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ABSTRACT 

We study the asymptotic expected behavior of the First Fit and 
First Fit Decreasing bin packing algorithms applied to items chosen 
uniformly from the interval (0,u], u ~< 1. Our results indicate that  the 
algorithms perform even better than previously expected. 

1. INTRODUCTION 

In the standard one-dimensional bin packing problem we are 
given a sequence L = (aba2,...,a,) of numbers in the interval (0,1], and 
are asked to pack them into a minimum number of unit-capacity bins 
(i.e., bins that can contain items totaling at most 1). This NP-hard 
problem has served as a testbed for new ideas in the analysis of 
approximation algorithms for well over a decade (e.g., see [3,9]). 

One strand of this research has been the study of worst-case 
behavior, starting in the early 1970's with proofs that the FIRST FIT 
(FF) heuristic could use as many as 17/10 times the optimal number 
of bins (but no more) and that  the corresponding asymptotic worst- 
case ratio for FIRST FIT D E C R E A S I N G  (FFD) was 11/9 [9,10]. 
This line of research has culminated with the results of Lueker and 
Fernandez de la Vega [6] and Karmarkar  and Karp [12], which imply 
that an asymptotic worst-case ratio of 1 is achievable with a polyno- 
mial t ime algorithm (the number of excess bins is guaranteed to be 
"little o" of the optimal number of bins). 

This paper follows a second and more recent line of research: 
analysis of expected behavior. We shall begin by stating our two main 
results, and then explain why we find them interesting and (in two 
senses) unexpected. Both results concern the standard probabilistic 
model for this problem, in which instances consist of items indepen- 
dently and uniformly distributed in the interval (0,u I for some u ~< I. 
Let L,~ denote the random variable whose values are lists of n items 
generated according to this distribution. For algorithm A and list L, 
let A (L) denote the number of bins in the packing of L generated by 
A, let OPT(L) denote the number of bins in an optimal packing, and 
Z(L) denote the obvious lower bound Za~La ~ OPT(L). Note the 
easy result that  E (Z(LnU)) ~ un/2. 

Our results concern the FF and FFD algorithms mentioned 
above. In both we start with an ordered sequence of initially-empty 
bins, into which the items are placed, one at a time. in FF, we place 
a l in bin 1, and treat the remaining items in order, placing each in the 
first bin that still has room enough for it. FFD differs only in that wc 
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initially sort the list so that  a~ >/a2 >/ • • " >/a , .  Our main results are 
thc following: 

Th rEm, - - o ( . O ' )  

Theorem 2. For u ~< 1/2, E[FFD(Lg) - Z(Lg)] = O(1).  

Theorem 1 says that the expected performance of FF is "asymp- 
totically optimal" in the same sense as was the worst-case performance 
of the algorithms of Lueker et al.: the expected excess is 
o(E[OPT(L2)]). The result gains importance from the fact that 
FIRST FIT is an "on-line" algorithm, i.e., it packs items in the order 
given, without knowledge of the sizes and number of later items. 
There are many applications in which only on-line algorithms can be 
used, and for these the sophisticated algorithms of Lueker et al. do not 
apply; in fact, it has been proven that  no on-line algorithm can guaran- 
tee an asymptotic worst-case ratio better than 1.536 [2]. Nevertheless, 
our result says that asymptotic optimality is still possible, on average, 
and can be obtained using a simple and well-known heuristic. 

Theorem 1 is unexpected because most researchers, including the 
authors of this paper, had assumed that  E[FF(L2)/Z(L2)] approached 
some constant greater than 1 as n ~ .  (Simple hand-waving argu- 
ments seem to prove this.) In his thesis [9], Johnson conjectured that 
the ratio was something like 1.07. In [17], Ong, Magazine and Wee 
estimated it to be 1.056. However, these estimates were based on 
simul0tions involving only 200-item and 1000-item lists respectively. 
The true nature of FF did not become apparent until recent simula- 
tions, run on lists with n growing as large as 128,000 [1], raised the 
possibility that  the expected excess was growing sublinearly. 

Turning now to off-line algorithms, we first note that the Kar- 
markar and Karp algorithm provides a worst case upper bound of 
O(Iog2(OPT(L))) on A ( L ) - O P T ( L )  [12], which is better than our 
bound on the expected excess of FF (over ~(L)) .  However, if we are 
considering off-line algorithms, we can consider FFD as a contender in 
addition to FF. Theorem 2 serves to emphasize just how good a con- 
tender FFD can be in practice, despite the fact that  it, like FF, is 
totally out-classed from an asymptotic worst-case point of view. It was 
already known that for u =1 the expected excess under FFD was 
O(n I/2) [15]. Theorem 2 gives a much stronger result for u ~< 1/2: 
here there is a fixed upper bound on the expected excess, no matter 
how many items there are in the list. It was well-known that  FFD 
performs well in practice, but few expected that it was actually this 
good. This result was again foreshadowed (and inspired) by simula- 
tions. Of additional theoretical interest is the fact that Theorem 2 
implies an unexpected discontinuity in the behavior of FFD at u = I/2: 
we can show that for u > 1/2 the expected excess is N(nl/3). 

So far we have argued that  our results were "'unexpected" 
because initially they were not believed to be true. A second sense in 
which Theorems 1 and 2 are unexpected is that, even supposing that 
they are true, it is surprising that  they can be proven, at least given the 
current state of the art. A standard objection to probabilistic analysis 
of algorithms is its supposed difficulty, especially when it comes to 
analyzing algorithms that do anything half-way clever (as do FF and 
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FFD). Such algorithms start  conditioning their data as soon as they 
make their first step. thus making it difficult to retain the indepen- 
dence assumptions so vital to straightforward probabilistic arguments. 
Moreover, these algorithms require large amounts of memory, thus 
making the state spaces far too large for easy Markov chain argu- 
ments. (Although the N E X T  FIT heuristic, which never has more 
than one active bin, has been thoroughly analyzed [4,10], the probabil- 

i t y  distribution for the height of even just  the second bin in a FF pack- 
ing is still unknown.) 

The key to escaping these difficulties is an old trick for avoiding 
dependence effects, one that  is perhaps not as widely known as it 
should be: do all the probabilistic arguments in one part of the proof, 
and in the rest of the proof use only worst-case analysis. In the con- 
text of running-time analysis, Knuth has called this thc "O of proba- 
bili ty" argument [14]. In our context it yields two-part proofs of the 
following form: 

I. [PROBABILISTIC]  Using counting arguments, show that  all 
but a negligible proportion of the instances satisfy a set of desir- 
able properties. 

2. .  [WORST-CASE]  Show that  for all instances satisfying the given 
properties, the algorithm generates packings whose excess obeys 
the claimed bounds. 

These two parts can occur in either order (and will do so in what fol- 
lows). Note that, because we use this type of argument,  our results 
are "asymptotic probability 1" results as well as expected behavior 
results. 

Section 2 reviews several easy lemmas from the bin packing folk- 
lore. Sections 3 and 4 then sketch the proofs of Theorems 1 and 2, 
respectively. The concluding section summarizes our experimental 
findings in more detail  so that  they can be compared to our analytic 
results, and mentions some additional expected behavior results that we 
have proved or are currently in the process of "nai l ing down" and 
which, if true, will complete the classification of the behavior of 
E[FFD(LX)] and E[OPT(LnU)] for all u E (0,11. We also discuss the 
extent to which our results can be extended to other distributions. 

2. GENERAL PURPOSE LEMMAS 

Our first lemma is just an easy observation that provides us with 
a different way of looking at the quantity (the "expected excess") to 
which both our theorems refer (this version will be used extensively in 
proving Theorem 2). 

Lemma 2.1. For an)' list L and bin packing algorithm A, 

A(L)  
A ( L ) - Z ( L )  = Z ( I - B ~ )  

i--I 

where B i is the sum of the items in the i th bin of the packing con- 
structed when A is applied to L (and 1--B i is therefore the "'empty" 
or "unused" space in the bin). 

The next (trivial) lemma gives us an alternative way of looking 
at the construction of the FF and FFD packings: instead of scanning 
the items in the outer loop and the bins in the inner loop, we scan the 
bins in the outer loop and the items in the inner loop. 

Lemma 2.2. For a given list L, the following procedure is an alterna- 
tive way of constructing the FF packing of L: Pack the bins in turn, 
starting with Bin 1. To pack Bin i ,  suppose L i is the list obtained 
from L by deleting all items packed in earlier bins (hence L t = L ) .  
Bin i is initially empty and hence has a gap of size 1. Repeat the fol- 
lowing until the gap in Bin i is smaller than every item remaining in 
Li. Find the first i tem in L i that  is" less than the current gap, remove 
it from Li,  and add it to Bin i. 

I t  is now easy to derive the following lemma, which we will use 
in proving Theorem 1. 

