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ABSTRACT 

We provide an algorithm which solves 

the following problem: given a polygon 

with edges parallel to the x and y axes, 

which is convex in the y direction, find a 

minimum size collection of rectangles, 

which cover the polygon and are contained 

within it. The algorithm is quadratic in 

the number of vertices of the polygon. Our 

method also yields a new proof of a recent 

duality theorem equating minimum size rec- 

tangle covers to maximum size sets of inde- 

pendent points in the polygon. 

INTRODUCTION 

The problem we address is that of 

constructing a planar shape with as few 

rectangles as possible. In other words, 

given a polygon, find a minimum sized col- 

lection of rectan~es, which are allowed to 

overlap, whose union is the polygon. Here 

the polygon is restricted to be a union of 

unit squares, thus having only horizontal 

and vertical boundaries. 

One application of this result is to 

the problem of efficiently creating 

masks for photolithography, using a 
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pattern generator which is constrained to 

print rectangles. (See, for example, Mead 

and Conway [6], pp. 93-98, and Chaiken, et 

al. [i], p. 394.) Another application is 

that of storing and constructing pictures 

on a computer terminal (e.g., Masek [3]). 

The general problem is known to be 

NP-hard. Our main result is an efficient 

algorithm for constructing a minimum rec- 

tangle cover when the region in question 

is vertically convex. 

PRELIMINARY DEFINITIONS 

In the following, a polygon is a 

finite subset of an infinite grid of unit 

squares in the plane. A polygon fs verti- 

cally (horizontally) convex, if every 

column (row) of squares in the polygon is 

connected. A rectangle is a rectangular 

subset of unit squares, which shall be 

assumed to lie entirely within the given 

polygon. A subset of squares in a polygon 

is said to be independent if no two 

squares are contained within the same rec- 

tangle. A collection of rectangles, 

possibly overlapping, whose union is eoual 

to the given polygon is called a rec- 

tangle cover. 

Previously, A. Frank noticed that for 

a vertically convex region, the only infor- 

*Supported in part by Air Force Contract 

AFOSR-82-0326A 

167 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800057.808678&domain=pdf&date_stamp=1984-12-01


mation one needs to construct a rectangle 

cover is the set of distinct horizontal 

intervals determined by the vertical sides 

of the rectangles• The rectangle cover is 

then the set of maximal rectangles in R 

generated by the intervals [2]. (See 

Figure i.) 

I ~ / / H  

A vertically convex polygon with 
rectangle cover and intervals 
representing cover indicated• 

k-i 
I k contains points not in u I. . 

j:l J 

When there is no such ordering, T is 

called dependent. 

CHRONOLOGY OF PREVIOUS RESULTS 

Year Result 

1978 Masek [3] proved that finding mini- 

mum rectangle covers for polygons 

is NP-hard. 

1979 Chvatal conjectured that, for any 

(?) polygon, the size of a minimum 

rectangle cover is equal to the 

size of a maximum independent sub- 

set. Small counter-examples were 

constructed by Szemeredi and Chung 

[1]. 

1980 Chaiken, et al. [i] proved 

Chvatal's conjecture is true, if 

the polygon is both vertically 

and horizontally convex• 

Figure 1 

In a vertically convex polygon, each 

maximal connected subset of a row of squares 

determines a real interval: the projection 

of the row onto the real axis. Let S denote 

the set of all (open) intervals obtained 

from the polygon in this way. Then, 

finding a minimum rectangle cover for R 

can be reduced to finding a minimum size 

set of intervals which generate S, 

meaning that each interval in S is the 

union of generating intervals• (See 

Figure 2.) Conversely, an independent set 

of sguares in R can be shown to correspond 

to a sequence of intervals in S such that 

each interval contains a point in none of 

its predecessors [2]. More formally, 

T ~ S is independent if the intervals in T 

can be ordered Ii, I2,...I n so that each 
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(b) 

(a) Intervals determined by 
polygon 

(b) Generating set for intervals 

(c) Rectangle cover constructed 
from generating set. 

Figure 2 
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1983 Gy~ri [4] showed that the conjec- 

ture is true even if the polygon 

is convex in only one direction. 

Here, using the interval formulation 

of the problem, we shall give a simple al- 

gorithm for constructing minimum genera- 

ting sets, which can be transformed easily 

into minimum rectangle covers. The algo- 

rithm is 0(n2), where n is the number of 

intervals, which is proportional to the 

number of vertices in the polygon. The 

basic step of the algorithm is a simple 

operation: replacing "chains" of over- 

lapping intervals with the intersections 

of successive pairs; it is reminiscent of 

the augmenting path algorithm for maximum 

matching. 

