H Building a Complete Inverted File for a Set of Text Files

check o in Linear Time

by
A. Blumer, J. Blumer, A. Ehrenfeucht®,
D. Haussler and R. McConnell

Department of Mathematics and Computer Science
University of Denver
Denver, Colorado 80208

*Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80302

All correspondence to D. Haussler.
Authors A. Blumer and D.Haussler gratefully acknowledge the support of NSF grant IST-83-17918

and author A, Ehrenfeucht the support of NSF grant MCS-83-05245.

Abstract

Given a finite set of texts S = {w,, ..., w;] over
some fixed finite alphabet I, a complete
inverted flle for S is an abstract data type
that provides the functions find{(w), which
returns the longest prefix of w which occurs in
S; freg{w), which returns the number of
times w occurs in S; and locations (w) which
returns the set of positions at which w occurs.
We give a data structure to implement a com-
plete inverted file for S which occupies linear
space and can be buiit in linear time, using the
uniform cost RAM model. Using this data
structure, the time for each of the above
query functions is optimal. To accomplish
this, we use techniques from the theory of
finite automata to build a deterministic finite
automaton which recognizes the set of all sub-
words of the set S. This automaton is then
annotated with additional information and
compacted to facilitate the desired query
functions.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-897971-133-4/84/004/0349 $00.75

349

Introduction

The notion of an inverted file for a textual
database is common in the literature on infor-
mation retrieval, but precise definitions of this
concept vary [Gol 82], [Rij 78], [Car 75]. We
propose the following definition: Given a finite
alphabet I, a set of keywords K cL*, and a
finite set of text words S C&Y, an
inverted file for (I, K, S) is an abstract data
type that implements the following functions.

1. find: T* » K U {\], where find(w) is the
longest prefix of w such that z € K v {A}
and x occurs in S, i.2. £ is a subword of a text
inS. .

2. freg : K » N, where freq(w) is the number
of times w occurs as a subword of the texts in
S.

3. locations : K » 29N where locations (w) is
a set of ordered pairs giving the text numbers
and positions within the texts where w occurs.

This definition is simple, and includes many of
the essential features of the notions of
inverted files in the literature, as well as those
of other more general "content addressable”
data structures [Koh 80], [Mal 81].

In this paper, we consider the problem of
constructing a complete inverted file for a
finite set S. This is an inverted flle for S in
which the set of keywords K is sub(S), i.e.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800057.808700&domain=pdf&date_stamp=1984-12-01

every substring of S is a keyword. We
describe a data structure which implements a
complete inverted file for S which occupies
linear space in the size of S, can be built in
linear time, and is structured such that each
of the query functions takes optimal time.
Specifically, the time for find(w) is propor-
tional to the length of the output string z, the
time for frequency(w) is proportional to the
length of w, and the time for locations(w) is
proportional to the length of w plus the
number of locations retrieved. Time and
space bounds are given using the uniform cost
RAM model of computation (see [Aho 74]).

The existence of a data structure with
these properties is not hard to demonstrate.
It is essentially implied in the early work of
Morrison on PATRICIA trees [Mor 68], which
are further refined to the compact position
trees of Weiner [Wei 73] and the suffix trees of
McCreight [McC 78]. Our primary contribution
is a new set of basic data structures which are
functionally equivalent to suffix and position
trees, but are smaller and easier to build.
Using methods based on the theory of finite
automata, we replace the trees used in earlier
work with more compact directed acyclic
graphs ! (see Figure 1). These data structures
will be superior for other applications of suffix
trees as well (e.g. [Apo 83], [Rod 81], [Apo 79]).

In Section 1 we describe the basic data
structure that we build to implement a com-
plete inverted flle, give space bounds for this
structure and indicate how the retrieval func-
tions are implemented using it. Sections 2, 3
and 4 are devoted to demonstrating that this
data structure can be buiit in linear time,
assuming that the size of the alphabet is con-
stant.