Lemma 2.3. Suppose B is the set of items contained in Bin j of the 
FF packing of L. Then if we delete the items in B from L and pack 
the resulting list by FF, the resulting packing will be identical to that 
obtained by deleting Bin j from the original packing. 

Our final lemma says that we can draw conclusions about the 
expected excess from results that hold "'almost surely". 

Lemma 2.4. If A is either FF or FFD, and if for a given c, n, u, and 
f the probability is greater than l - c / n  that  A (L~)-Z(L,")~<f(n), 
then the expected value of of the difference is at most f (n) + c/2. 

Proof The set of instances where the bound o f f ( n )  does not hold has 
measure c/n or less. It is an easy observation to show that 
A(L)<tLI  for all lists L when A is FF or FFD. Thus the contribu- 
tion of these anomalous instances to the expected difference is at most 
(n/2)(c/n)=c/2. [] 

3. PROOF OF THEOREM I 

In this section we prove E[FF(L2)-Z(L2)] = 0(n4/5). Wc 
shall actually prove a somewhat stronger result, showing that a res- 
tricted version of FF, one that  never outperforms FF, obeys this 
expected performance bound. This approach is analogous to that used 
by Lueker [15] and Frederickson [7] in proving corresponding results 
lor FFD: to prove results about a sophisticated algorithm A, first show 
that the desired bounds hold for a less sophisticated (and easier to 
analyze) algorithm B, and then show that  A (L) ~< B(L) for all lists L. 

We call our restricted version of FF restricted First Fit (rFF). 
It differs from FF in that, as soon as a bin receives its second item (if 
it ever does) it is declared "'closed" and can receive no more items. 
Restricted FF is pleasantly free of many of the anomalies that  plague 
FF. For instance, with FF there exist arbi trari ly large expamples of 
lists L and L' such that  L' is obtained from L by deleting a single item 
and yet FF(L') = (4/3).FF(L) (the details of the construction are left 
to the enterprising reader). That  this and related anomalies cannot 
occur with rFF is a consequence of the following lemma. 

Lemma 3.1. Let L be a list. Then the following two properties hold: 

(a) If L s is formed from L by switching the order of two adjacent 
items x < y  from an ordering in which y precedes x in L to an 
ordering in which x precedes y in L s, then rFF(L) ~< rFF(LO. 

(b) If L + is formed from L by replacing an item x in L by an item 
y > x  in L +, then rFF(L) ~< rFF(L+). 

Proof. The proof is by induction on the length of L and proceeds in 
tandem for the two properties. See Appendix A1. [] 

Lemma 3.2. For any lists L and L' such that  L' is a sublist of L, 

rFF(L) ~ rFF(L') + I z - t ' l .  

Proof Let L* denote the list formed from L by enlarging the ele- 
ments in L - L '  until each has unit size. Since unit-size elements are 
packed in bins by themselves, rFF(L*)=rFF(L')+IL-L'I .  By 
repeated applications of Lemma 3.1, we also know that 
rFF(L) ~< rFF(L*). The result follows. [] 

Lemma 3.3. For any list L, FF(L) ~< rFF(L). 

Proof Let P F e ( L )  and PrFF(L)  be the FF and rFF packings of L, 
respectively. Our argument proceeds by induction on the length of L. 
In particular, we will find a non-empty set S of items in L that com- 
pletely occupy a set Bee of bins of Per(L) and completely occupy a set 
B,eF of bins in Peer(L), where IBee[ ~< ]B,eel. We then remove S 
from L and use induction and Lemma 2.3 (which clearly applies to 
rFF as well as FF) to show that  

rE(L) = IBeel + r E ( L - S )  

~< IB,eel + r E ( L - S )  

~< Iareel + rFF(L-S) 

= rFF(L). 

The set S is constructed by the following simple augmentation 
procedure. Initially S,  BEe, and B,FF are empty. 

1. Put the items contained in the first bin of Pree(L) in S. Add 
the first bin of P, eF(L) to BreF. 

2. Add to S those items that share bins in Per(L) with items of S. 
Add the corresponding bins of Pee(L) to Bee. 
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3. Add to S those items that  share bins in PrFF(L) with items in S. 
Add the corresponding bins of P,EF(L) to BrFe. 

4. If S has changed, go to step 2. 

It is clear that  the procedure eventually halts, and it remains 
only to show that  [BFF [ ~ IBrFFI. 'Observe first tha~t at  t h e e n d  of the 
first execution of step 2, IB,FFI=IBrFI=I. This is because, by the 
definitions of FF and rFF, all of the items contained in the first bin of 
PrFF(L) must also be contained in the firsl bin of PFF(L). Thereafter, 
each time a bin is added to BrrF in step 3, at  most one item is added 
to S,  since one of the items in the bin must already have been in S 
and the bin has at most two items. Thus for each bin added to BrFF in 
step 3, at most one bin can be added to BFF the next time step 2 is 
executed. Hence when the procedure halts we must have 
IBF~[ -~ [BrFFI. 

We thus can construct the desired non-empty set S,  and the 
lemma is proved. O. 

We are now ready to begin our proof of Theorem 1, which we 
divide into a "worst-case" part (Part I) and a "probabilistic" part 
(Part II). 

In Part i we obtain an upper bound on FF(L) in terms of two 
parameters of L having to do with the distribution and ordering of its 
item sizes. First we use Lemma 3.1 to convert L into a list La consist- 
ing of items with a restricted range of sizes and rFF(Ld) >i rFF(L). 
We then show how to remove items from La to form a sublist Ld' 
whose rFF packing has an item of size exceeding 1/2 in every bin, so 
that by Lemma 3.2 rFF(Ld') is no more than tLa--Ld'I plus the 
number of items exceeding 1/2 in L a. Thus, by Lemma 3.3, FF(L) is 
no more than the sum of these two quantities. 

In Part II we use probabilistic arguments to show that, for L,~ 
and sufficiently large n, these quantities are O(n 4/5) and 
n /2  + O (n4/5), respectively, with probabilities exceeding 1 - 1/n. Since 
Z(L2)=n/2-O(.,,/~fogn) with probability exceeding 1-1/n the 
desired expected difference bound follows by Lemma 2.4. 

Part I: Worst-Case Arguments 

where n=lL]. Partition the interval (0,11 into the k subintervals 
(O,l/kl ,(1/k,2/kl , . . . , ((k-l) /k, l l .  Now obtain La from L by replac- 
ing each item of L in the interval ( ( i - l ) / k , i / k l  by an item of size i/k 
for all i ,  I .~ i ~< k. By Lemmas 3.1 and 3.3 
FF(L)~<rFF(L)~<rFF(La), and we henceforth consider only this 
"discretized'" list Ld and the algorithm rFF. Since the unit-size items 
in Ld are packed in bins by themselves, we shall ignore them in much 
of what follows. 

We now begin removing items from Ld so that we can guarantee 
that the rFF packing of the resulting list will have an item of size 
exceeding 1/2 in every bin. The removal process starts with the items 
of size (k -2) /k  and proceeds down the list of item sizes. Begin by 
removing a sufficiently large initial portion of the (k-2)/k-size items 
so that  every initial segment of the resulting list has at least as many 
(k-I) /k-size items as (k-2)/k-size items. Next remove a sufficiently 
large initial portion of the (k-3)/k-size items from the resulting list so 
that  every initial segment in the new list has at least as many 
(k-2)/k-size items as (k-3)/k-size items. Notice that the new list 
still has the property that  every intitial segment has at  least as many 
(k-D/k-s ize  items as (k-2)/k-size items. Continue deleting items in 
this fashion until a list La' is created in which every intial segment has 
at least as many (k-i) /k-size items as (k- i -1) /k-s ize  items, 
1 ~< i ~ < k - l .  Call this property of Ld' the k-dominance property. 

Lemma 3.4. If L' consists only of items with sizes of the form i lk and 
has the k-dominance property, then rFF packs every item of L' with 
size less than 1/2 in a bin with an item of size exceeding 1/2. (Since 
k is odd, there are no items of size exactly 1/2 in L'.) 
Proof. We shall in fact show that  each item of size x < 1/2 will be in 
a bin with an item of size l - x  for a perfect match. We proceed by 
induction on the length of L'. (The claim clearly holds for the empty 
list.) 

