Check for
Updates

On k-hulls and Related Problems’

Richard Cole Micha Sharirt Chee X, Yap

Courant Institute of Mathematical Sciences
New York University, '
251, Mercer Street,
New York, NY 10012,

Abstract

For any set X of points (in any dimension) and any
k=1, 2,.., we introduce the concept of the k-hull of X. This
unifies the well-known notion of ‘convex hulls’ with the notion of
‘centers’ recently introduced by F.F. Yao. The concept is inti-
mately related to some other concepts (k-belts, k-sets) studied by
Edelsbrunner, Welzl, Lovdsz, Erdos and others.

Several computational problems related to k-hulls are stu-
died here. Some of our algorithms are of interest in themselves
because of the techniques employed; in particular, the
‘parametric’ searching technique of Megiddo is used in a non-
trivial way. We will also extend Megiddo’s technique to Las
Vegas algorithms. Our results have applications to a variety of
problems in computational geometry: effident computation of the
‘cut’ guaranteed by the classical ‘Ham Sandwich theorem’, faster
preprocessing time for polygon retrieval, and theoretical improve-
ments to a problem of intersecting lines and points posed by
Hopcroft.

1. Introduction

In this paper we study the computational properties of three
related concepts: k-hulls, a-partitioners and the ‘Ham Sandwich
cut’. The naturalness of these notions is reinforced by the fact
that they are intimately related to other concepts studied else-
where. Furthermore, effident algorithms related to these objects
have applications to problems arising in different ways. In this
introduction, we define these concepts.

¥Schodl of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel; part-
?u y supported by a grant from the U.S.-Israeli Binational Science Foundation.
This wark is done under the auspices of the NYU/CIMS Laboratory far Robo-
uadexpmmalCmpuequm.mdns supported by grants from Di-

tal Equipment jon, The Stoan Foundation, and ONR grant No.
N(XX)M—&-K-(BBI

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-133-4/84/004/ 0154 $00.75

Let X be a set of » planar points. A point p inside the con-
vex hull of X can be characterized by the property that any line
through p has at least a point of X in each of the closed half-
planes determined by the line. Generalizing this, we define the
k—hull (k> 0) of X as the set of points p such that any line
through p has at least k points of X on each closed half-plane.
Clearly the k-hull contains the k+1-hull, and if k > /2 then the
k-hull is empty. An easy consequence of Helly’s theorem [YB]
shows that the k-hull is always non-empty for k = {n/3] — 1; the
k-hull will be known as the center of X in this (extreme) case.
Henceforth we assume 1<k = [2/3] ~ 1 (unless otherwise
noted). It is clear that these definitions may be modified for
dimensions above two.

The concept of a k-hull is apparently new but it is inti-
mately related to other concepts which have been studied. It
turns out to be (essentially) the dual of the notion of ‘k-belts’
recently introduced by H. Edelsbrunner and E. Welzl [EW2].
The notion of ‘center’ is first introduced by F.F. Yao [Y]. The
concept of k-sets, previously studied by Lovdsz and others
[L,ELSS,EW1] is also (clearly) connected to k-hulls: a k-set of X
is defined to be a subset of size k of the form X N H for some
half-space H. The maximum number of k-sets for a set of n
points in the plane will be denoted by N,(1). These numbers are
important in bounding the running time of our algorithms. The
best known bounds are N,(n) = O(nk'?) and = w(nlogk)
[ELSS,EW1]. A possible application of -hulls is as a new tool in
statistics: they give an alternative measure of the ‘interiorness’ of
an arbitrary point with respect to a fixed set X. Previously, the
‘%™ iterated convex hull’ (see [OVL]) is used for this purpose; a
possible disadvantage of the iterated hulls (in contrast to k-bulls)
is that there may be no A% iterated hull for k > 1.

To motivate the next concept, we recall there are ‘divide-
and-conquer’ algorithms on a set X of points in which the ‘divide’
step calls for partitioning X into four (roughly) equal parts using
a pair of lines. More generally, let 0 < @ = 1/4. A pair of lines

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800057.808677&domain=pdf&date_stamp=1984-12-01

L, (i = 1,2) is called an a—partitioner of X if the subsets of X in
cach of the four quadrants (points on L, are not counted in any
of the subsets) has size at most an. Willard [W] shows that 1/4-
partitioners always exist. The previous best algorithm for com-
puting the 1/4-partitioner takes O(N,,(n)log?n) = O(n¥2logn)
time [EW3], an improvement on Willard’s solution. Yao [Y]
first shows that one can find a-partitioners from centers (she
actually did this in 3-dimensions). Willard and Yao needed parti-
tioners in constructing the data-structure for their half-space
retrieval algorithms (in 2 and 3 dimensions, respectively).

The connection between k-hulls and a-partitioners can be
seen in the following two facts: clearly the intersection of a pair
of lines which form an a-partitioner is in the an-hull. Con-
versely, it is not hard to show that a point in the an-hull is the
intersection of some pair of lines which form an a/2-partitioner.

The third and final concept studied here comes from the
following classical result. The ‘Ham Sandwich Theorem’ (in a
form relevant to us) asserts that given d disjoint sets of poirts in
d-dimensional space, there is a hyperplane (the ‘bam sandwich
cut’) which simuitaneously divides each point set evenly. It is
intuitively clear that this cut is related to partitioners. Only
recently, [DE] shows that this theorem implies the existence of a
1/8-partitioner in 3-dimensions (the corresponding result in 2-

dimensions is easy).

There are two techniques underlying all our algorithms.
The first is a type of ‘parametric’ searching which converts a suit-
able parallel searching algorithm into an efficient sequential algo-
rithm. This is due to Megiddo [M] although it will be scen that
our use of the technique is non-obvious. Furthermore, we will
extend his technique in a new way to obtain fast probabilistic (je.
Las Vegas) algorithms. The other technique’ has its roots in a
paper by Lovész [L]. We will show a partial generalization of
Lov4sz’s algorithm in 3-dimensions. In the remainder of this
paper, we give algorithms for computing the k-hull in two and
three dimensions, for finding the ‘ham sandwich cut’, and for
finding a point in the center. These algorithms wil] each illustrate
one of the techniques. We conclude the paper by showing
several applications of these results.

We end this introduction by summarizing our results. Most
of our bounds are in the worst case sense but note that some
bounds are (Las Vegas) probabilistic.

Fas Professor Pallack poi .
as Professor Pollack pointed out to us.

