n/22 we would have to reeh,o~ the values of 

r and b by the number of points of each color removed.) We 

note the new problem has a solution if the old problem had a 

solution. Since we start by seeldng the ham sandwich cut, which 
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is known to eaist, we  are guaraW_eeO that each reoarsive problem 

we 8enerate hm a solution. Notiov also that ff the old ptobkm 

had a unique mlul/m~ tlam so does the new problem (if we res- 

tzkt ~ solmica to the new problem to the angtfla~ range 

(O. Ot+~z~, in which range we have determined O" li=). We 

obtain: 

Theorem 8. A fair oat can be found in linear time truing a Las 

Vega  type algorithm, if the cut is unique. 

$. rmtUug = polar in tire center 

algorithm in the l~ t  section easily flrah a point in tim 

n/d-hull (.since it can be used to find a U4-partitiotmr, section 

6(1)). Unfortunately (and somewhat surprisingly) it does not 

appear to cxtmxl d/rcctly to finding a point in tim omtmr (i.e. the 

n/3-hu11). We now dcvdop such an algorithm, lVlegiddo'= tcch- 

niqu~ will again be e.xploit~:l (to the hilt). 

First we note that it is easy to determine if a given point p 

is in the ceamr: sort the points of X in angular order about p and 

then rotate a line about p through a full d rde  of angles, keeping 

count of the number of points on the strictly left side of the 

rotating line. The pointp is in the center if t l~numl~r  of points 

on the left is always at least [n/31 - 1. The time complexity of 

this procedure is O(nlogn). There arc two noteworthy points. 

Ftrst, to define a sorted order we have to start it son.where -- 

say at the aNlle O. S=:ond, wc note that if o m  point lies at angle 

~t+ct and a s~ond one at angi¢ fl, ct, 13 < ~, we ar~ really 

intltrtsted in ~ re]allve ~ of a and ~ when IXtrfocmlno 

rotation. That is, we want to know the rotational order of 

poin= wh,m ~ points below the horizontal l ira through p are 

refl_~__~ through p;  henceforth we shall use the term rotational 

order f ~  this order. 

If ~n~ know a point p* in the ccn~r, then the rotational 

order T" of the poh~a ln X about p" is easily determined. We 

ShOw how to o31111~.te (some) 7" without lmowhzg (any stg:h) p ' ,  

u s ~  a p - ~  lmralld sorting algorithm. What does '~om- 

imring' a imir of points p~ and p/ in X mean, relative to tl~ order- 

ing T'? The relative rotational order of Pt andp/about ~r point q 

oa ~ of ~ r~giom q u= in (~  ~ , r e  3). aa~ 

regions aa~ defined by the line Lq through p~ and p/, and by the 

horizontal liras through p~ and PT" So to r=o lw tim comparison 

we ~ if the tamter inters~ts =ay of these ~ and if not 

in which regien the center lira. To do this we use an algorithm 

whidt giwm a lineL determines if th~ amte~ i n t e r s  L, and if 

so gives a print on L in th~ center, and if not detmminm on 

whida side of L the center Hes. This algorithm runs in time 

O(nlog~a). ~ idea is ~imltar to the ham ,~dwich cat 

algorithm; we ~ R following the main algorithm, 

/. 

g 

5 6 
figure 3. 

To ~iiminam ~ consideration of the horizontal lines wheat 

performing comparisons between pairs of points we first either 

detm'mine bctwtmn which pair of horizontal lhms the ctmtcr lies, 

~ wc fred a point in tim crater on one of t h ~  lltms. We do this 

by ixa'forming a binmy search of the n horizontal lines, us/ng the 

algorithm mentioned in tim last paragraph; w¢ use a total of 

o0do#,0 tim=. 

(1) The ne=t ~ idea is how to 'batch procma' p of these 

oomparisons Uetween pain p~ and pj, performed during ca,  

parallel step of the sorting. 