Notice that  the first items of each size appear in decreasing 
order in L'. Hence the first (k- l) /k-size item precedes all smaller 
items and starts the first bin that contains an item smaller than 1. 
Since only l /k -s ize  items will fit in this bin, the first such (if any 
exist) is placed in it as second item. When the first (k-2)/k-size item 
is packed, all previous bins start with larger items, and so it starts a 
new bin. The first 2/k-size item (if any such items exist) would not 
have fit in any of the earlier bins, and so remains the first item in the 
list that will fit in this bin, and so is placed in it. (If no such 2/k-size 
item exists, then no smaller items exist either, so the bin never gets a 
second item.) In general, when the first (k-j) /k-size item, 
1 ~< j < k/2, is packed, all previous bins start with larger items and so 
it starts a new bin and the first j/k-size item remains the first in the 
list that will fit with it. Thus each first (k- j) /k-size item, 
1 ~<j < k/2 is paired with the first j/k-size item (if there is one) in a 
bin of the rFF packing of L' (and if there is none, that (k-j) /k-size 
item remains in a bin all by itself). 

By Lemma 2.3, if we remove all these items and their partners 
from L', we get a new list L" whose rFF packing looks exactly like 
that  for L' except that the bins in question, each of which contains an 
item exceeding 1/2 and either a perfect match or nothing, have been 
deleted. It is easy to see that  L" has the k-dominance property if L' 
did (the first items in each non-empty size class were deleted and if a 
class is empty then all classes of smaller items are also empty). Thus 
by induction all items in L" that  are smaller than 1/2 are packed with 
matching items larger than 1/2 in the rFF packing of L", and so the 
overall rFF packing of L' has the desired properties. [] 

By Lemma 3.4, it is clear that rFF(Ld') equals the number of 
items of size greater than I /2  in Ld'. In order to bound rFF(La) we 
need to obtain bounds on this quantity and on the number of items in 
Ld -- Ld'. 

Part 11: Probabilistie Arguments 

Suppose now that our original list L was an instance of the ran- 
dom list L,~. The following two lemmas, when combined with the 
arguments of Part I, suffice to complete the proof of Theorem 1. 

Lemma 3.5. With probability exceeding 1 - 1 / n  for sufficiently large 
n, the number of items of size greater than 1/2 in La' is n/2+O(n4/5). 
Proof. The number of items in Ld' that  have size exceeding 1/2 is 
clearly bounded by the number of items of size greater than (k-1)/2k 
in L,~. By a standard counting argument, this number is at most 

i n | -  + 0  nl~ogn = -~-+ 2k 

_ + O[n4,,) 

with probability at least 1 - 1/n for sufficiently large n. [] 

Lemma 3,6. With probability exceeding l - 1in for sufficently large n, 
the number of items in La-La'  is 0(n4/5). 
Proof. Define ri to be the smallest ~,alue such that  the removal of the 
first rl items of size ( i - 1 ) / k  from La insures that  every initial seg- 
ment of the resulting list contains at least as many items of Size i /k as 
of size ( i - i ) / k .  The value of r i is simply the largest amount that the 
count of i/k-size items lags behind the count of (i-D/k-size items in 
any initial segment of La. In the procedure described above for con- 
structing La' from La, the number of items of size ( i -1)/k  removed 
from La is clearly bounded above by r k - t + r k - 2 +  " ' "  +ri for each i. 
Hence the total number of items removed from La to obtain La' obeys 
the bound 

[Ld -- Ld'I ~< rk-i(k--2) -I- rk_2(k--3) + " " • + r3(2) + r2 
k - I  

< k ~ r  i 
/ -2 

In what follows we show that this sum is at most O(k3/2nl/2) -- 
O(n 4/5) with probability l - 1 / n  for sufficently large n, thus complet- 
ing the proof of the lemma. (For simplicity, we shall not specify the 
constants involved in our use of the "O"-notation, and shall use the 

281 



term "'with high probabili ty" to mean "with probability exceeding 
I - l/n k for sufficiently large n "  for some suitable k ~< 5 depending on 
the situation. It would be straightforward but tedious to specify these 
constants precisely and thus convert our sketch to a rigorous proof.) 

Standard counting and/or  probability arguments reveal that Ld 
contains n/k  + O ( ~ n / k ) l o g n )  items of size i /k  for each i ~, k with 
high probability. For each i > 1, the sublist consisting of all size i /k  
and size ( i -1 ) / k  items can be viewed as generating a random walk 
whose length is 2n/k + 0 ( n / ~ g n )  with high probability. Using 
the "reflection principle" [5], it is easy to show that  the probability 
that ri > d . v ~ ' ,  i.e., that there is some initial scgment of this sublist 
whose count of size ( i - l ) / k  items exceeds the count of size i /k  items 
by more than d.,/nTk", is precisely twice the probability that the total 
count of size ( i - l ) / k  items exceeds total count of size i /k  items by 
more than dx/n /k .  Again, using standard counting arguments,  the 
probability of the latter event occurring is O(e -"d2) for some constant 
c~>0.  

By the preceding facts, we could immediately conclude that 
r i = O ( ( n / ( n / ~ g n )  for each i with high probability, but this resuit 
only implies that  ILd--Ld'] = O ( k 3 / 2 n l ~ ) ,  which is a factor of 
41ogn too large and hence yields a bound of O(na/S~logn) on 
E[FF(L,~)-X(L2)]. To obtain a better bound, we will show in what 
follows that  r k _ l + r k _ 3 + ' ' "  + r  2 = O ( k ~ n )  with high probability 
and that  rk-2+rk-4+ " " " +r3  = O ( - ~ ' )  with high probability. This 
is clearly sufficient to prove that,  with high probability, ILd--La'I ~< 
k" (rk-  l +r  k-2 + " " " + r 2 )  = O (k312nt/2) = O ( n 4 / S ) .  

We are forced to consider the ri in two groups because ri could 
be seriously dependent on ri_t for each i. The only effect that  ri_ 2 can 
have on r i, however, is that  it may influence the cardinality of the set 
consisting of the size i l k  and size ( i -1 ) / k  items (although not the dis- 
tribution of the items within that  set). Since we have already res- 
tricted our attention (with high probability) to the case where this car- 
dinality is n/k  +O(-v '~nT~' iogn) ,  we can take account of this depen- 
dency by using the cardinality within this range which yields the larg- 
est bounds. In what follows we consider the case of the ri with i even; 
the case for odd i is handled similarly. 

Consider the probability that  r , ~ _ l + r k - 3 + ' ' ' + r 2 > l s .  This 
probability is at  most the probability that 

[r.:7 l + + + [ r : 7 ; l  k 

We wish to find the minimum value of s for which this probability is 
| | 

small. From before, we know that  the probability that  d 
L J 

for some integer d is O ( e -  ). Let f2~(x) denote a generating func- 
/ / 

for c , ,  - tion su h that  the j coefficient o f f 2 i ( x )  is an upper 
k J 

bound on the probability that  Ir2i'v'k'~'[ is greater than j .  
/ / 

For suffi- 

ciently large B > 0 ,  the function f 2 i ( x ) = B e ~ = ~ . ~ x J / j !  satisfies 
L ~ 

this requirement since B/j!= 1) (Be - j0nj- I ) )  > O(e -'~:) for sufficient y 
large B. Let g(x)  be a corresponding generating function for 

/ / [ / / F 

Irk_,, l+ . . .  + lr . l. Clearly g(x)  
" .,~ (k  )12 (k  ) /2  (k )x12 f k - l (X ) ' f k -3 (X)  f 2 ( x )  = ( B e )  - = B - e - is such 

a function. Hence the probability that  

tr -l l + + > .w 

is at  most 

B(k-l)/22(--~-) w l~kkWeW 
~< 

W !  W w 

For w = 2 e ~ k ,  this probability is at 'most  

(2eBk)2~#k ~ 2 -k = O 1 p- .  

Hence, i f s  k ~ - k ) 2 e ~ k  (and hence i f s = f l ( - ~ ' ) ) ,  the proba- 
bility that  rk- I+rk- -3+ " ' "  + r 2 > s  is similarly small, which means 
that rk-i+rk-3+ " ' '  + r2  = O ( ' ~ ' )  with high probability. By an 
analogous argument,  r k - 2 + r k - 4 +  " • • +r~ obeys the same bound with 
high probability, and the lemma follows. [] 

This completes the proof of Theorem 1. 

4. PROOF OF T H E O R E M  2 

In this section we sketch a proof that, for u ~< 1/2, 
E[FFD(LnU)-~(LnU)] = O(1).  The proof does not involve a surrogate 
like the rFF algorithm used in the Last section, but deals directly with 
FFD, and is considerably more detailed in its analysis of the packings. 
We begin with the probabilistic part of the proof, encapsulated in two 
technical lemmas, each of which allows us to assume that  in certain 
ways our list is close to the perfectly uniform list in which the n items 
have sizes u/n,2u/n, . . . ,nu/n.  Our first lemma is a straightforward 
application of standard techniques. 

Lemma 4.1. For sufficiently large n, the probability that the following 
proporties all hold simultaneously exceeds 1 - l / n 2 :  

(a) The number of items from Ln u in the interval (0, n -1/3] is less 
than 2n2/3/u (i.e., less than twice the expected number). 