PROBLEM PREVIOUS NEW RESULT REMARK
Computing the k-hull O(N,(n)log?n) (EW2] | O(N,(n)logk) [EW2] solves the
in the plane dual problem.
Finding an O(N»(n)log?n) [EW3] | O(nlogn(loglogn)?) | Preprocessing time
a-partitioner (deterministically) for polygon retrieval
(e =< 14) o(n) in [W,EW3] is now
(probabilistically) O(nlogZn(loglogn)?).
Finding a point in o(n*) [Y] O(nlogfn) (2-dim) | Recursive application of
the center (3-dim only) O(n%log'’n) (3-dim) | Megiddo’s technique.
Computing the k-hull O(n’logn) Partial generalization
in 3-dimensions Lovdsz’s algorithm.
Ham sandwich o) O(nlogn(loglogn)?)
cuts (2-dim) (naively) (deterministically)
o(n) assuming unique
(probabilistically) cut
Detecting intersection of | O(n!-logn) O(n'%7ogn) posed by J. Hopcroft
a lines with n points

1585

2. Computing the k-hafl

Our algorithm for computing the k-hull X, of a planar set of
points, has an extremely simple and appealing structure,
described thus. Define a (directed) line L to be a k—divider if L
has = k — 1 points of X strictly to its right and = n — k points
of X strictly to its left (so L must contain some point of X).
Note that for any orientation 0 < 6 < 2w, there is unique k-
divider which we dc;iote by L,. Assume (for simplicity) that no
three points of X are colinear.

Rotating Line Algorithm. (Lovisz)
Assume that the horizontal k-divider L, passes through a

unique point py of X. Let L be a ‘rotating line’ and p its

‘pivot’. Iniﬁally, let L := L; Rotate the line L anticlockwise
about p until it meets a new point ¢. (Note: ¢ may be ‘for-
ward’ or ‘backward’ with respect to p on L.) Set p := ¢ and
repeat the rotation until L becomes horizontal again.

Note that this ‘algorithm’ leaves out details of implementing
the rotation. But first let us show how it can compute the k-hull:
let H be the collection of half-spaces wheze each H in H is the
half-space to the right of L formed at the instant when the pivot
changes from p to a new g with g ‘forward’ of p; call the k-
divider at that instant a special k-divider, and the corresponding
half-space, a special half-space. Define H, to be the intersection
of the half-spaces in H. Let L,, L, be two spedial dividers which
determine consecutive sides of H;. Let G, (i = 1,2) be the closed
half-plane to the right of Z; (Figure 1).

Figure 1.

Lemma 1. AsL fotaxmfrole to L,, it remains in the region
G =G, UG,

Proof. It is enough to show that as L rotates from L, to L,, the
intersection of L and L, lies in the region G,. Otherwise, if L
violates this condition for the first time, it must be pivoting at a
point in G, — G, at that moment. Then we see that it must
eventually reach a special divider which intersects L; outside of
G,, contradicting the fact that L, and L, are consecutive sides of
H,. o0

Corollary. All k-dividers lie outside H,.

156

Theorem 1. The k-hull is the intersection of the half-spaces in H.
Proof. We show that H, is the k-bull. Clearly the k-bull is
included in H,: for if p is in the k-hull and L’ is a spedal k-
divider then p must lie either on or to the left of L’. To see the
reverse inclusion, if p € H, then any line L’ through p has = k
points to its right since the k-divider with the orientation of L’
must lie to the right of p, by the above corollary. D

The obvious implementation of the rotations in the above
algorithm calls for a sorting of the rotational order of X about
each p € X, costing O(n’logn). This preprocessing is the most
expensive part of the algorithm. Finding the &-hull takes an addi-
tional O(N,(n)logn) time. This actually proves a stronger result:
Theorem 2. All k-hulls of X can be (simultaneously) computed
in O(n%logn) time.

If only one k-hull is asked for, we can do better:

Theorem 3. A single k-hull can be computed in time
O(N,(m)log*k + nmlogn) time.

Proof. Consider the rotating line L as in our original algorithm.
At each instant except when the pivot changes L is pivoting about
a point p and partitions X — {p} into two sets, X; and X,. Note
that the next pivot point ¢ is on the convex hull of either X, or
X;. Assuming that each X; is stored in a dynamic convex hull
structure of [OVL)], we can easily determine g in O(log n) time.
Then we update p to ¢, and if ¢ € X; (i = 0 or 1) we insert p
and delete ¢ from X, in O(log?n) time. Thus we take
O(N,(n)log?s) time to do all the rotation. Forming the intersec-
tion of the = N,(n) half-planes takes time O(N,(n)log?N,(n)).
This proves a running time of O(N,(n)log?n) which is not quite
theorem 3.

To improve this asymptotic bound, we first need a defini-
tion of the k—iterated convex hull (k’* hull, for short). If k = 1,
this is just the usual convex hull. For k > 1, this is the convex
hull of the point set after excluding those points in the j* hull,
j=1,2,...,k=1. In [OVL] it is shown that all iterated con-
vex hulls can be computed in time O(nlog?n). Recently Chazelle
has improved this to O(nlogn) [C].

We now have two observations. The first is that the k-hull
contains the k% hull. In particular, for each k-divider there is
some r < k such that the divider intersects the / hull for
j=1,2,....r but no other i hulls, Using this fact, it is not
hard to replace the sets X; (i = 0, 1) used in the above algorithm
by subsets ¥; C X; which have size at most 2r. Thus the time to
do a single rotation is O(log%). We also have to keep track of
where the current divider may cut the r+1se-bull. This is just a
matter of determining when the divider becomes a tangent to this

hull. To do this we traverse the r+1st-hull, keeping track of the
vertex which has a tangent parallel to the divider. Since the
divider turns through an angle of 2w we go round each izh-hull at
most once, so the traversal time is at most O(n + N,(n)). (We
only advance the vertex on the r+1st hull - if the value of r
changes we then ‘catch up’ on the new r+1st-hull.)

The second observation is that we can form the iatersection
of the special half-planes in time O(logk) (rather than O(logn))
per plane. We represent the intersection of all the spedial half-
planes found so far in the algorithm by the sequence (in the
order of their discovery)

iby....l, (m=0) o))

where the [’s are the non—occluded special k-dividers: we say a
spedal k-divider ! is occluded if the special half-plane which it
determines contains the intersection of all the other spedal half-
planes found so far. Now suppose [is a newly found special k-
divider. It is not hard to see that it will occlude some suffix of
the sequence (2), say l, 4y, - - -, I, for some 1 < h < m+1
(h = m+1 means nothing is occluded). We daim that
m — h < O(k?). Consider (see figure 2) any occluded spedal k-
divider [, A s i< m.

hat

Figure 2.

It is not hard to see J; is determined by some pair of points in X
which lies to the right of / or of J,_,. But there are O(k%) such
pairs, proving our claim. From this we see that a binary search
of the suffix of (2) of length Q(k%) will determine k. This shows
our theorem. Note. Actually, the O(k?) bound can be improved
to Ny (k). O

This improves slightly the result of [EW2]. The crudal
technique here (as well as in [EW2]) is the dynamic maintenance
of the convex hull of a point set due to van Leeuwen and Over-
mars [OVL].