Section 2 introduces the Directed Acyclic
Word Graph (DAWG) for a set of texts S (see
[Blu 83]), which is essentially a deterministic
finite automaton that recognizes the set of all

subwords of S. 2 In Section 3 we describe an

! Similar work in [Sei 83] has recently been brought
to our attention.

8 An equivalent data structure is also described in
[Sei 83], along with a similar construction algorithm. In-
sights into the relationship between this and earlier data
structures, especially those of {Pra 73], [Sli 80] and [Wei
73], are also given in this paper.

on-line linear time algorithm to construct the
DAWG for S. In Section 4 we give a collection of
linear time procedures to "compact' the
edges of the DAWG and label its nodes, creat-
ing the final data structure as described in
Section 1.

Notation

Throughout this paper ¥ denotes an arbi-
trary nonempty finite alphabet and £* denotes
the set of all strings over Z. The empty word is
denoted by A. I* denotes L*—-{A]. S will
always denote a finite subset of T* For any
w €ZL* |w| denotes the length of w.
N wZ.; slwl. 1f w=zyz for words
T, Yy, 2 €X* theny is a subwordof w, z is a
prefiz of w, and 2 is a suffiz of w. sub(S)
denotes the union of all subwords of the
members of S. For w € L% |w| =n, w has
n + 1 positions, numbered from 0 to n. Posi-
tion O is at the beginning of w, before the first
letter, and subsequent positions follow the
corresponding letters of w. For
S ={w,, ..., w}, S has ||S]| + k positions, each
denoted by a pair <i, 7> where 1si <k and j
is a position in w;. For any z € sub(S),
endposg(z) denotes the set of all positions
<i, > in S immediately following occurrences
of z and beginposg{z) denotes the set of all
positions immediately preceding occurrences
of . For z g sub(S), beginposs(z)
= endposg(z) = ¢.

Given a directed acyclic graph G with
edges labeled from L%, a path p in G is a
sequence of nodes connected by edges, or just
a single node. For any edge ¢ in G, label(e)
denotes the label of e. label(p) is the word
obtained by concatenating the labels of the
edges along p. label(p) = A if p is a single
node.

Section 1. Implementing a Complete Inverted
File

We begin by describing the basic data
structure used to implement a complete
inverted file for a set of texts S.

Definition. A rule of S is a production
z jarf where r €sub(S), a, fe€Z* and

350

every time z occurs in S, it is preceded by a
and followed by 8. z 5 azf is a mazimal rule
of S if it is a rule of S and a and g8 are as long
as possible (i.e. for no 6, ¥ € T* where 6y # A
isz g6azfy arule of S). If z 3 azp is a maxi-
mal rule of S, then azf is called the implica-
tion of z in S, denoted impg(z).
imps(sub(S)) = fimps(z) : < sub(S)}. =

For example, if S = {ababc, abcab} then
imps(A\) = A imps(a) = imps(b) = ab,
imps(ca) = abcab and imps(sub(S)) =
{\ ab, abe, ababe, abcabd).

Definition. For any z € imps(sub(S))
and a € L, the a—successor of z is impg(za) if
za € sub(S), otherwise it is undefined. The
compact DAWG of S is the directed graph
Gs = (V, E) with edges labeled with words in
L*, where V=1impg(sub(S)) and E =
{(z, imps(za)) acl , zacsub(S).
label ((z, azaf)) = af. The node A is called the
source of Gg. *

The compact DAWG for S =
{ababc, abcab] is given in in Figure ia. For
comparison, the suffix tree ([McC 76]) for S' =
{ababc 8,, abcab 8} is given in Figure 1b. Here
we assume the mnatural extension of
McCreight's data structure from individual
words to sets of words, using unique endmark-
ers. Notice that the compact DAWG for S can
be obtained from the suffix tree for S' by
merging isomorphic (edge labeled) subtrees in
this structure and deleting the structure asso-
ciated with the endmarkers. 3 We elaborate
further on this connection in Section 2.