The p comparisons give rise to p lines of the form Lid , which 

detmnine O(p 2) regions. Within any re#on the omcome of 

these comparisons is constant. ' I ~  problem r=lu, a:s to finding 

out which of these regions contain f .  By drawing horizontal 

linm through the O(p-~ intersections of pairs af the=  fin=, we 

obtain horizontal slabs where within each slab, the original lines 

LC/ arc totally ordered. So ff we only knew the slab S" whidl 

contains the amte~, we could thea sort tim lines within $' ,  and 

imrform a binary search to find a region COntaining p ' .  Again, 

we show how to sort the lines Lij without knovdng S" ha advance. 

What does oomparing (ordering) a pair of lines Lid and L~. r 

w.an? It rech,ces to knowing whether tim ceatcr lies above or 

beJow the horizontal ~ through their intersection lXgnt. This 

being tim case, we now use a q processor paxalld sorting algo- 

rithm to sort the L j s  within 5". Each paranea step of this last 

algorithm makes q ~ i s o m  and w¢ are led to the ~ issue: 

(2) How to 'batch' q of these 'comparisons' h e r r e n  L~.j and 

Lr . / .  

This is not so difficult became we can indeed do a binary search 

among the q horizontal lines induced by the comparisons. Since 

each step of tim binary search takes O(nlog3n) time, we can pet. 

form step (2) in time O(nlog3nlogq + q) t/me, If we use 

Preparata's parallel sorting a~gorithm (or the [AKS] network) we 

can perform stq0 1 in time of O(nlog3nlog2p + plog2p). $o to 

f'md the rotational ord~ of the points about p" (u~n~ I~'eparata's 
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edSorithm or th= [AKS] network) takes time O(.ics~.). At the 
end of this process we have e/ther found a point p ' ,  c¢ a bounded 

reg/on R, with respect to wh/ch the rotat/onal cedar of the points 

in x b fixed. The region R is the intersection of O(logn) 

regiom, one for each parallel step of the point s o r t ~  algorithm. 

Such a region is bounded by four lines: two horizontal lines 

Ixmnd~n 8 the slab in which the oente~ Hes, and the two lines Lq 

between which the omtex lies. 

Correetnm~ Lemm.  The c~nter contains R. 

ProoL From the existence of the center and the form of the 

algorithm it is dear  that R contains a point in the center. 

Because the rotational order of the points is the same about any 

point in R, either every point in R is in the c=nter or none of R is 

in the center, and plainly only the first case b possible, o 

It remains to give an algorithm to determine whether the 

center i n ~  a given line L, or on which side of L it lles. For 

eadt orientation O and point x, let ls(x ) denote the line thtoughx 

and with orientation 0. Def'me re(x) to be the fraction of the 

points of X which lie on the dosed half-plane to the risht of/e(x) 

and also define g(x)= eminfs(x), g t ( x ) =  o<e<,nfin fs(x), and 

g2(x) = rain _re(x). We state u3me simple properties of f ,  g, 
-w<O<O 

gZ, 81td g2" 

Lemma 4. 

(i) Let L be any line (imA~ned as the x-axis). Then for each 

O, the function fe(x) is monotone as x varies along L. It is 

constant for 0 = 0 or ~,  decreasing from 1 to 0 for 

O ¢ (0, ~)  (the ~ w a r d '  orientations), and t n ~ e ~ , S  from 

0 to 1 for 0 E ( - ' a ,  0) (the 'downward' or i~tat iom).  

(fi) gl(x) is a decreasing function on L and 82(:¢) is an in~.a~.  

i.n 8 fur~tion on L. Let I be the interval over which 

g~(~) = e2(~). 

(ih') For any x, g(x) attains its minimum at some set ~(x) of 

orientations. Suppose x is not in the cent~.  If e (z)  

fists only of upward (resp. downward) orientations then x 

lies to the left (resp. right) of I. Otherwise 6(x) has both 

types of orientadom and x lles in 1. 