The generalization of Lovész's algorithm to higher dimen-
sions has been mentioned as an open problem in [ELSS]. We
shall give a partial generalization (in ‘2.5-dimension’). This can

157

be vividly described in the following way.
A Rotating Strip Algorithm for a bicolored set of points. Let X
be a set of n planar points colored either red or black. For any
(oriented) line L and p € X, we say p is ‘good’ with respect to L
if p is red and strictly on the right side of L or if p is black and
strictly to the left. ‘Bad’ points are those not on L which are not
‘good’ (so points on L are neither good nor bad). Call L a
k—divider of X iff it has at most k — 1 good points and at most
n ~ k + 1 bad ones. (In contrast to the original dividers for a
monochromatic set, L need not pass through a point of X and is
not unique for a given orientation.) Let r,b =0 where
k~1=r+b. For a given orientation there is at most one
(perhaps no) strip of k-dividers which have r good red points.
We can generalize the rotating line algorithm to a ‘rotating strip’
(‘strip’ because the potential k-dividers lic within a strip) algo-
rithm to find all the k-dividers which have r good red points, and
which pass through two points of X. We say an r-divider passing
through two points of X withr = k — 1 or r = k — 2 is a special
k-divider. Our algorithm finds all special k-dividers (we need
these to find the k-hull in 3 dimensions, as explained below).

Let Lp(9, i) (resp. Lg(8, i)} be a i-divider (as defined for
the original problem) of the red (resp. black) points with orienta-
tion . Forr=0,...,k=1, LL(0, r) denotes the (closed) strip

bounded by Lg(0, r+1) and Ly(8+m, k—r). We make the fol-
lowing observation:

Observation. For each orientation 6, and r =0, ... ,k-1: if
the interior of LL(8,r) contzins any point of X, or if
Lg(0+1, k—r) lies strictly to the right of L;(8, r+1), then the
set of k-dividers of X with r good red points and with orientzticn
0 is empty. Otherwise this set consists of those lines with orien-
tation 0 lying in the strip LL(9, r).

It follows from this observation, and from the non-
degeneracy. assumption on X, that for each and r, there is at
most one special k-divider of X with orientation 9 end with r
gocd red points. We can now give a simple algorithm to find all
special k-dividers with r good red points: Begin by finding
Ly(0, r+1) and Lg(w, k~r). This determines three subsets of
the red (resp. black) points, the subsets corresponding to points
lying in the strip LL(0, r) or lying to one side of the strip (red
points on Lg(0, r+1) and black points on Lg(w, k—r) are not in
any subset). These 6 sets are maintained in dynamic convex hull
structures of [OVL]. Now we can rotate Ly and L, (say, anti-
clockwise) simultaneously, updating each of the sets in the obvi-
ous manner. Eadxﬁmeoneoftheselimpamthroughaspo
cial k-divider of X, we record its position. Each step of the rota-
tion can be done in time O(log?n).

It is not hard to extend the just-described ‘rotating strip’
algorithm to allow the simultancous rotation of the strips for
r=0,...,k-1. Instead of rotating 2 parallel lines, we now
rotate 2k parallel lines. This determines k+1 subsets of the red
(resp. black) points which we again maintain in dynamic convex
hull structures. By suitable bookkeeping of the evolving informa-
tion, we can detect all special k-dividers of X as they are passed
through. Each step of the rotation takes O(log?nlog k) time: the
log k factor comes from having to take the minimum of 2k possi-
ble increments of the current orientation.

Let us assess the complexity of this algorithm. We count
the number of ‘events’ where an event occurs when one of the 2k
dividers passes through two points of X. To count the number of
‘dichromatic’ events we first show
Lemma 2. Let p be an arbitrary point, which does not coincide
with a red point and is not colinear with two red points. The
number of times, m, during the algorithm when p crosses any of
the k rotating dividers of the red points is O(k).

Proof. Consider L., the r+1-divider (for some r) of the red
points. Let ¢, (i = 1,2) be the pivots of L, during any two
crossings of p over L,. If the two crossings are consecutive in
time (ie. there are no other crossings during the interval between
these two crossings) then we claim that L. is oriented from g, to
p (during the first crossing) iff L, is oriented frcm p to g, (during
the second crossing) (see [ELSS] for a similar result). Let Q, be
the set of points ¢ such that ¢ is the pivot of the rotating r+1-
divider of the red points during some instance when p crosses L,.
LetQ=kU‘:Q,. Thus Q| < m, and as each q € Q is a pivot for
r-

just one crossing, |Q| = m. For any line L through p, the above
dlaim shows that at least %max{O,Q,—3}pointson,lieon

each side of L. Thus at least max {0, -"';J}poimsofgueon

each side of L. Choosing L to be L, for some r, we see that
there are at most r points strictly to the right of L. Thus
m—3k
2

Each dichromatic event corresponding to a red divider
crossing a black point can be charged to the black point; con-
versely when a black divider crosses a red point, the red point is
charged. The number of charges to each point is O(k) by the
lemma. Thus there are O(nk) dichromatic events. A simple
modification of the above lemma to allow p to be one of the red
points leads to the following:

k—1l=r2

,orm<5k O

Corollary. There are O(nk) monochromatic events.

We provide another view of the corollary which is of
independent interest. Recall N,(n) = ﬁax N (G), where N,(G)
-

158

is the number of k-sets for the point arrangement G. We define

- k-1 - -

N(G) = 3, N(G), and N,(n) = ElaxN,‘(G). Then we have
i=0 =n

shown N,(G) = O(kn).

Thus the total number of events (monochromatic and
dichromatic) is O(nk). Since each event incurs O(og’nlog k)
work, we conclude that finding all special k-dividers of X takes
O(nklog?nlog k) time.

If k is w(Io; -
cess the rotational order of X about each point p in X, using time
O(nlog n). With this preprocessing, each event can be processed
in O(logn) time and so the rotation takes a total of O(nklogn)
time. We have now shown:

), it is slightly more efficient to first prepro-

Theorem 4. The special k-dividers of a bicolored set of n points
in the plane can be computed in time
O(nlog n-min{n, klog klog n}).

In 3-dimensions, the k-hull of a set X of points is defined to
be the set of points p such that any plane through p has at least k
points on each side of the closed half-space determined by the
plane. Again by Helly’s theorem [YB], we know that the k-hull
is non-empty if k < [n/4] — 1. Again we call the k-hull in this
(extremal) case the center of the set of points. We want a char-
acterization theorem similar to theorem 1 but the generalization
of special k-dividers is not obvious. Since we do not have an
algorithm similar to the one above, we will first give an alterna-
tive proof of theorem 1 which can be generalized.

The non-trivial direction of theorem 1 is to show that the
intersection H, of the special k-half-planes is contained in the k-
hull. Let p be any point not in the k-hull and L a line through p
such that there are less than k points of X in the (closed) positive
half-plane L, to the right of L. To show that p is not in H,,
translate L in the negative direction until a line M parallel to L is
reached such that there are k points in the positive half-plane
M,. Let C; (resp. C,) be the convex hull of those points of X in
M, (resp. complement of M,). Consider the two co-tangents of
C, and C, which separate them. They are special k-dividers. It
is easily seen that for at least one of the special half-planes deter-
mined by these spedal dividers, p is not in the special half-plane
- proving that p is not in H,.)