The fundamental properties of Gy are
given in the following

Lemma 1. For any z € sub(S) thereis a
. single path p in Gs from the source to
impgs(z) such that z is a prefix of label(p) and
z is not a prefix of the label of any proper ini-
tial segment of p. Conversely, for any path p
from the source to imps(z), label(p) is a
suffix of imps(z) and for any preflx y of
label (p) which is not a prefix of the label of a
proper initial segment of P,
imps(y) = imps(z). =

3 A similar observation was made for the DAWG (see
Section 2) in [Sei 82].

351

Informally, this lemma says that for any
z,y € sub(S), £ and y '"lead to the same
node” in Gs if and only if impg(z) = imps(y).
Thus the nodes of Gs represent the
equivalence classes of sub(S) with respect to
the following equivalence relation on I*.

Definition. For z,y €sub(S), z=gy if
and only if imps(z) =imps(y). For all
z, y£sub(S), z =5vy.

Note that the words in any one of these
equivalence classes all occur with the same
frequency and in roughly the same locations in

A complete inverted file for a finite set of
texts § is implemented using the compact
DAWG, Gy, annotated with certain additional
information to facilitate the retrieval func-
tions.

Definition. The labeled compact DAWG is

the graph /5, obtained from Gy by adding the
following labeling to each node z.
1. A frequency label, that is, an integer indi-
cating the number of times that z occursin S.
2. A (possibly empty) list of identification
pointers indicating all texts of S of which z is
a suffix. =

The labeled compact DAWG for
S = {ababc, abcab] is given in in Figure 1d.
Note that the identification pointers play a
role analogous to the endmarkers in the suffix
tree.

In the actual implementation of Ig, we
assume that the texts of S are stored in RAM,
and that the strings labeling the edges of /s
are each given by a pointer to an occurrence
of the string in S and a length. Thus using the
uniform cost RAM model, the space required
for each of these labels is constant, as is the
size of each frequency label and identification
pointer. The overall size bounds for [s are
given in the following

Theorem 1. let Is=(V, E). Let k be the
number of words in S and let m be the
number of identification pointers in /3. Then
| V] =|iS|l+1 and | E|+m < 2||S||+k.

Sketch of proof. This bound is related to
the well-known bounds for suffix trees {([McC

76}]). In particular, for w € I*, the suffix tree
for w8 has Jw| + 1 leaves, at most |w]|

internal nodes and thus at most 2|w| edges.
For a set of texts S = jw,,...,w} and S' =
fw, 8, w. 8.}, the suffix tree for S' will have
[ISl| + & leaves and at most ||S|} =k + 1 inter-
nal nodes, since the root nodes of the trees for
the individual words are shared in the suffix
tree for S'. Hence the number of edges in this
tree is at most 2||S)l. It can be shown that this
gives an upper bound of 2||S||+ %k on the
number of edges and identification pointers in
Is, where the additional k¥ comes from the
identification pointers in the nodes for
imps(uy), 1<i<k. The upper bound of
IS|+1 nodes in Is comes from the
ISl =& + 1 internal nodes of the suffix tree
for S' and at most k£ additional nodes, again
for imps(wy), 1<i<k.e

A simple example of a sequence of text
sets S, for which Is reaches these upper
bounds is S, = {a™} where a is a single letter.
Preliminary experimental evidence indicates
expected sizes of .29||S|| nodes and 1.0|S|
edges and identification pointers for Is when
S is a single English text. For DNA sequences
(four letter alphabet) the values are higher at
.53|S]| and 1.4/|.S}| for a single "'strand"”.

We now turn our attention to implement-
ing the functions find, freq and locations.

Lemma 2. Using [g, for any word w € L%,
z = find(w) can be determined in time
O(|z]), and for any z € sub(S), freg(z) can
be determined in time O(|z |).