Constructing minimum generating sets 

and finding maximum independent sets of 

intervals can be viewed as dual problems. 

Our work provides yet another example of 

a combinatorial optimization problem in 

which such duality is the key to construc- 

ting a fast algorithm. 

CONSTRUCTING MINIMUM GENERATING SETS 

We first need a nice characterization 

of dependent sets. It is easy to show 

that S is dependent if and only if S con- 

tains a subset T, such that every point in 

uT (the union of intervals in T) is 

covered by at least two intervals in T. 

We call such a collection T simply depen- 

dent. We can extend our definitions to 

subintervals U c uS by saying that an 

interval U is dependent, or simply depen- 

dent whenever the set of all intervals 

with both endpoints contained in U has the 

corresponding property. Note the im- 

portant distinction~between subintervals 

of uS and intervals in the collection S. 

We call U minimal simply dependent if no 

proper subinterval of U is simply depen- 

dent. (See Figure 3.) 

Given S, a collection of intervals 

such that uS contains a simply dependent 

interval U, we now give a procedure which 

constructs a set of generators G for S 

with ISl - 1 intervals. G is the set 

formed by replacing consecutive pairs of 

maximal intervals inside U with their 

intersections. 

Reduction Procedure 

Let T be the set of intervals in U 

(i.e. intervals with both ends in U). 

Let {Ii, I2,... , I k} be the maximal inter- 

vals in T ordered by increasing left end- 

points. 

If k = 1 then G ÷ S - {Ii}. 

Else G ÷[S - {Ii, I2,..., I k} 

U{IlnI 2, I2nI 3 ..... Ik_inIk}].D 

U 

V d 

S 

T 

G 

S is a dependent set of intervals. 
U, V and W are simply dependent 
intervals; V and W are also mini- 
mal. T is an independent subset of 
S (because the left endpoints of 
intervals in T are strictly in- 
creasing. G is a generating set 
for S which is also independent. 
!G I = ITI in this case, so G is a 
minimum generating set and T is a 
maximum independent set. 

Figure 3 



It is easy to see that IGi = ISI- i. 

The simple dependence of T guarantees that 

each point in the interval 

Ij- (ljmlnI j) - (ljnlj+ I) 

is contained in some interval in T, which 

must be non-maximal, and hence contained 

in I.. Thus, every point in I. is gen- 
3 3 

erated by intervals in G. 

We now explain how to use the reduc- 

tion to find a minimum size generating 

set. We first introduce some notation. 

If S is a collection of intervals, and 

U c uS, let RUS be the collection of 

intervals obtained by applying the reduc- 

tion procedure to the intervals of S con- 

tained in U. 

We define another operator D L, where 

DLS is the leftmost minimal simply depen- 

dent interval in S. To find a minimum size 

set of generators, we iterate the operator 

RD L to construct 

RDLS, (RDL)2S . . . . .  (RDL)mS. 

We stop when (RDL)mS is independent (con- 

tains no simple dependence). It is clear 

that the algorithm halts since 

i~Lsl = Isi - i. 

The generating set G in Figure 3 

was obtained in this manner; m = 2, V = 

DLS , and W = DLRDLS- 

VALIDITY OF ALGORITHM 

Let 

B L = (DLS, DLRDLS,... , DL(RDL)m-ls) 

be the sequence of intervals reduced during 

the algorithm. It can be shown that each 

D • B L appears only once, using several 

technical facts, described in the appen- 

dix. 

If we define DRS to be the ri@htmost 

minimal simply dependent interval in S, 

then we may consider the same algorithm 

working from the right. If 

£ 

B R = (DRS, DRRDRS ..... DR(RD R) S) 

then each D e B R also appears only once by 

the same argument. We now state our first 

main result. A sketch of the proof 

appears in the appendix. 

Theorem i. 

BL(S) = BR(S) as sets. 

We use Theorem 1 to show that our 

algorithm constructs a minimum genera- 

ting set. This follows immediately from 

the next theorem. 

Theorem 2. Let B L and m be as defined 

above. Let T be a maximum size indepen- 

dent subset in S. 

Then 

i Ti = I Sl - m = I SI - IBLI . 