We are now ready to generalize the above proof. Planes
are assumed to be oriented and the points of X are
non—degenerate in the sense that no 4 points are co-planar. We
define a k—dividing plane (or k-divider) to be a plane with at
most k—1 points of X in the (open) positive side of the plane and
at most n—k points of X on the (open) negative side. Again,
note that each orientation in space determines a unique k-divider.

The k-divider is special if it contains 3 points of X and is at the
same time a k+1-divider. Note that a special k-divider has either
k~1 or k—2 points of X on the open positive side. The closed
half-space on the negative side of a special k-divider is called a
special k—half—space.
Theorem §. The k-hull is the intersection H, of all the special k-
half-spaces.
Proof. It is easy to see that the k-hull is contained in H,. Con-
versely, let p be a point not in the k-hull and P a plane through p
with less than k points of X on, say, the dosed positive side of P.
We show that p is not in H,. Translate P to the parallel plane O
with exactly k points in its closed positive side. Form the convex
hulls of the two subsets of X determined by Q (with k and n—k
points, respectively). Now consider the set of ‘separating planes’
P (ie. the convex hulls lie on opposite sides of P) where P is a
supporting plane for both convex hulls and is also a spedal k-
divider. It is not hard to see that p is not in at least one of the
special half-spaces determined by this set of special dividers. O
In 3-d, there is no obvious ‘rotating plane’ algorithm gen-
eralizing the algorithm in 2-d. To simplify the problem, we fix
an arbitrary point p; € X and consider rotating a plane P such
that it continuously contains p;. Without loss of generality,
assume p, is the only point of X which lies on the z = 1 plane.

We now reduce to the ‘2.5 dimensional’ algorithm,

Using p, as the center of projection, the rest of the points
are projected onto the z = 0 plane. The projected points on the
z = 0 plane are colored "black” (resp. "red”) if the original point
lies above (resp. below) the z = 1 plane. Let X denote this set
of (bicolared) projected points. Similarly, any plane P through
Pg is projected onto the z = 0 plane as a straight line L = L(P).
Then a plane P is a spedial k-divider if and only if L(P) is a spe-
dal k-divider of X.

To find the special k-half-spaces of a set of # points in 3-
dimcnsiom, we find the special k-dividers for the projected prob-
lem using p as the center of projection, for each p € X. From
these we obtain the corresponding special k-dividers in 3 dimen-
sions. Since there are O(n®) special k-half-spaces, their intersec-
tion can be found by a divide-and-conquer method in time
O(n’logn); here we rely on an algorithm of Preparata and Muller
[PM] for intersecting two polyhedra in time O(mlogm) where m is
the total number of faces. This proves

Theorem 6. The k-hull of » points in 3-dimensions can be
computed in time O(n%logn-min {n, klogklogn}). In particular,
the center (je. the ([n/4] — 1)-hull) can be found in O(n’logn)
time.

159

3. On Megiddo’s Technique: General Remarks

In the next two sections we illustrate the ‘parametric’
searching technique introduced by Megiddo [M]. Our use of his
technique is quite striking because (1) it is not apparent that our
problems are parametrized and (2) in some of our algorithms, we
have to apply his technique recursively in a way that is quite
non-trivial. In order to be able to use his technique we shall need
efficient parallel sorting algorithms, in particular, either the n-
processor, (log n)-depth network of [AKS], or the O(nlogn)-
processor, O(logn) parallel time algorithm of Preparata [P)].

In general terms, his technique provides a way to search a
partially ordered space, of polynomial size, without actually con-
structing the space (the polynomial may be large). Instead, an
implicit binary search of the space is made. We use a sorting
algorithm to guide this search (Megiddo’s technique is not res-
tricted to sorting algorithms). Typically, a sorted order will
correspond to a region cf the space being searched. So resolving
a comparison in the sort corresponds to reducing the size of the
space in which a solution is known to lie. As might be expected,
a single comparison is expensive; the surprising observation is
that several comparisons can be batched relatively cheaply. This
leads us to use a parallel Sorting algorithm, for we (in our serial
algorithm) can batch the comparisons that are carried out
simultaneously by the parallel algorithm. A fascinating feature of
this implicit search is that it can be applied recursively, each level
of the recursion adding some poly-logarithmic factor to the com-
plexity. These remarks are most easily understood by consider-
ing some examples, such as the problems we solve below.

4. Finding a Ham Sandwich Cut

Instead of computing the entire k-hull, some applications
require just a single point in it. For k = n/4, we can reduce this
simpler problem to the following: given X, a set with » red points
and n black points in the plane, find a line (called a Tair cut’)
which simultaneously separates each of the monochromatic sub-
sets evenly. The existence of a suitable line is guaranteed by the
Ham Sandwich theorem. It is easy to see that each fair cut can
be associated with some line through two points of X. By check-
ing each pair of points in turn, the desired cut can be found in
O(n®) time. We shall drastically reduce this bound.

To simplify the discussion, we may assume that n is odd
and no three points érecolinear. A halver of a set Y of n points

(recall n is odd) is an (oriented) line with at most ";1 points of
Y in each of the open half-planes it determines. (Thus a halver is

";1 -divider as defined in the last section.) For each orien-

just a

tation 6, let LY be the halver of the red subset of X with orienta-
tion 0. Similarly L is the halver of the black subset. Let r(6)
denote the distance that LJ lies to the right of L§. This distance
is negative (resp. zero) if L] actually lies to the left of (resp.
coincides with) L2, Thus, our goal is to find some (any) orienta-
tion 6* such that r(8°) = 0. Note that a fair cut is easily derived
from 6°, in linear time. We note r(8) varies continuously with 0.

For any point p and orientation 6, let p(6) denote the pro-
jection of p along the direction @ onto the x-axis. For the orien-
tation 0°, let p* be used instead of p(8*). Although we do not
know the value of 6°, we shall show how we can sort the points
in X* = {p* : p € X} (which will allow us to deduce the value of

0*). Let us inductively suppose that an angular interval

@ C [0, =] is known such that either ® is a single angle 8 with
the property r(8) = 0, or ® is an open interval (8,, 8,) such that
r(8,) > 0 and r(8,) < 0. (And thus there is a value 8* € P, with
r(6*) = 0.) Initially, we may take ® to be (0,) unless r(0) = 0
in which case we let ® = [0, 0]. Clearly ¥ contains some 6 with
r(8) = 0. Suppose that in sorting X*, we compare pj : p/, where
PPy €X. Let 8, denote the angle of the line from p, to p;.
Assume 0 =< 6, , < 7 (otherwise, take 6, instead). If 6, ; <8,
or 9, <6, ; then the relative ordering of pi and p; can be
deduced at once. If r(9,,) =0 then 0" is determined.
Otherwise let r(8; ;) > 0 (the case r(8; ;) <O is similar). We
refine ¢ into @’ = (9, ;, 8,); since the relative ordering of p,(6)
and p,(0) is fixed for @ > 6, ,, and hence for 6 € ®*, and as there
is a value of 0° ¢ @', we can deduce the relative ordering of p;
and p;. Clearly, for any 0, r(6) (and hence the comparison
p,‘:p,‘)mbecomputedinlinearﬁme(usingalinearﬁmn
median algorithm {AHU]). It is casy to see that this gives an
O(n?logn) time algorithm for computing 6°. To obtain a faster
algorithm, we apply Megiddo’s technique.