Sketch of proof. To implement find, we
begin at the source of /s and trace a path
corresponding to the letters of w as long as
possible. By Lemma 1, this "search path” is
determined and continues until the longest
prefix £ of w in sub(S) has been found. To
implement freq, we note that freg(z) =
freqg(imps(z)) for any =z €sub(S). Thus
Jreq(z) can be obtained by following the pro-
cedure of find and then returning the fre-
quency label of the node that the final edge of
this search path leads to. Clearly both opera-
tions are O(|z|). = -

In implementing localions, let us assume
that S ={w,, ..., w} and that for each
i,1<i <k, the length of 2; is available.
Assume further that locations(z) returns

352

beginposs(z), as described above.

Lemma 3. Let z € sub(S) and impg(z)

azf. let L = .y locations(zfa). Let T =
f<i,j> : xzB is a sufflix of wy and
J = |wg| - |zB|}. Then locations(z) =L UV T.

Sketch of proof. Since imps(z) = azf,
every occurrence of z is followed by g. Thus
occurrences of £ can be classified as those
that are occurrences of zfa for some a € %,
i.e. those followed by still more letters, and
those that are occurrences of =g at the end of
a word. ®

From the above lemma, it is clear that
there is a simple recursive procedure for com-
puting locations(z) for any word z € sub(S),
given that we are at the node azf = impgs(z)
and we have the length of 8. We simply com-
pute the list L described above recursively by
examining each of the successors of impgs(z)
and then concatenate this list with the list T,
obtained from the list of identification
pointers associated with the node az 8. Since
all sublists involved in this computation are
obviously disjoint, the time required is clearly
linear in the size m of the final list. Since the
time for the initial step of finding the node
imps(z) and the length of g is O(|z]), the
total time for locations(z) is O(|z| + m).
Thus we have

Theorem 2. Using Is, the functions find,
Jreq and locations can be implemented in
optimal time, »

The remainder of the paper is devoted to
the task of showing that /s can be built in time
linear in the size of S.

Section 2. The DAWG

As a preliminary step in building Is, we
construct a directed graph called the DAWG
(Directed Acyclic Word Graph) for S. This
graph is essentially a deterministic finite auto-
maton which recognizes the set of subwords of
S.

Definition. Let z and y in I* be right
equivalent on S if endpossg(z) = endposs(y).
This relation is denoted by z =R y. For any
word z, the equivalence class of £ with respect

to =P5 is denoted [z]_gs. The equivalence

class of all words which are not subwords of S

is called the degenerate class. All other
classes are nondegenerate. »
Obviously =Rg is a right invariant

equivalence relation on £* of finite index. Thus
since sub(S) is the union of all nondegenerate
classes of =*, using standard methods {[Ner
58]), we can define from =Fg a deterministic
finite automaton which accepts sub(S).
Removing the one non-accepting state, which
corresponds to the degenerate class of =Fg,
we obtain the following graph (see [Blu 83]).

Definition. The Directed Acyclic Word
Graph (DAWG) for S, denoted Ds, is the
directed graph (V, E) with edges labeled with
letters in I, where V is the set of all nondegen-
erate equivalence classes in =F s and
E = I([z]_ns, [Zﬂ].ns) z€X* a€l and

za € sub(S)]. The edge ([z]_gs. [za]_gs) is
labeled a. [)\]_Rs is called the source of Ds. ®

The DAWG for the set S = {ababc, abeab}
is given in Figure lc.

It is enlightening to compare the DAWG
for S to the compact DAWG Gs (Figure 1a) and
to the suffix tree for S' (Figure 1b), imagining
the endmarkers removed. The remaining
nodes of the suffix tree naturally correspond
to left invariant equivalence classes of S based
on equivalence of sets of beginning positions in
S, ie. z=lsy if and only if beginposs(z)
= beginposg(y). This correspondence is analo-
gous to that described for the equivalence
classes of Gy in Lemma 1. In fact, the nodes of
Gs represent the classes of the union of these
two equivalence relations.

Lemma 4.
'=-'Ls V) ERs.