We seek a point p* in L To gulde the search for p* we find 

the rotational order of the points in X about p ' ,  usin 8 a p  proces- 

sor 8]gorithm, runnin~ ill para.[lel time h. A comparison of two 

points p~ and p/, as described above, determines a line L#; it 

intersects L in a point, x say. The result of the comparison 

depends solely on which side of x the tx3int p* lies. We deter- 

mine whether I includes z (in which case we are done), or i l l  is 

to the left or risht of x, by rotat~g a line about x and computing 

re(z) as O varies; tmi,~ (iii) above we deduce where z lies. This 

takes time O(nlogn). To batch p of these comparisons, we sort 

r=ulting p points on L and perform a binary search among 

them (actually, fred medians etc.). This yields an interval J (con- 

raining p ' )  ove~ which the comparisons performed so far have a 

fixed result. This takes time O(nlognlogp + p). Hence to find 

the rotational order of the points about p" takes time 

O((nlognlogp + p)h). Using either Preparata's algorithm or the 

[ALES] network this becomes a time of O(nlo~n). 

Correctness Iannma. The algorithm either finds a point in the 

center, a point in I, or an open interval J with respect to which 

the rotational order of the points in X is fixed, and with J C 1, 

the L-maximal center. 

By the correctness lernma if the procedure does not find a 

center, it t'mds a point in 1. Let x be this point, hit x is not in 

the center, g(x) < 1/3. Observe that this implies that there exist 

two orientations, an upward 01 and a downward 0 2, such that 

h,(~) = h,(~) < I/3. See ng~e 4 

figure 4. 

I t  foUows that the center of S must lie in the shaded area of the 

figure (the side of L that thh shaded area Hes on dLpcnds on e~), 

because for any point not in this region either the line with orien- 

tation 01, or the one with orientation O: is guaranteed to have 

fewer than n/3 points to its right. So if L does not pass through 

the cents of X, the procedure for computing a point in the L- 

m.~m~l c~[lt¢~" also tells US on which side of L the actual center 

of X lies. 

A much more complex version of these ideas gives us an 

elgorithm for determinm' g a point in the centea in 3-dimensions. 

These results are summarized in 

Theerem 9. A point in the center of n poinm can be found in 

t/me o(.lo~n) (in 2-dim) and O(n~o#%) (in 3-dhn). 
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method probably can be eateaded to any dimension. 

1) Pm'tl tkmen. An algorithm for finding a I/4-partition~ is 

easily obtained using the cake-cutting algorithm: given a set of 

points x ,  we find a ~ which pa~itions it into two equal halves. 

By appeal to the calm.cutting algorithm, we find ano th~  

such that the two lines form a 1/4-partitioner, in d~texmlniqic 

O(nlognOoglogn)~. We can also use the probabilistic algo- 

t i t ian here, obtaining a running time of O(n). For let L be the 

first partitioner, and the black (resp. red) points be those above 

(resp. below) L. We notice that as we inee .a~ e, the intersec- 

t ion  of L and Le 8 moves left to fight along L, while the intersec- 

tion of L and Lea moves right to left. I-Ienc~ there is a unique 

B - -  R interval (in fact a ~n~le point) of values of 0 for which L e -Le ,  

and hen~ for wtflch r(O)=O. [We are indebted to L. C~bas (in 

conversation) for posing the Ham Sandwich cut problem, since 

out  original intm'est was in finding partitioners.] 

2) Pelygon l~qz'leval. Using the algorithm in (1), the preprtx:ms- 

ing time for the polygon retrieval algorithms in [W,EW3] is 

reduced from O(N,¢2(n)log2n) to O(nlog2nOoglogn)~, or if we 

use a probalisti¢ algorithm to O(nlogn). 