(b) For each k,  [ l / u J  ~< k < n 1~3+ 1, the number of items from L,~ 
in the interval ( l / ( k+ l ) , l / k ]  is less than 2n/(uk (k +l)) (i.e., 
less than twice the expected number). 

(c) For each k as above, the number of items in the interval 
[ I /k -1 /n l /2 ,1 /k]  is less than 2nl/2/u (i.e., less than twice the 
expected number). 

Our second lemma requires some notational preparation. For 
any integer J > 0, the J-partition is the division of (0,u] into J con- 
secutive non-overlapping subintervals of length u/J,  which we shall 
call the blocks of the partition. Note that the number of items from 
L.~ expected to fall into any block is n/J.  Call a set of t blocks "'bad" 
if the blocks contain more than 1 +¢ (or less than l -~ )  times their col- 
lective expected number of items tn/J.  Intuitively, the next lemma 
says that,  with high probability, the size of the largest bad set of 
blocks declines exponentially as a function of the expected number of 
items in a block. 

Lemma 4.2. Let ~=0,01 and a = l + ~  3. For sufficiently large n the 
probability that  Ln u has the following property exceeds l - I/n2: 

j ,  ~-4 < n/J  ~< 2logan, and any set o f t =  ]je2/a "/j ] dis- (d) For all 

tinct blocks of the J-part i t ion,  the total number of items from L,~ 
L J 

contained in these blocks lies between (1 - -e )n t / J  and 
(1 +t)nt /J .  

Proof. See Appendix A2. [] 

We are now finished with the probabilistic part of our argument.  
For the remainder of the proof, we assume that L is an arbitrary list 
satisfying properties (a) through (d). By Lemmas 4.1 and 4.2 the pro- 
bability that  L,~ is such a list exceeds l -  l/n for sufficiently large n, 
and so if we can show that F F D ( L ) - Z ( L )  ~< C for some constant C 
and all such L, Theorem 2 will follow (by Lemma 2.4). The assump- 
tion that n = ILl is "sufficiently large" will be used extensively in what 
follows (and often implicitly). Precise bounds on how large is "suffi- 
ciently large" are not needed for our result (and so, due to space con- 
straints, we will not derive them). We begin by assuming that n is 
sufficiently large thai  Iog,n > IA 4= 10 s. The fact that Property (d) is 
satisfied is then exploited in the following lemma. 

Lemma 4.3. For all J, 108~<n/J ~< 2logan, 

(1) The number of blocks in the J-par t i t ion with less than (0.99)n/J 
items from L is less than Je2/a n/a. 

(2) The number of blocks in the J-par t i t ion with more than 
(l .Ol)n/J items from L is less than Je2/a n/a. 

(3) If  the deficiency of a block of the J-part i t ion is defined to be 0 if 
the number N of items from L that  it contains is at least 
(0.99)n/J and to be ( 0 . 9 9 ) n / J - N  otherwise, then the sum of 
the deficiencies of all the blocks in the J-part i t ion is less than 
ne2/ot n/J" 

(4) If  the excess of a block of the J-par t i t ion is defined to be 0 if the 
number N of items from L ' t h a t  it contains is at  most (1.O1)n/J 
and to be N - ( 1 . O I ) n / J  otherwise, then the sum of the excesses 
of all the blocks in the J-par t i t ion is less than (O.02)ne2/a n/~. 
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Proof. Properties ( I )  and (2) follow immediately from Property (d) 
with the value of ~=0.01 substituted. Property (3) follows from Pro- 
perty (1) and the fact that  the maximum deficiency per block is less 
than n/J. The a r tument  for (4) is slightly more complicated. Choose 

/ i -  

the t =  lje2/an/J] most populated blocks. By Property (2), all the 

excess must be contained within these blocks. Moreover, it is easy to 
verify that t < J/2 for J in the allowed range, so that,  by (1), none of 
these t blocks can have less than (0.99)n/J items from L. Finally, by 
Property (d), the total contents of these t blocks is at  most (1.O1)tn/J. 
In the worst case, all but one of the blocks have exactly (0.99)n/J ele- 
ments and the other has (O.02)(t-l)n/J excess items. Substituting 
for t yields (4). [] 

We are now prepared to look at the FFD packing of L in detail. 
We shall use the following terminology. An item whose size is in the 
interval (l/(k+l),l/k] will be called a k-item. Viewing the FFD 
packing as described in Lemma 2.2, we shall call an item regular if, 
when it was assigned to its bin in the packing, it was the first of the 
unpacked items remaining in L. The first i tem in a bin is thus by 
definition regular, and if that  first item is a k-i tem, then at least the 
first k items in the bin must be regular. A bin whose first item is a 
k- i tem will be called a k-bin. A k-bin is regular if it contains k k-  
items: otherwise it is a borderline k-bin (note that there can be at 
most one such bin for each k) .  

An item that is not regular is called afallbaek item. The size of 
the gap in the bin after it receives its last regular item will be called 
the bin's (initiaD request, and the size of the gap after a bin receives 
its first fallback item will be called the bin's residual request. To dis- 
tinguish between items from L that  are in a given subinterval of (0,u ] 
and requests that are in the same subinterval, we shall say that items 
are in subintervals and that requests hit subintervals. Note that each 
request must hit to the left of, i.e., be smaller than, the last regular 
item in the bin generating the request, and, in particular, the initial 
request for a k-bin must be smaller than l / ( k + l ) .  

The next lemma bounds the maximum size of a residual request, 
By itself it is enough to prove an O(Iogn) bound on 
E[FFD(L,~)-,~(L,~)], but it is also a vital technical step toward prov- 
ing our desired constant bound. 

Lemma 4.4. For all sufficiently large L satisfying (a) through (d) and 
all k ,  [ l / u ]  ~< k < hi/3+ 1, (i) the residual request for each k-bin with 
an initial request exceeding 240ku ( log,n) /n  is at most 
120ku (logon)/n and (ii) the second fallback item (and hence all sub- 
sequent fallback items) in each k-bin has size at most 
120ku (logan)In. 
Proof. Suppose not, and consider the situation when the first violation 
occurred. Let K be the corresponding value of k.  First, note that 
since this is the first violation, it must be a violation of (i) rather than 
(ii): If an earlier initial request from a k-bin,  k ~<K, was of size 
exceeding 240ku (log~n)/n, then the residual request (and hence any 
subsequent fallback items) was at most 120ku (logan)In. If the initial 
request was 240ku (log,~n)/n or less, any second or later fallback item 
can have been no more than half this size. 

Choose a value of J of the form 2", r integer, such that x ~n/J 
satisfies logan < x ~< 2logan. The proof of the lemma proceeds by a 
series of claims. The first is a simple consequence of Lemma 4.3. 

Claim 4.4.1. For the given choice of J ,  all blocks of the J-part i t ion 
contain between (0.99)x and ( l .01)x  items from L. 

Proof. By Lemma 4.3, the total number of blocks with contents out of 
this range is 2Je2/a "/J ~ 2ne2/xa x. For x in the given range, this is 
bounded by 2e2/(log~n) and hence is less than 1 for sufficiently large 
n .  [ ]  

Group the blocks of the J-part i t ion into sequences of 10K con- 
secutive blocks, starting with the block whose right endpoint is u and 
working down. This induces a less-refined partition of (0,u ] which we 
shall call the (J/lOK)-partition by a slight abuse of notation (since the 
last block of this partition may be shorter than lOKu/J if J is not an 
integral multiple of 10K). 

Claim 4.4.2. For each block of the (J/lOK)-partition whose left end- 
point is at least 120Ku (Iog~,n)/n, the total number of hits received by 
that  block by the time (i) was violated is at most (7.6)Kx whereas the 
number of items from L that  it contains is at  least (9.9)Kx. 

Proof. The second assertion follows immediately from Claim 4.4.1. 
For the first, consider a block (iu/J,(i+l)u/J] of the J-part i t ion con- 
taining only k-i tems for some k ~<K. Any regular k-bin with all its 
regular items from this block must have its request in the interval 
(1 - (kiu/J) - (ku/J), 1 - (kiu/J) ], an interval that has width ku/J. 
These derived intervals, plus the two partial intervals derived from the 
two blocks of the J-part i t ion that contain the largest k- i tem and the 
smallest k- i tem respectively, partition the interval ( 0 , 1 / (k+ l ) ]  i n t o  
subintervals, each of whose length is ku/J (except possibly for the 
endmost subintervals, which can be shorter). A sequence of h of these 
intervals can contain at most (l.O1)hx/k+2 regular hits. This is 
because the sequence of blocks of the J-part i t ion from whence the 
intervals came each contained at most ( l .01)x  items from L by Claim 
4.4.1 for a total of (1.01)hx, these must go k per bin, and there are at 
most two straddle bins (bins that also contain k-i tems from neighbor- 
ing blocks not in the sequence). 