Proof of Theorem 2. We prove the 

result by induction on ISi . Let 

S m = (RDL)mS , 

the final set of generators. S is inde- 

pendent, so there is some point x in uS 

which is covered by exactly one interval 

in S . Form S' c S by removing all 
m 

intervals in S which cross x. S' is the 

disjoint union of S 1 and S 2, which contain, 

respectively, the intervals to the right 

and to the left of x. Using Theorem i, we 

have 

BL(S' ) : BL(Sl)UBL(S2) = BL(Si)UBR(S2) 

The key observation is that BL(S) 

contains exactly those intervals in BL(S) 

which lie strictly to the left of x, and" 

BR(S2) contains exactly those intervals in 

BR(S ) (which is equal to BL(S)) which 

lie strictly to the right of x. Further- 
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more, if j > 1 is the number of intervals 

in S which contain x. then exactly j - 1 

intervals in BL(S) contain x. This is 

because each application of the reduction 

procedure, to an interval U containing x, 

reduces the total number of intervals con- 

taining x by one. Thus, 

IBL(S')I = IBL(S) I - (j- i) 

= m- j + 1 

Now, if T' is an independent set in 

S', then clearly T'U{I} is independent in 

S, where I is any interval containing x. 

Thus, the size of a maximum independent 

set in S is at least IT'I + i. But, by 

induction, 

IT' = IS'I - IBL(S')L, and 

l+ IT'I = 1 + IS~ - j - (m- j + I)= 

iSl - m, 

which is what we wished to show. [] 

O(N 2 ) IMPLEMENTATION 

Represent intervals by ordered pairs 

(X, Y) of rational numbers. Assume the 

intervals are stored in a doubly-linked 

list, ordered by increasing left endpoints. 

In case of ties, the order is arbitrary. 

We also assume we have an ordered list of 

all endpoints, marked as to whether they 

are left, right, or both. 

Assume that S is connected, i.e., uS 

is a single interval. Otherwise find 

generating sets for each connected compo- 

nent separately. 

Recall that the algorithm to find a 

minimum generating set has two basic 

steps: (i) Given S, the collection of 

intervals, find (L, R), the leftmost 

minimal simply dependent interval in uS; 

(2) Apply the reduction procedure to (L,R) 

and update S. 

To find a minimal dependence quickly, 

we first find R 1 < R 2 < ... < Rk, all the 

points which are right ends of two or more 

intervals. For i = i, 2, ... , we look 

for (L i, Ri) , a minimal dependent interval 

with right end R i, if one exists. If R i 

is the smallest right end such that a de- 

pendence exists, then (Li, R i) must be 

the leftmost minimal dependence. It can 

be shown that if there is no simple depen- 

dence with right end Ri, then R i can be 

crossed off the "candidate" list perman- 

ently. 

Each (Li, R i) can be found in linear 

time using the following idea. Beginning 

at the right end R i, simultaneously con- 

struct two disjoint "paths" of intervals 

from R i. Extend paths by adding intervals. 

To insure that we find a minimal simple 

dependence, always extend the shorter path 

first, and always choose the interval 

which extends the path by the smallest 

non-zero amount. 

The reduction procedure is easily 

accomplished in linear time if we observe 

that, if (Xi, Yi ) denotes the i th maximal 

interval in (L, R), then (X i + i' Yi + 1 ) 

is the leftmost interval with 

X. < X. < Y. < Y. d R 
z l+l z l+l 

(if we choose Yi + 1 so that (X i + l,Yi+l) 

is the longest interval with left end 

Xi + 1 )" 
Since the number of iterations of 

the algorithm is at most 0(n), where n is 

the number of intervals, the procedure is 

seen to be 0(n 2) in the worst case. 

Finally, one can show that n is propor- 

tional to m, the number of vertices in the 

polygon, and that constructing S and re- 

constructing the rectangle cover from the 

generating Set is at worst 0(m2). 
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CONCLUSION 

We have given a simple, efficient 

algorithm which finds an optimal rectangle 

cover, for any vertically convex, recti- 

linear polygon. This special case hastwo 

critical properties, which facilitate 

the construction of an exact algorithm. 

The first is one-dimensionality, which 

allows the reduction of a planar covering 

problem to an interval covering problem. 

The second is the duality between minimum 

size rectangle covers and maximum size 

independent sets of squares. Even in the 

simply-connected case (no holes in the 

polygon), neither of these properties are 

present. 

It is not yet known whether our 

methods can be extended to give an exact 

algorithm for a larger class of regions. 