3) IntermalaS L~. ,  ~ l~lam. I ~ o f t  posed the fonowing 
problem which re'me in the context of collision detection in robot- 

ks: g i v m  Y a set of n lines and X a set of n poinls, determine if 

any point lles in any line. The naive solution takes O(n 2) time. 

We first sketch a solution (this was also known to Hopcroft and 

Seidel) w~ich takes time O(n-V21ogn). Based on this solution, we 

shall obtain further improvements usin 8 tl4-patfifionexs.-- 

To see the first solution, w~ arbitrarily &Mdz X into n b~ 

groups each with n ~  Ix3ints. It is enough to show how to check 

if any line in g intersects any point in one of these groups in time 

O(nlogn): The pairs of  points in a group determine O(n) c~rec- 

tions which we combine with the n directions of the lines and 

then sort. (In fact, it is sufficient to sort the d/rections deter- 

mined by pairs of points, obtaining an order S, and then by 

binary search insert the dircctiom of the lines into S, without 

requifin 8 that these directions be sorted with respect to each 

other - this remark is pertineat to the genernli ,~ion below.) Pro- 

ject the n v2 points along any direc,~on, say Oo, determined by a 

pair of points and store these projected points in a balanced 

binary tree. Now process the sorted sequence of directions as 

follows. Beginning with O0, if  we encounter a direction 0 deter- 

mined by a pair of points, we transform the binary tree so that 

the sequence of points it stores represent a projection along O: it 

is not hard to ace that this (esseafially) involves a deledon from 

and an iusertion into the tree. If the e we encounter is the direc. 

tion of a line, we can in O0ogn) time check if  the line contains 

aay points on the group. Sino~ each of tho O(n) ditections can 

be pnx=ssed in O0ogn) time, the total time to process one group 

is O(nlogn), and thus the time to process all the groups is 

O(nl'Slogn). 

More ganerally, let T(n,m) denote the oomplexity of the 

problem with an input s e tX  of n points a n d a n  input set g o f m  

lines. By duality, we have T(n,m) = r(m,n). It is easy to use 

the above technique to show that for n < m 2, 

r (m,n)  = r (n ,m)  = 
mlogn if  n ~ m ~ 

(3) 
~n~ogn if m ~2 < n ~ m z 

We now improve the just derived bound of 

T(n,n) = O(n~'Zlogn). The basic idea is illustrated as follows: 

suppose we have to check the intersection of a set Y of lines with 

a set X of points, Let X~ (i = I . . . . .  4) be subsets of X deter. 

mined by a 1/4-partition. Note that any line intersects at most 3 

off the quadrants of the t/4-partition. The ori~nal problem is 

thus red-ted to four subproblems of checking intersectlom of 

subsets ¥1 ~ Y with X I i i =  1 . . . . .  4), where ¥1 consists of the 

lines which intersect the quadrant containin 8 Xv Furthermore, 

4 

~[Yi[ ~ 3l¥[. The recursive appHcalion of this idea wdl obtain 

Y(n,n) = O(nqogn) for some c < 1.5. To get  t ~  best constant 

for c, we reran Wdlard's [W] J-way division of a set of goints (a 

1/4.partltion may be regarded as a J.way division with J ffi 2). 

The pertinent property is that a J-way division consists of J lines 

(or half-lines) which partition X into 2./approximately equal parts 

such that an arbitrary line intersects at most J + 1 of these parts. 

Furthermore, such a division can be obtained by J - 1  applications 

of the partition algorithm in section 6. We chose J = 3 to obtain 

the best constant in the following construction. 