We use a p processor, k time paralle]l sorting aigorithm to
sort X°. Assume inductively that an angular interval @,
(k=0,1,.... k) containing (some) 6* is known before the
start of the (k+1)st step, where @, is either an open interval or a
single orientation. In the (k+1)st parallel step of the sorting
algorithm, p comparisons of the form p; : pj are made. The p
comparisons determine p orientations 6, ;. As above, we may
assume that 8, , is in the range (0, w). For each 8, , lying out-
side the range ®,, the outcome of the corresponding comparison
is known, as shown in the previous paragraph. For those orienta-
tions in @, we first sort them (using any straightforward method)
and then do a ‘binary search’ of the sorted orientations: each
probe of the binary search computes (8, ;) for some 6, ; in @,.
Unless r(8; ;) = 0 (in which case we are done), we refine the

160

interval @, as described in the last paragraph. Each probe takes
O(n) time, and O(logp) probes suffice to determine an angular
interval @,,, C ®, containing 6* with the property that each of
the p comparisons in the parallel step is decided. Therefore each
parallel step is accomplished in O(nlogp + plogp) serial steps.
(This can be reduced to O(nlogp + p) serial steps, as follows.
We do not have to sort the orientations in ®,; it suffices to find
the orientations probed by the binary search, for which we use a
fast median algorithm [AHU]. Each step of the binary search
reduces by half the size of the set to be searched, so we only
need O{p) serial steps to find the orientations to be probed.)
Since there are A parallel steps, the total time is
O((nlogp + p)k). If one uses the sorting algorithm of Preparata
with p = O(nlogn), and h = O(logn), or the asymptotically
more effident network of [AKS], the total time complexity
becomes O(nlog’n). For reference, call the serial algorithm just
described the derived algorithm (with respect to any parallel sort-
ing algorithm).

" We now prove the correctness of the derived algorithm.
For any orientation 6 in (0, 1), let the 0—ordering of X refer to
the total order on X induced by the ordering of the projection of
X onto the x-axis in the direction 6. (This ordering is well-
defined because the orientation of the x-axis is 0.) Consider any

comparison pj : pf made in the kth parallel step of the paralle]

sorting algorithm. The outcome of this comparison depends on
the relative order of p; and p; in the 6®-ordering. The relative
order of p; and p, in the 8-ordering is invariant as 8 varies in

@,.;- And this is the outcome we have assigned to the com-

parison p; : pj. Next observe that

Om)=20,2 :-- 2P, (m=slogn). (*)

Let T be the 8-ordering on X for some 6 in ®,. We conlude
from (») that the outcomes of all the comparisons obtained by
the (parallel or derived) algorithm are consistent with T; the
correctness of the paralle] algorithm then implies that the out-
comes determine a unique total ordering T" of X;in fact 7 = T.
‘We can say more:

Correctness Lenuma. The interval @, consists of a single orien-
tation 6* with r(6*) = 0. '

Proof. Suppose @, = (6,,8,), 6, <0, Then r(8)>0,
r(8,) < 0. Notice that r(8) varies continuously with 8. Thus
there is some value 8° such that r(8*) = 0; then for 8 = 6* the
dividers of the two sets are coincident and thus pass through a
red point p and a black point ¢. So the relative order of p(8)
and ¢(8) depends on whether 8 < 6°* or 6 > 6* and thus is not

constant over ®,. Contradiction. Thus @, is a single

orientation. O

We prove this lemma under even weaker assumptions
below.

An improved algorithm derived from parallel madian slgo-
rithms. As noted above the parallel algorithm used for sorting
need not be from the ‘Network Model’; the more general ‘adap-
tive’ model of Valiant [V] can be used. Better still, we can use a
parallel median rather than a parallel sorting algorithm. These
remarks open the way for even faster algorithms since a faster
than O(logn) time median algorithm is possible in Valiant's
model (this is not so in the network model). Indeed, [CY]
describes an M(n) = O((loglogn)?) time elgorithm for finding the
median with n processors. The method for deriving an algorithm
(for finding a fair cut) from parallel median algorithms is exactly
the same as above: at the beginning of the kth parallel step, we
inductively assume that we have an angular interval ¢, such that
(i) either @, is an open interval (8,, 8,) with 7(8,) > 0 > r(8y)
or @, consists of a single orientation 8 with r(0) = 0, (ii) for all
comparisons p{ : pf in the (k—1)st step, the relative order of p,
and p; in the 8-ordering is invariant as @ varies over ®,, and (iii)
®,2®,.,k=0,1,..., m= M(n). The correctness of the
parallel median algorithm implies that the derived algorithm will
find a unique element p*® in X such that the median of X under
the @-ordering is invariant as @ varies over ®,. (Actually, it
ﬁndstwomedianelunents. for there will be a tie for median at
angle 6*.) We can still prove the Correctness Lemma; the only
change to the above proof is to note the points p* and ¢* (in the
proof of the correctness lemma) are the two medians. This
results in:

Theorem 7. A fair cut for the ham sandwich problem can be
found in time O(nlognM(n)) = O(nlogn(loglogn)?) time where
M(n) is the parallel time to find the median of # elements using
n processors in the Valiant model.

If we make the further assumption that there is a unique 6*
we can extend Megiddo's technique to obtain even faster algo-
rithms which are probabilistic.

Our approach is based on the following idea. We choose a
random point p, which with probability 1/4 lies between the
n/2+1st and the 3n/4¢h point in the §°-ordering. We check this
by finding two sets of points; one consisting of at least n/2 points
guaranteed to be before p in the 8°-ordering, the other (denoted
S) of at least n/4 points guaranteed to be after p in the 8°-
ordering. If we do not find these sets we choose another random
point p. The set § canmot include the median point, for there are
at least n/2 points before p and hence there are at least n2+1
points before any point in §. So we can restrict our search to the

161

remaining at most 3n/4 points; however this is no longer a
median problem, so we are forced to consider a slightly more
general problem.

We give an algorithm to find a cut with r red points and b
black points to its left, the cut passing through cae red and one
black point. We define L% to be the line at orientation @, passing
through a point in the red set and having r red points strictly to
its left; similarly, L3 passes through a black point and has b black
points strictly to its left. r(0) is the distance that L5 lies to the
right of L§. Our goal is to find an angle 8* such that r(6°) = 0.
As above, we assume that r(0) > 0, and r(w) < 0. In general,
such a cut need not exist. But in the instances we consider, a cut
always exists.