We have discovered a few special cases in 

which a region which is neither vertically 

nor horizontally convex can be split into 

two regions, each of which can be covered 

separately. In other cases, a region R 

may contain a vertically convex subregion 

which can be covered independently, then 

"contracted," effectively reducing R to a 

smaller region. 

A related problem is that of parti- 

tioning an arbitrary polygon into non- 

overlapping, horizontal trapezoids, a 

problem which arises in electron beam 

lithography, described in [7] and [8]. For 

rectilinear polygons, this becomes the 

problem of partitioning a region into rec- 

tangles, for which there is an 0(n 5/2) 

exact algorithm (n is again the number of 

vertices) [8]. 

Unfortunately, there exist regions 

which need k rectangles in a rectangle 

cover but which require 0(k 2) rectangles 

in a rectangle partition. So, in general, 

partitioning is not a good replacement for 

covering. Further results on the rela- 

tionship between partitioning and covering, 

and on other heuristics for finding rec- 

tangle covers will be reported elsewhere. 
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APPENDIX (THEOREM i) 

The proof of Theorem 1 depends on 

several technical facts and lemmas, which 

we list below. Facts 1 and 2 and Lemma 1 

are needed mainly to guarantee that, with- 

out loss of generality, the intervals in 

BL(S) are distinct, which greatly 

simplifies the proof. The more important 

Lemmas, 2 and 3, are used to transform the 

proof into a simple "algebraic" exercise. 

Fact 1 We may assume that no point is 

both a left and right endpoint for inter- 

vals in S. 

Fact 2 We may further assume that no 

point is the left endpoint of more than 

two intervals. 
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To prove Facts 1 and 2, we replace S 

by a new collection S', using the con- 

structions shown in Figures A1 and A2. We 

then show how to construct generating sets 

and independent sets for S from those for 

S'. It can be shown that the additional 

processing of intervals adds only 0(n) 

steps to the implementation. 

Lemma 2 Let D 1 and D 2 be distinct simply 

dependent intervals in uS, where D 1 is 

minimal and D 1 ~ D 2. Then D 2 will remain 

simply dependent after the reduction pro- 

cedure is applied to D I. 

Lemma 3 Let D 1 and D 2 be distinct minimal 

simply dependent intervals. Then we can 

perform the reduction in either order: 

Z Z+8 Z+E 

I3 

IL 
Z Z+8 Z+£  

Ii 

S, 

Construction used for Fact i. £ 

is chosen so that (z, z + e) 

contains no other endpoints of 

intervals, and 0 < ~ < e. 

Figure A1 

RDiRD2S = RD2RDiS. 

I I' 

Sketch of Proofs of Lemmas 2 and 3 The 

results follow trivially unless D 1 and D 2 

overlap and have intervals in common. The 

key is that the minimality of D 1 insures 

that DlnD 2 is independent, which means 

there is a point x contained in exactly 

one interval inside D 1 and D 2. The simple 

dependence of D 1 and D 2 mean there are 

maximal intervals not in DinD 2 which also 

contain x. The lemmas are established by 

a separate analysis of the intervals in 

DinD 2 which are to the left of x, contain 

x and are to the right of x.D 

Lemma 1 If U c uS is not simply depen- 

dent, then applying the reduction proce- 

dure to some simply dependent interval D 

cannot cause U to become simply dependent. 

Sketch of Proof Determine those points in 

U which must be covered by two intervals 

before the reduction, if U is simply de- 

pendent after the reduction. The non- 

trivial cases are: 

D c U, U ~ D, and 

U n D ~ ~(but ~ U or D).[3 

Z Z+B Z+£ z-8 Z Z+S Z+E 

j I J' 

$, 

Construction used for Fact 2. 

Again, e is chosen so that 

(z - e, z + e) contains no other 

endpoints of intervals, and 

0 < ~ < ~. 

Figure A2 
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Sketch of Proof of Theorem 1 

Either DLS = DRS , or 

(i) Lemma 2 implies that: 

DLS = DLRDRS 

and DRS = DRRDLS. 

(2) Lemma 3 implies that: 

RDLRDRS = RDRRDL s. 

To show BL(S) c_ BR(S ), we need only 

show that, given any j, 0 _< j -< m -i, there 

is some k >_ 0 such that: 

DL(RDL)JS = DR(RDR)kS. 

This is established by induction on S , 

using (I) and (2) above. Symmetrically, 

BR(S ) c_ BL(S ) .D 

174 