We t i m  set up a 'search u'ee' on X in which each node has 

degree 6. The root is associated with the e~tLre set X and a 3- 

way partition of X. In general, if a node u is associated with a 

subset X' of X and a 3-way division of X' then each child of u is 

rccm'sivcly assodatcd with one of the 6 subsets formed by the 3- 

way division of X'. The bright of the search tree is taken to be 

log24n and thus each leaf is associated with a subset of size 

O(alqh?). The cost of forming the 3-way division at all the nodes 

of the search tree is seen tO be O(nlog2nOoglogn)2), relying on 

the O(nlogn(loglogn)~ algorithm for partitioning given in section 

6. 
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The 'sean:h' for intersections of lines in Y with poims in X 

proceeds m fonows: initiany, we are at the root and want to 

check if any line in Y ctmt~irL~ any point in X. Ia  general, sup- 

pose we are at some node u and ~ant  to check if any line in 

some set Y' ~ Y contains any point in the set X' C X associated 

with u. If l¥'[ ~ ~ '  I ~ then we solve this problem directly by 

(3) in time o d x ' l x o # ' l ) ,  similarly, i~ Irl  ~ Lx'l 2 we sotve it 

directly in time o([r Poglrl). If u is a leaf then ~X'[ = O(n leg=a) 

and we also solve this problem directly by (3) in time 

O(n~°~[Y , [~logn). Otherwise, for each line in I" and for each 

of the 6 quadrants determined by the 3-way division at u, we 

check ff the line intersects the quadrant. Note that the line inter- 

sects at most 4 quadrants. The problem is now reduced to 6 sub- 

problems where we want to check for each quadrant whether any 

line which intersects that quadrant contains any of the points in 

that quadrant. Each of the subproblcrns is naturally solved recur- 

sively at the children of u. 

We now assess the complexity of this procedure. Let U be 

the set of nodes in the search tree which were visited. For 

u ~ U, let % (resp. m.) denote the size of the set X' (resp. Y') 

of points (resp. lines) to be checked at u. We may parSfion U 

into four classes: U 0 (resp. U1) consists of the nodes u where 

n~ ~ ~ ~ (resp. n~-< :%), U 2 consists of the leav~ (of the 

search tree) which were not counted in U0 U Vl, and V~ comists 

of the rest of U (i.e. those nodes which spawn six subproblems). 

The work dom~ at nodes in U0 is seen to I:~ 

~logn~, = O(nlogn), 

since ~ n~ = O(n). Thework at U~ is 
u~L~ 

since ~ ~ = O ( , m ~ ) .  The work done at U2 is 

To see the above, nora that IO21 = O ( n ' ~ ) ,  

the m~ are equal. Finally, the work done at a node u E U3 is 

O(m,). Summing over all such nodes, we have 

iq~,,n 
Z ,~. ~ m- Z 4' = o(~I~3. 

=eLf= i-O 

The total cost (ineJuding the 'preprocessing cost' of computing the 

search tree) from the above analysis is summadzed in: 

Theorem In. T(n,m) = O(nlog2nOoglogn) 2 + 

+ ml/2n v2 + l~41ogn). In 

T(n,n) = O(rt I + Iq;~41ogn) = O(nl.4371ogn). 

mnl~41ogm 

particular, 

7. Conclu.dom. 

The general contribution of this paper is to introduce a 

natural ganeralization of the concepts of convex hulls and centers, 

and to investigate a number of computational problems surrmmd- 

ing it. The rich connection between k-hulls and the previously 

studied concepts of k-belts, k-sets, a-lmrtifionets , and the classical 

Ham Sandwi~ theorem is parScuhrly notvworthy, and no doubt 

sheds some insights into these concepts. 

The algorithms presented here develop, or at least make 

more accessible, some powerful algorithmic techniques which are 

quite new in computational geottmtry. Spedfically, we have 

extended the domain of applications for Megiddo's technique. 

We expect to fred further new applications for these techniques. 

F'mally, our 'parametric searching' algorithms are signifi- 

cantly faster than previous solutions. This in turn translates into 

efffident algorithms for a number of applications. Again, we 

expect other applications to be found. 

We are indebted to R. Pollock for references [L,ELSS] and 
for pointing out that our algorithm in section 2 had previously 
been discovered by Lovd=. 
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