Our algorithm follows the intuitive outline given above.
Suppose we have n points altogether, let k=r + 5 + 1, and
without loss of generality suppose k =<[n/2]. The cut passes
through the k¢h and the k+1st points in the 6°-ordering, which
we shall find. For simplicity, suppose n is even (the changes to
be made for » odd are straightforward). We select a random
point p; with probability 1/16 it will lic in the range
(10n/16, 11n/16]. We confirm that p lies in the range
(n/2, 3n/4), as follows. We compare all the other points to p and
seek to show that at least n/2 of them precede p, and at least n/4
follow p, in the 6"-ordering. On comparing these n—1 points
with p we obtain n—1 angles 8, < ...< 0,_,, say. By perform-
ing 4 comparisons (the first 4 in a binary search) we either deter-
mine 6°, or find an i such that 6* e (0,, 8,,,1c). In the latter
case we have determined the relative order of p and 15n/16 of
the points. If p is in the range (10n/16, 11n/16] then at least
15n/16 — 6n/16 > n/2 of the points are shown to precede p; like-
wise, at least 15n/16 — 11n/16 = n/4 are shown to follow p. If
we have not shown that p is preceded by at least n/2 points and
followed by at least n/4 points, we randomly select another p.
The work in this step takes expected time O(n) (note we do not
have to sort the angles 6,). '

Either we compute a 8 for which r(8) = 0 or we find a p
for which we show that it is preceded by at least n/2 points and
followed by at least n/4 points (denoted §), in expected time
O(n). Since k = n/2 we deduce that the points in S cannot
include the kth or the k+1st points; so points in § can be dis-
carded. We recursively solve the problem on the remaining set
of at most 3n/4 points, using the same values of r and b. (If k
had been greater than n/2 we would have to reduce the values of
r and b by the number of points of each color removed.) We
note the new problem has a solution if the old problem had a
solution. Since we start by seeking the ham sandwich cut, which

is known to exist, we are guaranteed that cach reawsive problem
we generate has a solution. Notice also that if the old problem
had a unique solution then so does the new problem (if we res-
trict the solution to the new problem to the angular range
(8;, 8,4+ 1), in which range we have determined 6° lics). We
obtain:

Theorem 8. Afair_mtmnbefoundinlinmﬁm:usi;gaus
Vegas type algorithm, if the cut is unique.

§. Finding a point in the center
The algorithm in the last section easily finds a point in the
n/4-hull (since it can be used to find a 1/4-partitioner, section

6(1)). Unfortunately (and somewhat surprisingly) it does not -

appear to extend directly to finding a point in the center (i.e. the
n/3-hull). We now develop such an algorithm. Megiddo’s tech-
nique will again be exploited (to the hilt).

First we note that it is easy to determine if a given point p
is in the center: sort the points of X in angular order about p and
then rotate a line about p through a full dircle of angles, keeping
count of the number of points on the strictly left side of the
rotating line. The point p is in the center if the number of points
on the left is always at least [n/3] — 1. The time complexity of
this procedure is O(nlogn). There are two noteworthy points.
First, to define a sorted order we have to start it somewhere --
say at the angle 0. Second, we note that if one point lies at angle
n+aandase§ondoneat angie B, a, B <m, we are really
interested in the relative size of @ and 8 when performing the
rotation. That is, we want to know the rotational order of the
points when those points below the horizontal line through p are
reflected through p; henceforth we shall use the term rotational
order for this order.

If we know a point p* in the center, then the rotational
order T* of the points in X about p* is casily determined. We
show how to compute (some) T* without knowing (any such) p*,
using a p-processor parallel sorting algorithm. What does ‘com-
paring’ a pair of points p, and p; in X mean, relative to the order-
ing T*? The relative rotational order of p, and p, abcut point ¢
depends on which of 6 regions g lies in (see figure 3). The
regions are defined by the line L, through p, and p,, and by the
horizontal lines through p, and p;. So to resolve the comparison
we determine if the center intersects any of these lines and if not
in which region the center lies. To do this we use an algorithm
which given a line L determines if the center intersects L, and if
s0 gives a point on L in the center, and if not determines on
which side of L the center lies. This algorithm runs in time
O(nlog’n). The idea is similar to the ham sandwich cut

162

algorithm; we describe it following the main algorithm,

figure 3.

To climinate the consideration of the horizontal lines when
performing comparisons between pairs of points we first either
determine between which pair of horizontal lines the center lics,
or we find a point in the center on one of these lines. We do this
by performing a binary search of the n horizontal lines, using the
algorithm mentioned in the last paragraph; we use a total of
O(nlog*n) time.

(1) The next crucial idea is how to ‘batch process’ p of these
comparisons between pairs p; and p;, performed during one
parallel step of the sorting.

’I‘hepcompaﬁmgiverisetoplinuoftheformL,,,, which
determine O(p?) regions. Within any region the outcome of
these comparisons is constant. The problem reduces to finding
out which of these regions contain p*. By drawing horizontal
lines through the O(p?) intersections of pairs of these lines, we
obtain horizontal slabs where within each slab, the original lines
L, ; are totally ordered. So if we only knew the slab S* which
contains the center, we could then sort the lines within S°*, and
perform a binary search to find a region containing p*. Again,
we show how to sort the lines L, ; without knowing S* in advance.
What does comparing (ordering) a pair of lines L, ; and L, ,
mean? It reduces to knowing whether the center lies above or
below the horizontal line through their intersection point. This
being the case, we now use a ¢ processor parallel sorting algo-
rithm to sort the L, ;'s within §*. Each parallel step of this last
algorithm makes ¢ comparisons and we are led to the next issue:

(2) How to ‘batch’ ¢ of these ‘comparisons’ between L, ; and
L.

This is not so difficult because we can indeed do a binary search

among the ¢ horizontal lines induced by the comparisons, Since

each step of the binary search takes O(nlog’s) time, we can per-
form step (2) in time O(nlog’nlogg + ¢) time. If we use

Preparata’s parallel sorting algorithm (or the [AKS] network) we

can perform step 1 in time of O(nlog’nlog?p + plog?p). So to

find the rotational order of the points about p* (using Preparata’s

algorithm or the [AKS)] network) takes time O(nlogin). At the
end of this process we have either found a point p*, or a bounded
region R, with respect to which the rotational order of the points
in X is fixed. The region R is the intersection of O(logn)
regions, one for each parallel step of the point sorting algorithm.
Such a region is bounded by four lines: two horizontal lines
bounding the slab in which the center lies, and the two lines L,
between which the center lies.

Correctness Lemma. The center contains R.

Proof. From the existence of the center and the form of the
algorithm it is clear that R contains a point in the center.
Because the rotational order of the points is the same about any
point in R, cither every point in R is in the center or none of R is
in the center, and plainly only the first case is possible. D

It remains to give an algorithm to determine whether the
center intersects a given line L, or on which side of L it lies. For
each orientation 6 and point x, let [y(x) denote the line through x
and with orientation 6. Define fy(x) to be the fraction of the
points of X which lie on the closed half-plane to the right of [,(x)
and also define g(x) = minfy(s), £,(x) = min fy(x), and
g,(x) = _min fi(x). We state some simple properties of f, g,
8, and g,.

Lemma 4.