=g is the transitive closure of

Proof. For any z,y €X* if z=lgy or
zsfg Yy then it is clear that
imps(z) = imps(y). hence z =gy. On the
other hand, if impg(z) =azf =a'yf

=imps(y) for some q,f, o', f €L* then
z="soar ELS ozf = ayp ELS a'y ERSy- .

While in principle, the compact DAWG can
be obtained from either the suffix tree or the
DAWG, it is easier and more efficient computa-

353

tionally to use the DAWG. Asis the case for the
suffix tree, it can be shown that the size of the
DAWG for S is linear in ||S]]. More precisely, we
have the following.

Lemma 5. Assume ||S||> 1. Then the
DAWG for S has at most 2||S]| — 1 nodes. »

Lemma 6. Assume ||S|| > 1. If the DAWG
for S has N nodes and £ edges, then -
E<N+|jSl|-2. =

The proofs of these lemmas are simple
extensions of those given for Theorems 1 and 2
of [Blu 83] for the special case where S has
cardinality one. Worst case examples which
achieve these bounds asymptotically are also
given in that paper for this special case.

Using Lemmas 5 and 6, we can give
bounds on the total size of the DAWG for S as
follows.

Theorem 3. Assume ||S}|> 1. Then the
DAWG for S has at most 2||S|| — 1 nodes and
3||S]| — 3 edges. =

Preliminary experimental results indicate
that the expected values are approximately
1.5||S]| nodes and 2.2||S|| edges when S is a sin-
gle English text. For DNA sequences (four
letter alphabet), it appears that the expected
values are approximately 1.6||S]] nodes and
2.5||S]| edges.

Section 3. Constructing the DAWG

We now turn to the problem of construct-
ing the DAWG for S. The algorithmn we have
developed builds the DAWG in a simple on-line
fashion, reading each word from S and updat-
ing the current DAWG to reflect the addition of
the new word. Individual words are also pro-
cessed on-line in one left-to-right scan (see
[Maj 80] for a discussion of the advantages of
an on-line algorithm).

The heart of the algorithm is given in the
function update, and its auxiliary function,
split. Given a DAWG for the set
S ={w,, - -,w} (annotated with certain
additional information described below), a
pointer to the node representing [ua]_gs

(called activenode) and a letter a, update
modifies the annotated DAWG to create the
annotated DAWG for S' = {w,, - - -, wy;, wyal.

When processing on a new word begins,
activenode is set to the source. Split is called
by update when an equivalence class from
=Rs must be partitioned into two classes in
R 5

Two types of annotation are required.
First, each of the transition edges of the DAWG
is labeled either as a primary or as a secon-
dary edge. Primary edges form a directed
spanning tree of the DAWG defined by taking
only the longest path from the source to each
node. The second kind of annotation is the
addition of a suffizr pointer to each node,
analogous to the pointers used in [McC 76] *.
If the equivalence class of node A consists of
the words fa; - " ar, @z -Gy, ..., @ " Q)
where a@; € Z, 1< j <7, then the suffix pointer
of A points to the node B representing the
equivalence class of a;.;-‘''a, Since the
source represents the equivalence class of A,
its suffix pointer is null.

The algorithm to build the DAWG is given
in the Appendix. It consists of the main pro-
cedure builddawg and auxiliary functions
update and split.

The key to the linear time bound for this
construction algorithm is that using suffix
pointers and primary or secondary marked
edges, all of the structures which must be
modified by update can be located rapidly.
Here it is important that suffix pointers allow
us to work from the longest suffixes backwards
to successively shorter suffixes, stopping when
no more work needs to be done (see [McC 76]).
Simpler methods, which involve keeping track
of all "active suffixes" will be potentially O(n?)
(e.g. [Maj 80]). In addition, it is important that
the states do not need to be marked with
structural information about the equivalence
classes they represent. This is in contrast to
the O(n?) methods of [Tan 81], which build
similar structures by directly partitioning the
equivalence classes in an iterative manner.