Let us now turn to the (J/lOK)-partition and look at a particu- 
lar block of this partition whose left endpoint exceeds 120Ku (log~n)/n. 
Its length is IOKu/J and so for each k ~<K it intersects no more than 
(lOK/k) + 2  of the subintervals corresponding to blocks containing k-  
items. Hence it can receive no more than 
(l.O1)(x/k)[(lOK/k)+2]+2 regular hits from k bins. In addition, 
for each k < K ,  it might receive a hit from the borderline k-bin if 
such a bin exists. It cannot have received any residual hits, since so 
far all residual hits have by hypothesis been no greater than 
120Ku (Iog,n)/n. Moreover, the smallest k for which there are k-bins 
is at least [ l / u J  >/2. Thus the total number of hits it can have 
received so far is at most 

r 1 r 1 
10.1Kx k--2~ "~"2" + 2'02x k-~2 "~" + 2 + k  (K--2)  

< 10.1Kx(.645) + 2.02xlnK + K 

since ~ - 2  l/k2~ (7r2/6)- 1 and ~ - 2  l/k < InK. If  we now note that 
for K >/2, lnK < K/(2.02),  and that  K < (.05)Kx for sufficiently large 
n (and hence sufficiently large x=n/J) ,  we conclude that the total 
number of hits received is at most Kx( (10 .1 ) ( .645)+ l .05)  < 
(7.6) Kx. C3 

Observe that,  while many of the requests that  hit a block of the 
(J/lOK)-partition may be satisfied by items occurring in that  block 
(which thus become the first fallback items in the bins generating the 
requests), some may "overflow" the block and have to be satisfied by 
some item in a later block. (The distance between an initial request 
and the item that  satisfies it is the residual gap in the bin making the 
request.) The next claim bounds the number of such "overflow" 
requests. 

Claim 4.4.3. For each block of the (J/lOK)-partition whose left end- 
point is at  least 120Ku (Iogo, n)/n, the total number of requests that had 
overflowed out of the block at the time (i) was violated is at  most 
(7.6) Kx. 
Proof Suppose not and consider the first block to violate the claim. 
It received at most (7.6)Kx overflow requests from the previous block, 
has at most (7.6)Kx internal hits, and initially contained at least 
(9.9)Kx items. If none of the requests that  overflowed into the block 
overflow out of it, then all the requests that  overflow out were gen- 
erated by internal hits and hence there are at most (7.6)Kx of them. 
If, on the other hand, some request that overflowed in also overflows 
out, then all the items originally in the block were used to satisfy 
requests that either overflowed in or were caused by internal hits. 
There are at most (15.2)Kx such requests and (9.9)Kx such items, so 
the overflow can be at most (5.3)Kx. This contradicts our assumption 
that  the Claim was violated. D 

Claim 4.4.4. At the time (i) was violated, each sequence of 4 consecu- 
tive blocks of the (J/lOK)-partition contained entirely in the interval 
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between 120Ku(Iog,n)/n and I / ( K + I )  contained at  least one 
unpacked item. 

Proof. If  the sequence were completely empty, then all the at  least 
4.9.9Kx=39.6Kx items that  were initially present in the sequence of 
blocks by Claim 4.4.2 must have been used to satisfy requests. How- 
ever, this is impossible, since by Claim 4.4.2 there were at most 
4"(7.6)Kx=30.4Kx internal requests and by Claim 4.4.3 at most 
7.6Kx requests overflowed into the sequence, for a total of 38Kx. C3 

Now we can derive a contradiction of our supposition that  (i) 
was violated. Since the length of a block in the (J/lOK)-partition is 
lOKu/J, there cannot be an empty subinterval of 
(120Ku (log,~n)/n, I / ( K + I ) ]  with length 60Ku/J or greater that does 
not contain a sequence of 4 empty  blocks from the (J/lOK)-partition. 
By Claim 4.4.4, such a sequence must contain at least one item at the 
time (i) was first  violated. Thus no empty subinterval can have length 
exceeding 60Ku/J. By our choice of x =n/J, this forbidden length is 
60Ku/J=6OKux/n ~< 120Ku(log~n)/n. However, our violating resi- 
dual request exceeds 120Ku(log~n)/n and arose from a request of at 

. least 240Ku(Iog~,n)/n, thus giving rise to an empty subinterval of 
length at least 120Ku(log,,n)/n with left ,endpoint at  least 
120Ku (logan)In. This is a contradiction and the Lemma is proved. [] 

Let us now make a first a t tempt  at summing the cumulative 
empty space in the packing, which by Lemma 2.1 equals 
FFD (L) -  X(L). For the k-bins with k < n t/3+ I, Lemma 4.4 implies 
that the residual gap (and hence the empty space) is always bounded 
by 240ku (logan)In. Lemma 4.1(b) implies that for each such k the 
number of k bins is less than 2n/(ukJ), since each such bin except the 
last requires k k-i tems.  Thus the total contribution of such k-bins to 
the cumulative empty space in the packing is at most 

tlt~+t 
480(log,~n)/k 2 < (480)(.645)(logan) = O(logan) 

k - 2  

The following ]emma estimates the total contribution from the remain- 
ing bins. 

It,emma 4.5. The cumulative empty space in k-bins, k ~>n ~/3, is at  
most 2/u + 1. 
Proof. Each such bin (except possibly the last) can have a residual 
gap of at most I/n ~/3 and must contain at  least n I/3 regular items. 
Since by Lemma 4.1 Ca) there are at most 2n2/3/u such items, there are 
at most 2nl/3/u such bins (except the last). Since the last gap is less 
than 1, the Lemma follows. [] 

Thus we have proved that  FFD(L)-X(L)=O(Iogn). To 
tighten this bound to O(1),  we will need a stronger version of Lemma 
4.4. The current version, however, is strong enough to dispose of 
another class of bins: those with initial gaps of l/n !/z or less. 

Lemma 4.6. The cumulative empty space in k-bins,  k < n l / 3 + l ,  
whose initial request is bounded by 1/n w2 is less than 1 for sufficiently 
large n. 

Proof. Any regular k-bin  with an initial request bounded by l/n w2 
must have all its k- i tems larger than 1/k-  l/nW2. By Lemma 4.1 (c), 
there are at  most 2nl/Z/u such items, so there can be at most 2nl/2/ku 
such bins, for a cumulative empty space of at most 480(logan)In ~/2 by 
Lemma 4.4. Summing over all k < n l / 3 + l  we obtain a bound of 
O((Iog,n)/nl/6), which is less than 1 for sufficiently large n. All that 
remains are the borderline k-bins,  k < n t / 3 + l ,  with initial gaps less 
than l/n wz. But these bins by definition end up with O(1/n I/2) empty 
space, for a total of at most O(1/nt/6), again less than 1. [] 

Thus for the remainder of the proof we need only consider k-bins 
with k < n l / 3 + l  and with initial requests exceeding 1In w2. A key 
point to observe is that  these initial requests are much larger than the 
size of the maximum residual request from a k-bin,  k < n ~ / 3 + l :  By 
Lemma 4.1 we know that  all the latter are bounded by 
120ku(log~n)/n, which is O((log~n)/n 2/3) for k < n J / 3 + l  and hence 
much less than 1In w2 for sufficiently large n. 

In order to show that  the empty space is on average substantially 
less than (log,~n)/n in the remaining bins, we shall have to look at J -  

partitions for which x = n / J  is substantially less than logan. For these 
it is no longer true that  all blocks of the J-part i t ion contain between 
(0.99)x and ( l .01)x  items, and we.will need the full power of Lemma 
4.3 to deal with the excesses and deficiencies. 

Lemma 4.7. Let k be such that  [ l / u ]  ~<k < n l / 3 + l  and J be such 
that 108~<x=n/J~<21og,,,n. Define the (J/lOk)-partition as in 
Lemma 4.4, with each block corresponding to a sequence of 10k blocks 
from the ./-partition. Let R consist of those blocks of the (J/lOk)- 
partition that  are entirely contained in the interval 
(l/nW2-6Okux/n),u] and R '  be the subset of R that in addition con- 
tains no blocks with right endpoint exceeding I / ( k + l ) .  Then the 
number of maximal sequences of 4 :or more consecutive blocks in R' 
that are empty after the last k-bin is packed is at  most 
(.65) e2n/(kxaX). 

Proof. For each block of the J-par t i t ion that  is in excess, arbitrari ly 
choose ( l .01)x  of the items in the block to be "'normal," with the rest 
labelled "excess." Any request from a bin containing a regular item 
labelled "excess" will be called an excess hit; all other hits will be 
called normal. Note that, by the argument following Lemma 4.6 and 
the fact that 60kux/n =O((log~n)/n2/3), none of the blocks in R ever 
receives a residual hit so long as n is sufficiently large, and hence each 
such block receives a maximum of (7.6)kx normal hits by the time the 
last k-bin is packed, by the same argument that  was used for the proof 
of Claim 4.4.2. 