(1) Let L be any line (imagined as the x-axis). Then for each
8, the function fy(x) is monotone as x varies along L. It is
constant for 8 =0 or m, decreasing from 1 to 0 for
8 € (0,) (the ‘upward’ orientations), and increasing from
0to1ford € (—m, 0) (the ‘downward’ orientations).

(i) g,(x) is a decreasing function on L and g,(x) is an increas-
ing function on L. Let I be the interval over which
8,(x) = gy(x).

(iii) For any x, g(x) attains its minimum at some set O(x) of
orientations. Suppose x is not in the center. If &(x) con-
sists only of upward (resp. downward) orientations then x
lies to the left (resp. right) of I. Otherwise 6(x) has both
types of orientations and x lies in J.

We seek a point p* in I. To guide the search for p* we find
the rotational order of the points in X about p°, using a p proces-
sor algorithm, running in parallel ime A. A comparison of two
points p; and p;, as described above, determines a line L; it
intersects L in a point, x say. The result of the comparison
depends solely on which side of x the point p* lies. We deter-
mine whether I includes x (in which case we are done), or if I is

163

to the left or right of x, by rotating a line about x and computing
f;(x) as O varies; using (iii) above we deduce where x lies. This
takes time O(nlogn). To batch p of these comparisons, we sort
theréu]tingp points on L and perform a binary search among
them (actually, find medians etc.). This yields an interval J (con-
taining p*) over which the comparisons performed so far have a
fixed result. This takes time O(nlognlogp + p). Hence to find
the rotational order of the points about p* takes time
O((nlognlogp + p)h). Using either Preparata’s algorithm or the
[AKS] network this becomes a time of O(nlog’n).

Correctness Lemma. The algorithm either finds a point in the
center, a point in /, or an open interval J with respect to which
the rotational order of the points in X is fixed, and with J C I,
the L-maximal center.

By the correctness lemma if the procedure does not find a
center, it finds a point in /. Let x be this point. As x is not in
the center, g(x) < 173. Observe that this implies that there exist
two orientations, an upward 6, and a downward 6,5, such that
f,t(x) = fo,(‘) < 1/3. See figure 4.

L

AN

figure 4.

It follows that the center of § must lie in the shaded area of the
ﬁgure (the side of L that this shaded area lies on depends on 6)),
because for any point not in this region either the line with orien-
tation 8,, or the one with orientation 8, is guaranteed to have
fewer than /3 points to its right. So if L does not pass through
the center of X, the procedure for computing a point in the L-
maximal center also tells us on which side of L the actual center
of X lies.

A much moré complex version of these ideas gives us an
algorithm for determining a point in the center in 3-dimensions.
These results are summarized in

Theorem 9. A point in the center of n points can be found in
time O(nlog®n) (in 2-dim) and O(nZog'’n) (in 3-dim).

The method probably can be extended to any dimension.

6. Applications

1) Partitioners. An algorithm for finding a 1/4-partitioner is
casily obtained using the cake-cutting algorithm: given a set of
points X, we find a line which partitions it into two equal halves.
By appeal to the cake-cutting algorithm, we find another line
such that the two lines form a 1/4-partitioner, in deterministic
time O(nlogn(loglogn)?). We can also use the probabilistic algo-
rithm here, obtaining a running time of O(n). For let L be the
first partitioner, and the black (resp. red) points be those above
(resp. below) L. We notice that as we increase 8, the intersec-

tion. of L and LZ moves left to right along L, while the intersec-

tion of L and L,‘ moves right to left. Hence there is a unique
interval (in fact a single point) of values of for which L§=L},
and hence for which r(8)=0. [We are indebted to L. Guibas (in
conversation) for posing the Ham Sandwich cut problem, since
our original interest was in finding partitioners.]

2) Polygon Retrieval. Using the algorithm in (1), the preprocess-
ing time for the polygon retrieval algorithms in [W,EW3] is
reduced from O(N,,(n)log’s) to O(nlog?n(loglogn)?), or if we
use a probalistic algorithm to O(nlogn).

3) Intersecting Lines and Points. Hopcroft posed the following
problem which arose in the context of collision detection in robot-
ics: given Y a set of » lines and X a set of n points, determine if
any point lies in any line, The naive solution takes O(n?) time.
We first sketch a solution (this was also known to Hopcroft and
Seidel) which takes time O(n*Zlogn). Based on this solution, we
shall obtain further improvements using 1/4-partitioners.

To see the first solution, we arbitrarily divide X into n'2
groups each with n'2 points. It is enough to show how to check
if any line in Y intersects any point in one of these groups in time
O(nlogn): The pairs of points in a group determine O(n) direc-
tions which we combine with the n directions cf the lines and
then sort. (In fact, it is suffident to sort the directions deter-
mined by pairs of points, obtaining an order S, and then by
binary search insert the directions of the lines into §, without
requiring that these directions be sorted with respect to each
other - this remark is pertinent to the generalization below.) Pro-
ject the n2 points along any direction, say 8;, determined by a
pair of points and store these projected points in a balanced
binary tree. Now process the sorted sequence of directions as
follows. Beginning with 8, if we encounter a direction 8 deter-
mined by a pair of points, we transform the binary tree so that
the sequence of points it stores represent a projection along 0: it

164

is not hard to see that this (essentially) involves a deletion from
and an insertion into the tree, If the § we encounter is the direc-
tion of a line, we can in O(logn) time check if the line contains
any points on the group. Since each of the O(n) directions can
be processed in O(logn) time, the total time to process one group
is O(nlogn), and thus the time to process all the groups is
O(n'Slogn).

More generally, let T(n,m) denote the complexity of the
problem with an input set X of » points and an input set ¥ of m
lines. By duality, we have T(n,m) = T(m,n). It is easy to use
the above technique to show that for n < m?,

mlogn if n < mi2
T(m,n) = T(a,m) = ®
nm7logn ifm2<n s m>

We now improve the just derived bound of
T(n,n) = O(n¥%logn). The basic idea is illustrated as follows:
suppose we have to check the intersection of a set Y of lines with
a set X of points. Let X; (i = 1, ... ,4) be subsets of X deter-
mined by a 1/4-partition. Note that any line intersects at most 3
of the quadrants of the 1/4-partition. The original problem is
thus reduced to four subproblems of checking intersections of
subsets ¥, C ¥ with X, (i = 1, . . . ,4), where ¥, consists of the
lines which intersect the quadrant containing X,. Furthermore,

4
> 1¥;] = 3|Y]. The recursive application of this idea will obtain
(L2

T(n,n) = O(n‘logn) for some ¢ < 1.5. To get the best constant
for ¢, we recall Willard’s [W] J-way division of a set of points (a
1/4-partition may be regarded as a J-way division with J = 2).
The pertinent property is that a J-way division consists of J lines
(or half-lines) which partition X into 2J approximately equal parts
such that an arbitrary line intersects at most J + 1 of these parts.
Furthermore, such a division can be obtained by J~1 applications
of the partition algorithm in section 6. We chose J = 3 to obtain
the best constant in the following construction.