The essentials of the timing analysis of
the DAWG algorithm can be given as follows.
Since we are assuming that the alphabet size
is constant, we can assume that the DAWG is

4 These pointers are originally due to Pratt, who gives
an algorithm related to ours in [Pra 73).

354

implemented using linked lists of edges in the
standard fashion (see e.g. [Aho 82]). Under
these assumptions, it is clear that apart from
the while loop in update, the total processing
time is linear in ||S]|. Furthermore, since each
pass through the body of this while loop except
the last installs an edge, and no edges are ever
deleted, the total number of times this loop is
executed is bounded by the number of edges
in the final DAWG, which is linear in |S||
(Theorem 3). Finally, the total processing
time for each execution of the loop is con-
stant, apart from the while loop in split. Thus
the time bound is reduced to the problem of
bounding the total time spent in the while loop
of split by a linear function of ||S|. This can be
done as follows.

Definition. Let S = {w,, ..., w}. lailg is
the longest suffix of w, which occurs more
than once in S. If [lailyg=A then
shorttails = A\, otherwise shorttailg is the long-
est suffix w of tailg such that w #Fg tailg.»

Lemma 7. Let S ={w,.., v and
S' = {wy, ..., wga]. The number of times that
the while loop of split is executed when Dg is
updated to Ds: is bounded by |shorttailg| -
|shorttailg.| + 2.

To complete the proof of the linear time
bound, we observe that when we sum the
bounds given by Lemma 7 over the entire
course of the computation, most of the terms
cancel, leaving an O(]|S]) remainder. (See
similar techniques in [McC 76]).

Section 4. Creating an Inverted File from the
DAWG

It remains to demonstrate how the DAWG
can be compacted and labeled to create the
data structure /s described in Section 1.

First, let us assume that the DAWG con-
struction algorithm given in the previous sec-
tion has been extended so that each node of
the DAWG is labeled with a pointer to the posi-
tion in S immediately following the first
occurrence of longest member of the
equivalence class it represents. The functions

" update and split are easily extended so that

they maintain this information during the con-
struction of the DAWG. This requires only that

update have the current location in S at the
time it adds a new node for the equivalence
class of w;a, as described above. New nodes
created by splif can simply take these
pointers from the original nodes being split.
These additions will not affect the linear time
bound for construction. We also assume that
each node is augmented with a list of
identification pointers, which indicate all texts
in S, if any, of which a representative of the
equivalence class of this node is a suffix. {Of
course, all members of the equivalence class
will be suffixes of these texts.) After the DAWG
is built, these pointers can be added by a pro-
cedure that traces the suffix pointers from the
node representing ['UJ{]-RS to the source for

each w; € S, adding identification pointers for
w; to each node visited. The additional time
and space for this procedure is bounded by
the number of suffixes of the words in S, and
hence is O(]|Sl]).

Given these extensions to the DAWG con-
struction algorithm, it remains to show how
the DAWG can be compacted to form Jg, and
how the frequency labels are added.

In view of Lemma 4 of Section 2, each of
the equivalence classes represented by the
nodes of /s are' composed of one or more right
equivalence classes represented by nodes in
the DAWG. The process of "compacting” the
DAWG essentially consists of removing all but
one of the nodes for each equivalence class,
replacing the chains of classes removed by
multi-letter edges. As a preliminary step to
compaction, we make a recursive depth-first
search of the DAWG adding the following
pointers to the nodes.

Definition. For each node A of the DAWG
for S representing the equivalence class
[z]_gs. the implication pointer of A4 is a
pointer to the node B representing [azﬂ]_gs.

where azf = impg(z). The label of this impli-
cation pointeris .