For each block B in R, let Xn be the number of excess hits in B 
plus the deficiency of B. (The deficiency is defined to be 0 if the 
number N of items in B is at  least 9.9kx;  otherwise it is 9.9kx-N.) 
Let 18 be the number of requests overflowing into B and OB be the 
number of requests overflowing out of B. 

Claim 4.7.1. 

Ca) If  /~ is empty a f te r  all the k-bins  have been packed, then 
On ~< la +Xa - (2.3)kx;  
otherwise OB ~< (7.6)kx + Xa. 

(b) If la-l-Xa < (2.3)kx,  then B will still be non-empty when the 
last k-bin is packed. 

Proof. The arguments  are analogous to those of Claim 4.4.3. [] 

Claim 4.7.2. Let S be a maximal sequence of 4 or more consecutive 
empty blocks from R'  as prescribed above, such that S is not the right- 
most such sequence, and let C be the set of 5 blocks consisting of the 
rightmost 4 blocks of S and the (non-empty) block immediately to the 
right of S.  Then ~a~cXa>1(I.6)kx. 

Proof. Label the bins from left to right as B[IL... ,B[5]. Since B[5I is 
non-empty, at most (7.6)kx+Xnts] requests overflow into B[4] by 
Claim 4.7.1(a). Since B[2] through B[4] are empty, the overflow into 
B[ I ]  is thus at most (7.6)kx+~.2XnH-(3)(2.3)kx. Thus, by 
Claim 4.7.1(b) and the fact that B[ I ]  is empty after the last k-bin is 
packed, we must have ~ . i X B [ i I  > / (1 .6)kx ,  as desired. [] 

Claim 4.7.3. Let S be the rightmost maximal sequence of 4 or more 
empty blocks from R' as prescribed above, and let C be the set of the 
rightmost 4 blocks of S plus all blocks to the right of S in R.  Then 
~B~cXB >1 (1.6)kx.  

Proof. If the block to the right of S is non-empty after the last k-bin 
has been packed, then we can proceed as for Claim 4.7.2. However, if 
the rightmost block of S is also the rightmost block of R', then the 
block to the right might  even have been empty when the last ( k - I ) -  
bin was packed. Nevertheless, by an inductive application of Claim 
4.7.1 Ca), it is not difficult to see that the overflow from this block into 
S can be at  most (7.6)kx plus the sum of Xs for all the blocks B to 
the right of S,  and so an argument analogous to that  for Claim 4.7.2 
still suffices. [] 

As a consequence of Claims 4.7.2 and 4.7.3, we know that  if 
there are M maximal sequences as specified in the lemma, then the 
sum of the deficiencies and excesses for all the blocks of the J -  
partition must be at  least (l.6)kxM. By parts (3) and (4) of Lemma 
4.3, this means that  
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M ~< (l'02)ne2/ctx < ('65)ne2 
(1.6) kx kx  a x 

as desired, completing the proof-of Lemma 4.7. 13 

We are now ready to begin summing the empty space in the k-  
bins with initial requests exceeding l/n 1/2. To simplify matters, we 
shall use the following upper bound on empty space. For a k-bin b, 
let gap(b) be the distance from the initial hit for b to the first item 
remaining to its left after all k-bins have been packed. Note that  this 
is at least as large as the residual gap for b and hence is an upper 
bound on the empty space in b at  the end of the FFD packing. 

Lemma 4.8. For each integer J such that 10s~< x =n/J  ~< 2log,n, the 
total number of k-bins b with initial request exceeding l/n I/2 and with 
gap(b)  at least 60kux/n but no more than 120kux[n is at  most 

min [40ne2  2n ] 
{ c~ ~ , uk ~ 

Proof. The existence of such a k-bin b implies the existence of a 
sequence of 4 or more empty blocks from the set R '  defined in Lemma 
4.7. However, each such maximal sequence can account for no more 
than (8)(7.6)kx normal k-bins b with gap(b) in the stated range. 
This is because they all must arise from requests that hit to the right 
of the leftmost 4 empty blocks but not to the right of the right of the 
leftmost 12 (if the sequence is that long). Multiplying by the total 
number of maximal sequences of 4 or more empty blocks (from 
Lemma 4.7), we obtain a bound of (39.6)ne2Ae ~ on the number of nor- 
mal k-bins b with gap(b)  in the stated range. Even ]f all the excess 
hits gave rise to k-bins with gaps in this range, this could add at most 
(O.02)ne2/o~ ~ to the total by part (4) of Lemma 4.3, and since there is 
only one borderline k-bin, we see lha t  40neZ]a x is an upper bound on 
the total number of k-bins b with gap(b)  in the stated range, as 
claimed. 

For the other upper bound, simply observe that by Lemma 
4.1(b) there are at most  2 n / ( u k ( k + l ) )  k-items, hence at most 
2n/(uk 3) k-bins in total, t21 

Lemma 4.9. The total empty space in k-bins with initial request 
exceeding l/n I/2 is-O((In k) /k2) .  

Proof Let r o be the maximum integer r such that  n/2" >t 10 s and let 
Xo~n/2  +*. For each h > 0 ,  let x ,  =2hxo and let H be the maximum 
value of h such that xh ~< 21og,=n. By the proof of Lemma 4.4 (see the 
paragraph after Claim 4.4.4), none of the bins under consideration has 
empty space exceeding 60kux~t[n. We thus can partition the k-bins 
into those having gaps in the following regions: (O,60kuxo/nl, 
( 60kuxo/n ,60kux l/n ], (60kux IIn,6Okux 2/tt ] . . . . .  
(60kuxn-i/n,6OkuxH/n]. The first set might contain all the k-bins, 
but we can use Lemma 4.8 to bound all the other classes, thus obtain- 
ing the following overall bound on empty space for the k-bins under 
consideration: 

uk 3 n h-o [ { a x' ' uk3 

If we let h '  be such that  xh ~< 31ogo, k for all h < h'  and Xh" > 31og,~k, 
this can be rewritten as 

120xo h'-I 240uxh H-I 4,800e2kuxh 
+ r - +  

- -  h - h '  o~ x t  

Taking into account the effect of the bounds on xh and the fact that 
the values of Xh form a geometric series, this can be bounded by 

10 s 240u (61og~,,k) 4,800e2u (61o~k) ~ O / In k 1 240- 
k---- r -  + k ~ + k ~ / - 7 )  

[] 

To complete the proof of Theorem 2, we need only sum up the 
last bound over all k ,  [ l / u J  K,k < n i / 3 + l .  Since ~ = 2 ( l n  k ) l k  2 con- 
verges, this sum is O(1).  Combining this bound with the bounds for 
the remaining bins determined by Lemmas 4.5 and 4.6, we conclude 
that F F D ( L ) - Z ( L ) = O ( 1 ) .  Hence L,~ obeys this bound with proba- 

bility at least I - I / n  for n sufficiently large, and, by Lemma 2.1. 
Theorem 2 is proved. D 

5. FURTHER RESULTS 

As mentioned in the introduction, Theorem 2 is tight in the sense 
that, for any u > 1/2, E[FFD(Lg)-Z(L ,~) I  is not O(1);  we can prove 
that  it is in fact n ( n  I/3) for all such u. On the other hand, we have a 
tentative proof that the expected excess for FFD can be no worse than 
this if l / 2 < u  < 1, and we have a modification to FFD which we 
believe will preserve the bounded nature of the expected excess for all 
u < 1. (This is not possible for u = 1 because, as Lueker showed [15], 
even the optimal packing has expected waste O(n 1/2) when u = 1.) 

Table 1 gives our conjectured complete classification of the 
expected excess over Z(Ln u) for both FFD(Lg) and OPT(Lg).  The 
constants implicit in the O-notation depend on u. The results in row 1 
are from [15], those in row 3 follow from Theorem 2, and we hope to 
include those in row 2 in the final version of this paper. 

E [OPT (Ln u) - ~ (L,~) ] 
O(n 1/2) u = l  

"1 
- -  < u < 1 O(1) O(n t/3) 
2 

I 0 (1 )  0(.1) 0 < u ~ <  T 

E [FFD (Ln u) - Z(L~) ] 
O(n W2) 

TABLE I. Expected excess for OPT and FFD. 

The analogous classification for the algorithm FF is not yet 
known for u < | .  Simulations, even for lists of length 128,000, do not 
give a clear picture [1]. They do suggest, however, that  the asympotic 
expected behavior of FF applied to L,~ is not a monotonic function of 
u, a phenonenon that has already been observed for NEXT FIT [11]. 
There may even be values of  u for which the expected excess grows 
linearly with n. As to the actual behavior when u = I, this appears to 
be even better than indicated by Theorem 1. The simulations suggest 
that the expected excess actually grows roughly as n 07 rather than as 
n °s  , and even this may be an over-estimate due to insufficient data: we 
believe that our techniques can be extended to show a bound of 
O (n2/3). 