We first set up a ‘search tree’ on X in which each node has
degree 6. The root is associated with the entire set X and a 3-
way partition of X. In general, if a node u is associated with a
subset X' of X and a 3-way division of X’ then each child of u is
recursively associated with one of the 6 subsets formed by the 3-
way division of X’. The height of the search tree is taken to be
log,yn and thus each leaf is associated with a subset of size
O(n'™"*). The cost of forming the 3-way division at all the nodes
of the search tree is seen to be O(nlog’n{loglogn)?), relying on
the O(nlogn(loglogn)?) algorithm for partitioning given in section
6. '

The ‘search’ for intersections of lines in ¥ with points in X
proceeds as follows: initially, we are at the root and want to
check if any line in ¥ contains any point in X. In general, sup-
pose we are at some node u and want to check if any line in
some set ¥' C Y contains any point in the set X' C X assodated
with u. If |¥’| < [X'[“? then we solve this problem directly by
(3) in time O(]X' log|X’[}. Similarly, if |Y'| = |X']2 we solve it
directly in time O(|Y’ [log|y’[). I 4 is a leaf then [X'| = O(n'™*)
and we also solve this problem directly by (3) in time
0(n'®"|¥* |"logn). Otherwise, for each line in ¥’ and for each
of the 6 quadrants determined by the 3-way division at u, we
check if the line intersects the quadrant. Note that the line inter-
sects at most 4 quadrants. The protlem is now reduced to 6 sub-
problems where we want to check for each quadrant whether any
line which intersects that quadrant contains any of the points in
that quadrant. Each of the subproblems is naturally solved recur-
sively at the children of u.

We now assess the complexity of this procedure. Let U be
the set of nodes in the search tree which were visited. For
u € U, let n, (resp. m,) denote the size of the set X' (resp. ¥')
of points (resp. lines) to be checked at u. We may partition U
into four classes: U, (resp. U;) consists of the nodes x where
nl2=m, (resp. nl=my)), U, consists of the leaves (of the

search tree) which were not counted in Uy U Uy, and U, consists
of the rest of U (i.c. those nodes which spawn six subproblems).
The work done at nodes in Uj; is seen to be

2, nlogn, = O(nlogn),
uEUv

since 3, n, = O(n). The work at U, is
uw€l,

%mlogm,. = O(mn " togm),
kel

since 3, m, = O(n'®*). The work done at U, is
wel,

n“‘*‘lop.[p) m,,W] = n'%logn-(mn)2.

(1128
To see the above, mnote that |Uy = O(n'™®),
3 m, = O(mn'™") and the sum 3, m}? is maximized when all
u€l, u€l,

the m, are equal. Finally, the work done at a node u € U; is
O(m,). Summing over all such nodes, we have

legyn 1
Smsm S 4 = 0o(mn'™Y,
wel, i=0

The total cost (including the ‘preprocessing cost’ of computing the
search tree) from the above analysis is summarized in:

165

Theorem 10. T(n,m) = O(n]ogzn(loglogn)z + m‘%‘lcgm
+ mi 2 Saliogn), In
T(nn) = 0(" " '®togn) = O(n! “"logn).

particular,

7. Conclusions.

The general contribution of this paper is to introduce a
natural generalization of the concepts of convex hulls and centers,
and to investigate a number of computational problems surround-
ing it. The rich connection between k-hulls and the previously
studied concepts of k-belts, k-sets, a-partitioners, and the classical
Ham Sandwich theorem is particularly noteworthy, and no doubt
sheds some insights into these concepts,

The algorithms presented here develop, or at least make
more accessible, some powerful algorithmic techniques which are
quite new in computaticnal geometry. Specifically, we have
extended the domain of applications for Megiddo's technique.
We expect to find further new applications for these techniques.

Finally, our ‘parametric searching’ algorithms are signifi-
cantly faster than previous solutions. This in turn translates into
efficent algorithms for a number of applications. Again, we
expect other applications to be found.

Acknowledgements

We are indebted to R. Pollack for references [L,E1SS] and
for pointing out that our algorithm in section 2 had previously
been discovered by Lovész.

References

M. K. Agoston, Algebraic Topology, Marcel Dekker,
New York, 1976.

(Ag]

[AHU] Aho, Hopcroft, and Ullman, The Design and Analysis
of Computer Algorithms,Addison Wesley, 1974,
[AKS] M. Ajtai, J. Komlés and E. Szemerédi, "An O(nlogn)

Sorting Network”, 15tk STOC, 1983, 1-9.

(9] B. Chazelle, "Optimal algorithms for computing depths
and layers”, Brown University Technical Report No.
CS-83-13, March 1983.

[CY] R ColeandC. K. Yap, "A parallel median algorithm”,
preliminary version, September 1983.

[DE] D. Dobkin and H. Edelsbrunner, private communica-
tion.

[DS] L. Dubins and E. Spanier, "How to cut a cake fairly”,
AMM, 68(1961), 1-17.

[EW1] H. Edelsbrunner and E. Welzl, "On the number of
line-separations of a finite set in the plane”, to appear,
J. Comb. Theory, A.

(EW2] H. Edelsbrunner and E. Welz], "Halfplanar Range Esti-
mation"”, Report F98, Inst. for Inf. Proc., Tech. Univ.
of Graz, Austria (1982).

[EW3] H. Edelsbrunner and E. Welzl, "Halfplanar range

search in linear space and O(n%%5) query time",

L

[ovi]

3

Report F111, Inst. for Inf. Proc., Tech. Univ. of Graz,
Austria (1983).

P. Erdos, L. Lovész, A. Simmons and E. G. Straus,
"Dissection Graphs of Planar Point Sets”, in A Survey of
Combinatorial Theory, J. N. Srivastava eral, eds.,
North-Holland, 1973, 139-149.

T. P. Hill, "Determining a fair border”, AMM
90:7(1983)438-442.

L. Lovdsz, "On the number of halving lines", Ann.
Univ. Sci. Budapest, Edtvos Sect. Mat. 14, 1971, 107-
108.

N. Megiddo, "Applying parallel computation algo-
rithms in the design of serial algorithms", JACM,
30(1983), 852-865.

D. Muller and F. Preparata, Finding the intersection of
two convex polyhedra, Theoretical Computer Science,
7(1979), 217-236.

M. H Overmars and J. van Leeuwen, "Maintenance of

configurations in the plane”, JCSS, 23(1981), 166-204.
F. Preparata, New Paralle! Sorting Schemes, IEEE
Trans. Comput., C-27(1978),pp.669-673.

L. Valiant, "Parallelism in Comparison Problems”,
SIAM J. Comp., Vol.4, No.3. 1975, 348-355.

D. Willard, "Polygon Retrieval”, SIAM J. Comp. 11,
1982, 149-165.

I. M. Yaglom and V. G. Boltyanskii, Convex Figures,
(trans.) Holt, Rinehart and Winston, 1961,

F. Yao, "A 3-Space Partition and its application”, 15th
STOC, 1983, 258-263. -

166