Lemma 8. a) The label of an implication
pointer is well-defined, ie. if z,y € sub(S)
and z =5y then imps(z) = azg = imps(y) =
a'y P for some o, a', B € L*.

b) Let A be a node of the DAWG for S
representing [z]'Rs' If A has a single outgoing

edge labeled a leading to a node B and an
empty set of identification pointers then the
immplication pointer of A is equal to the impli-
cation pointer of B, except that its label is
preceded by the letter a. Otherwise, the
implication pointer of A points to A itself and
has label A

Sketch of proof. Part (a) follows easily
from the definitions of imps(z) and =fg, asin
Lemma 4, Section 2. For part (b), if 4 has a
single outgoing edge labeled a and no
identification pointers, then words in the
eguivalence class represented by 4 are always
followed by the letter a. Hence impg(z) =
impg(za) for any z in this class. Otherwise, no
letter is "predicted to the right” by the words
in this class, so the longest member of the
class is impg(z) for all z in this class. =

From Part (b) of the above Lemma, it is
clear that we can install implication pointers
in the DAWG using a simple recursive depth-
first search. By using the pointers to
occurrences of the longest string of each right
equivalence class that are also present in the
nodes, we can create the labels on the implica-
tion pointers using pointers to occurrences of
the strings they represent and lengths, each in
constant time. Since the size of the DAWG for
S is linear in {[S]| (Theorem 3), the entire
labeling procedure is linear in ||S].. Following
this labeling, another traversal of the DAWG
can be made in which the nodes whose impli-
cation pointers do not point to themselves are
removed, and edges leading to them from the
remaining nodes are replaced with the
appropriate successor edges of Jg, derived
from the implication pointers of these nodes.
The resulting graph will be Is, without the fre-
guency labels.

To finish the construction, we can add the
frequency labels using another simple recur-
sive procedure, analogous to that used to com-
pute locations (see Lemma 3).

Since each step of the construction of /g
from the DAWG for S is linear in S, we have
the following

Theorem 4. Is can be built in time linear

in ||S}].»

355

Further Research

Numerous directions for further research
remain. We list only a few.
1. Can a theoretical analysis of the expected
size of /s for a random text be given?
2. Can [Ig, without frequency labels, be built
directly on-line in linear time?
3. What are the most efficient methods of
updating Iy when new texts are added or
removed from S?
4. Notice that the definition of the nodes of /g
is symmetric with regard to the direction in
which the texts of S are read. A symmetric set
of edges can be added to the existing edges of
Is which give the "left" a-successors of the
nodes of S, in a manner analogous to the
(right) a-successors defined here. An analo-
gous set of "prefix identification pointers” can
also be added. What might be the further
applications of this "symmetric inverted file"?
Can it be built in linear time?
5. By a simple extension of our algorithm, the
nodes of /s can be labeled with a pointer to
the word they represent and a length. With
this extension, impg(z) can be computed for
any z € sub(S) in optimal time. Does this have
further applications in other areas of text pro-
cessing, e.g. spelling correction?

Acknowledgement

Author D. Haussler would like to thank Prof.
Jan Mycielski for several enlightening discus-
sions on these and related topics. We would
also like to thank Joel Seiferas for pointing out
his recent work in this area, and for sending
us this work and several related papers.

Pixure ia

Compact DAK G, for S = lababe. abcabl

356

Suffix tree for ' = }-babcsl. abeabs,f

DAWG for S = fababc, abcabf

1, for S = wy vé. where w, = ababe, w, = abcab

Appendix
The following is a detailed algorithrn to build the DAWG for a set of texts S.

builddawg (S)
1. Create a node named source.
2. Let activenode be source.
3. For each word w of S do:
A. For each letter a of w do:
Let activenode be update (activenode, a).
B. Let activenode be source.
4. Return source.

update (activenode, a)
A. If activenode has an outgoing edge labeled a then
1. Let newactivenode be the node that this edge leads to.
2. If this edge is primary, return newactivenode.
3. Else, return split (activenode, newactivenode).
B. Else
. Create a node named newaclivenode
. Create a primary edge labeled a from activenode to newactivenode.
. Let currentnode be activenode.
. Let suf firnode be undefined.
. While currentnode isn't source and suf fiznode is undefined do:
a. Let currentnode be the node pointed to by the suffix pointer of currentnode.
b. If currentnode has a primary outgoing edge labeled a then let suf fiznode be
the node that this edge leads to.
c. Else, if currentnode has a secondary outgoing edge labeled a then:
1. Let childnode be the node that this edge leads to.
2. Let suf fizrnode be split (currentnode, childnode).
d. Flse, create a secondary edge from currentnode to newactivenode labeled a.
8. If suf firnode is still undefined, let suf firnode be source.
7. Set the suffix pointer of newactivenode to point to suf fiznode.
8. Return newactivenode.