W e  can also make a more detailed comparison between Theorem 
2 and the experimental data. If one keeps track of the numbers 
involved in the proof of Theorem 2, the actual bound proved on the 
expected value of FED(Ln 1/2) - Z ( L n  t/2) is ludicrously large, at least as 
big as 10 I°. Moreover this bound only holds for "sufficiently large n," 
thus leaving open the possibility that  even larger bounds might be 
necessary if we wished our result to hold for all n, including the 
"'small" ones less than, say, e t°°. Fortunately, the worst-case nature of 
many of our arguments appears to have led us to a slight over-estimate 
of the expected excess. The extensive simulations of [1], involving lists 
with n as large as 128,000, indicate that the actual expected excess is 
about 0.7. This was the average for each of the values of n tried. 
Moreover, no excess exceeding 1.3 was ever encountered, and the 
excess was less than 1 (and hence the packing was optimal) roughly 75 
percent of the time. Although our hybrid probabilistic/worst-casc 
proof techniques would he incapable of proving a bound as small as 
0.7. the fact that there is a constant bound provides confidence in these 
empirical estimates. 

Let us turn now to the question of distributions other than thc 
ones we have mentioned so far. Karmarkar  et  al. [13] have proved 
that the bound of O(n Wz) on the expected excess for FFD packing> 
holds for any distribution of item sizes that is symmetric about 1/2. 
Our result that the expected excess for FF packings is O(n 4/5) also 
extends to all such distributions, by a simple modification of the proof. 
(Instead of dividing the interval (0,1] into k subintervals of equal 
length for the purpose of classifying items, divide it into subintervals of 
equal probability. Points in (0,11 that  have non-zero probability car, 
be viewed as having infinitesimal width and divided appropriately, with 
items of that  size assigned randomly to the relevant subintervals.) 

A related question concerns the expected excess when the items 
are chosen uniformly from the interval (b,u],  for values of b > 0. In a 
recent paper by Lueker [16], this question was partially answered for 
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OPT. For FFD, the set of intervals (b,u],  0 < b  < u ,  which yield sub- 
linear expected excess is easy to characterize mathematically: only 
intervals that are symmetric about 1/2 qualify. Otherwise, the growth 
is always linear with a constant of proportionality exceeding 1. The 
interesting problem is thus to determine these constants of propor- 
tionality. In a sense, we have solved this problem. We have a s!mple 
program which, given b and u, outputs the corresponding constant. As 
yet, however, we have not run our program on enough b's  and u 's  to 
detect a meaningful pattern in the results. 

We can similarly est imate the expected excess .for FFD when 
items are uniformly distributed among the discrete values 
I/k,  2/k ..... j / k ,  for any positive integers j ~< k,  but here are unable to 
give a concise classification of those j and k which yield sublinear 
expected excess. (One observation we can make is that if k = m!+l  
for some m > 4, then there will be values of j < k / 2  for which the 
expected excess will be linear, something that  cannot happen with the 
continuous uniform distribution for (O,j/k ].) 

Finally, we might  ask about the expected behavior of the related 
Best Fit and Best Fit Decreasing algorithms, which have the same 
worst-case behavior as FF and FFD [9,10]. (In Best Fit, each item x 
is placed in the bin which, among all those bins"with sufficient room, 
has the smallest  gap.) Our proof techniques do not obviously extend, 
but similar results seem to hold for these algorithms. Our preliminary 
simulations indicate that  for Lg, u ~< 1/2, the average unused space for 
BFD is the same as that  for FFD, and that, for L,~, the average unused 
space for BF may grow slightly slower than that for FF. the empirical 
est imate of the growth rate being roughly O(n°'6). 
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Appendix AI: Proof of Lemma 3.1 

The proof is by induction and proceeds in tandem for the two 
conclusions of the Lemma. The basis is trivially established for [L[=  I 
and we henceforth assume that both conclusions hold for all lists of 
length less than ]L ]. The prc, of is argued in two parts, one for each of 
the two conclusions. 

Par t  I: If L s is obtained from L by reversing the order of two adja- 
cent items x < y  from largest first to smallest first, then 
rFF(L) ~< rFF(L s) 

Proof. Suppose rFF(L) > rFF(LS). Let B be the contents of the first 
bin in of the packing Prrr(L) of L by rFF, and  let B' be the contents 
of the first bin of Prrr(LS). 

Without  loss of generality we may assume th~.t x appears in B'. 
If not, then nefiher does y,  which follows it in L s and is larger, nor do 
either of them appear in B. Hence we must have B = B '  and, by 
Lemma 2.3, a shorter countcrexample could be obtained by deleting B 
from both L and L s, violating the induction hypothesis. 

We can also assume that y appears in B. If not, then the first 
item in L must be some item z different from both x and y.  This z 
must be the first item in both B and B', and since x went with it in 
B', the only item that  could have prevented x from going with it in B 
would be the only item ahead of x in L but not ahead of x in L ~, i.e., 
y .  Since we are supposing that y does not appear in B, this means 
that  x does appear there. Hence again B=B' ,  and again we can 
obtain a smaller counterexample, contrary to the induction hypothesis. 

There are now two subeases to consider, depending on whether y 
is the first item in L. Let us first consider the case when it is not, and 
so some other item z is first in L and L ~ and hence first in both B and 
B'. Let L l = L - { z , y }  and L~-=L~-{z,x} .  Note that  L~ differs 
from Ll only in that  an element x has been replaced by a larger ele- 
ment y .  Thus, by the induction hypothesis that  the second conclusion 
of the Lemma holds for shorter lists, we know that 
rFF(Li) ~< rFF(L~'). However, by Lemma 2.3. 
rFF(L) = rFF(Li) + I and rFF(L~)=rFF(L~') + I, and hence 
rFF (L ) ~< rFF (U  ) , contrary to assumption. 

The second subcase is the one in which y is the first item in L, 
and hence is the first i tem in B while x is the first item in B'. If 
x+y~<l ,  then B=B'={x ,y}  and the two packings are identical 
except for the ordering of the items in their first bins, contradicting the 
assumption that  one packing used more bins. i f  x + y  > 1, then the 
bottom item in the second bin of P,rr(L) is x and the bottom item in 
the second bin of PrFr(L s) is y .  Let z be the first item in L such that  
x + z  ~< 1. i f  no such item exists, then x and y remain as singletons in 
both packings, which are hence identical up to a reordering of their 
first two bins, again contradicting the assumption than one packing 
used more bins. l f y + z  ~< 1 we have the same situation as in the first 
subcase, and can obtain a smaller counterexample by removing {z,y} 
from L and {z,x} from L s, thus violating the induction hypothesis. If 
y + z  > 1, then z is paired with x in both packings, and so the pack- 
ings are identical except that the order of the first two bins is reversed, 
contradicting the assumption that  one packing used more bins. [] 
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Par t  I1: If L + is obtained from L by replacing an item x by a larger  
item y ,  then rFF(L)  ~< rFF(L  +) 

Proof. Suppose r F F ( L ) > r F F ( L + ) .  Let B be the first bin of 
P,FF(L) and  let B '  be the first b in  of P,FF(L+). As in Par t  1 we may 
assume that  x appears  in B, as otherwise we would have B = B '  and a 
shorter  counterexample could be derived by deleting B from the two 
lists. Our  a rgumen t  is once again  divided into subcases depending on 
whether  x is the first or second element in B. 

Suppose that  x is the second element in B. We may assume 
that  y is not the second element of B' ,  since if it were the two packings 
would be identical except for the contents of their first bins. Let  z be 
the first item in B (and hence in B '  also). First assume tha t  some 
item w is paired with with z in B'. Note that  x must  precede w in L 
as both items fit with z and yet x was preferred. Thus  y precedes w 
in L +, and so y and all items between y and w exceed 1 - z  and  hence 
must exceed w. Hence we can  repeatedly apply the induction 
hypothesis to obtain the following series of inequalities: 

rFF(L)  = 1 + r F F ( L - { x , z } )  

~< 1 + rFF (L - {x,z } with w moved forward 
to x's old position) 

I + r F F ( L + - { y , z }  with w in y's old position) 

~< 1 + r F F ( L + - { y , z }  with w in y's old position 
and increased to y's size) 

= I + rFF(L+-{w , z } )  = rFF(L+), 

thus violating our assumption that  rFF(L)  > rFF(L+). 

Now suppose no item is paired with z in B',  but  tha t  there is an 
item v paired with y in some bin of P,FF(L+). In this case we use the 
following applications of the induction hypothesis: 

rFF(L)  ~ 1 + r F F ( L - { x , z } )  

~< 1 + r F F ( L - { x , z }  with v increased to I) 

1 + r F F ( L + - { y , z }  with v increased to 1) 

= 2 + rFF(L+-{y , z , v } )  = rFF(L*),  

cont ra ry  to our assumption that  rFF(L)  > rFF(L+). 

Finally, suppose that  no item is paired with either z or y in 
Prt=F(L+). Then the two packings are the same except tha t  P, FF(L +) 
has two singleton bins (containing z and y )  whereas PrFF(L) had a 
single bin containing both x and  z. This implies that  the lat ter  pack- 
ing has fewer bins than the former, again  a contradiction.  This con- 
cludes the subcase where x is the second item in B. 

Now suppose x is the first item in B. Then x was the first item 
in L and so y is the first item in L + and hence the first i tem in B' .  If 
x is the only item in B, then since y is bigger,  it must  be the only item 
in B',  and so the two packings are the same except for the contents of 
their first bins, contradict ing our assumption that  one packing used 
more bins. Hence let z be the mate  of x in B. Now suppose y has 

mate w in PrFF(L+). We may assume that  w ~ z ,  for otherwise the 
two packings would be identical except for their first bins. Since 
x + w  < y + w  ~< l, w would have gone in B had not z preceded it in 
L.  The fact that  z,  which precedes w in L +, did not go in B '  means 
that  z and every item between z and  w must  be bigger than  l - y  and 
hence bigger than w. We thus can  use the induction hypotheses to 
derive the following contradiction: 

rFF(L)  ~ 1 + r F F ( L - { x , z } )  

~< 1 + r F F ( L - { x , z }  with w in z's old position) 

~< 1 + r F F ( L - { x , z }  with w in z~ old position 
and increased to z's size) 

- 1 + r F F ( L - { x , w } )  

- 1 + rFF(L+-{y ,w} )  = rFF(L+). 

If y has no mate  in PrFF(L+), suppose z has a mate  v. We then 
can use the induction hypotheses to derive the following contradiction: 

rFF(L)  = 1 + r F F ( L - { x , z } )  

<~ l + rFF(L- - {x , z }  with v increased to 1) 

= 1 + r F F ( L + - { y , z }  with v increased to 1) 

= 2 + rFF(L+-{y , z , v } )  = rFF(L+). 

Finally, suppose neither y nor z has a mate  in PrFFF(L+). Then the 
two packings are the same except that  y and z use up two bins in 
PrFF(L +) and  x and  z use up just  one in PrFF(L), meaning that  the 
latter uses fewer bins than the former,  again  a contradiction, the final 
one needed for this proof. [] 

Appendix A2: Proof of Lemma 4.2 

Throughout  this proof we will have frequent recourse to a set of 
s tandard  approximations,  proved by s t ra ightforward application of the 
definitions, Stir l ing's  formula,  or the appropr ia te  Taylor  Series expan- 
sions, and summarized below as " F a c t s "  (a) through (e). 

a b 
(a) F o r i n t e g e r s a > b > 0 ,  [~] ~ ' ~ - .  

(b) l f  z ~ l, z ! ~ z Z ] e  z. 
Z 2 Z 3 

(C) For all r e a l z ,  e z = l + z + - + ~ + . . .  > ~ l + z .  
2! 3! 

(d) l f 0 ~ < z ~ < l ,  l +z  >~e z/2. 

(e) I f - 0 . 1  < z  < 0 . 1 ,  then 

22 z 3 z 4 2Z 2 
I n ( l  + z ) = z - T + T - T +  . . . ~> z - T .  

We now begin our proof. Let ~, a ,  J ,  and t = . IJe2/a n/J ] be as 

in the s ta tement  of the Lemma to be proved, and let x =n /J ,  which / ] 
means that  t can  be rewritten as [ne2/(xaX)]. We may assume that  

t >~ 1, for if t = 0 ,  the lemma holds trivially. 

Claim 1. The probabili ty P that  there exist t blocks of the J -par t i t ion  
of (0,u]  that  contain precisely s =  [ ( l + ¢ ) x t ]  items from Ln u is less 
than 1In 4 for sufficently large n,  as is the probabili ty that  there exist t 
blocks that  contain precisely s = [(1 - O x t ]  items. 

Proof. To simplify our arguments ,  we shall substitute (1 +Oxt  and 
(1 - O x t  for the two quantit ies in the Claim's  statement.  Since by the 
Lemma ' s  hypothesis x >~ 10 s and  by assumption t >i 1, the substi tuted 
values can be off by a factor of a t  most 1.00000001, and  the reader  
may readily verify that  this is not enough to invalidate our conclusions. 
Hence the number  of items we are  concerned with can be written as 
s = (1 +~)xt, where 6 is either ~ or -E. 

The probabil i ty that  t blocks contain precisely s items is simply 

j ,ost . ( l_t . ,n- .  
J~ t !s !js 

Subst i tut ing for J and  applying Facts (b) and (c) we obtain 

nt xS et eS tS e-tX(n-s)/n n t (xt )S et+S-tx+tsx/n 
P ~< 

x t t t s  s (xt) ts  s 

Subst i tut ing for s we obtain 

ntet+'xt+(l+,)(xt)'/n [nee'X+(,+,)x'tln] t " 

P ~< (xt)t(l+6)(l+~)xt "~- (l+6)(l+~)x 

We now substitute for all except the outermost  occurrence of t.  In 
inner occurrences of t except the first, an  upper  bound will suffice, so 
we use ne2/(xaX). In the first occurrence,  where t is in the denomina- 
tor, we observe that  since t >~ I by assumption,  t must  be at  least hal f  
the quant i ty  whose floor it equals, i.e., a t  least ne2/(2xaX). We thus 
obtain 
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e (1+6)  <l+~Ox = 7 "  (1 +6)1+~ 

We now observe that  since x > / C  4, a = 1 +~3, and 6 ~< ~=.01, 

(1 +6)e  2 (1 +~)e  2 e 3 e 3 
ct x (1 +~3) I/d (ed/2) I/P el/(2~) 

by Fact (d). For ~ ~< .01, this is clearly less than ¢3. Applying this to 
the numerator, along with the fact that  a =  1 + e 3 <  e ~ by Fact (c), and 
applying Fact  (e) to the denominator, we obtain 

¢(5_2~=/3)11+6 ) ~ 7 "  e -  

< (0.75)re -axt/4 

since 2/e < 0.75 and ~2=E2, and since ~ ~<.01 implies that 
2~ 3 ± 2~3/3 < ~2/12. 

There are now two cases to consider. First, suppose t >/~/~'. 
Then P < (0.75)t ~< (0.75) "/~" which is clearly less than 1/n 4 for suf- 
ficiently large n. 

On the other hand, suppose t < ~ n .  Since, as we have already 
observed, t >ne2/(2xc~X), it follows that  x a  x/>e2x/n ' /2  and hence 
In x + x  In ct >I (In n)/2.  Using the fact that, by hypothesis, x ~ 21og,n 
and hence l n x  ~ 2 1 n l n n  for sufficently large n, we thus obtain, for 
sufficiently large n, 

x >1 (In n ) / 2 -  21nlnn >/ Inn  ln_..n_ 
In ~ ~ ~ 3¢ 3 

by Fact (c) and the fact that  c~= l +~3. Since t />  l ,  this means that 

P < e -~xt /4  ~ e (-Inn)l(12~) = n-I/(12~) 

which is certainly less than 1In 4 for ¢=.01. 

This completes the proof of the Claim. 12 

Claim 1 holds only for two particular values of s,  the endpoints 
of the interval [ [ ( 1 - ¢ ) x t ] ,  L(1 +¢)x t J  ]. However, it is easy to verify 
that  the probability that  there exist t blocks of the J-part i t ion that 
contain precisely s items from L,~ is maximal at s = x t ,  the expected 
number of items that  any given set of t blocks contains, and declines 
monotonically as s increases above x t  and as s decreases below x t .  
(To verify this, consider the ratio of the probabilities for two consecu- 
tive values of s.) Thus the l /n  4 probability bound proved in the Claim 
also holds for all values of s outside the interval [(1 - ~ ) x t ,  (1 +¢)x t  ]. 

Since there are at  most n possible values of s (and hence at most 
n possible values of s outside this interval), this means that  for each 
J = n / x ,  the probability that  there is a set of t blocks containing more 
than ( l + ¢ ) x t  or less than ( 1 - ¢ ) x t  items from Lg is at most 
n ( 1 / n 4 ) = l / n  3. Since there are at  most n/(21og,n) possible values of 
J that  can yield n i x  ~< 2logan as required, this means that the overall 
probability is at most n ( l / n  3) = 1In 2 and the Lemma is proved. D 
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