[S NE BN I

split (parentnode, childnode)
1. Create a node called newchildnode.
2. Make the secondary edge from parentnode to childnode into a primary edge from parentnode
to newchildnode (with the same label).
3. For every primary and secondary outgoing edge of childnode, create a secondary outgoing
edge of newchildnode with the same label and leading to the same node.
4, Set the suffix pointer of newchildnode equal to that of childnode.
5. Reset the suffix pointer of childnode to point to newchildnode .
6. Let currentnode be parentnode.
7. While currentnode isn't source do:
a. Let currentnode be the node pointed to by the suffix pointer of currentnode.
b. If currentnode has a secondary edge to childnode, make it a secondary edge to
newchildnode (with the same label).
c. Else, break out of the while loop.
8. Return newchildnode.

357

References

[Aho 82]

[Apo 79]

(Apo 83]

[Blu 83]

[Car 75] |

[Gol 82]

[Koh 80]

[Maj 80]

[Mal 81]

[McC 76]

Aho, Alfred V., John E. Hopcroft and
Jefirey D. Ullman; The Design and
Analysis of Computer Algorithms,
Addison-Wesley, Reading Mas-
sachusetts (1974).

Apostolico, A.; "Some linear time
algorithms for string statistics prob-
lems,” Publication Series III, 1786,
Instituto per le Applicazioni del Cal-
colo "Mauro Picone” (IAC), Rome,
1979, 28pp. .

Apostolico, A. and F. P. Preparata;

"Optimal off-line detection of repeti-
tions in a string," Theoretical Com-
puter Science, v. 22, 1983, 297-315.

Blumer, A., J. Blumer, A. Ehren-
feucht, D. Haussler, R. McConnell;
"Linear size finite automata for the
set of all subwords of a word: an out-
line of results,”” Bul. Fur. Assoc.
Theor. Comp. Sci., 1983, no. 21, 12-
20.

Cardenas, A. F.; "Analysis and per-
formance of inverted data base
structures,” Comm ACM, 1975, v. 18,
no. 5., 253.

CGoldsmith, N.; "An appraisal of fac-
tors affecting the performance of
text retrieval systems,"” Information
Technology: Research end Develop-
meni, 1982, 1, 41-53.

Kohonen, T.; Content-Addressable
Memories, Springer-Verlag, Berlin,
Heidelberg, New York, 1980.

Majster, M. E. and Angelika Reiser;
"Efficient on-line construction and
correction ol position trees," SIAM
J. Comput., v. 9, no. 4, Nov. 1980,
7685-807.

Maller, V.; "The content addressable

file store - a technical overview,"
Angwte. Infor. (3) (1981), 100-108.

McCreight, Edward M.; "A space-
economical suffix tree construction
algorithm," JACHM, v. 23, no. 2, April
1976, 262-272.

[Mor 68]

[Ner 58]

[Pra 73]

[Rij 76]

[Rod 81]

[Sei 83]

[Sti 80]

[Tan 81]

[Wei 73]

358

Morrison, Donald R.; "PATRICIA -
Practical Algorithm To Retrieve
Information Coded In
Alphanumerie,” JACM, v. 15, no. 4,
October 1968, 514-534.

Nerode, Anil; 'Linear automaton
transformations,” Proc. AMS, v. 9,
1958, 541-544.

Pratt, V. R., "Improvements and
applications for the Weiner repeti-
tion finder,"” unpublished
manuscript, May 1973 (revised Oct.
1973, March 1975).

Van Rijsbergen, C. I.; "File organiza-
tion in library autornation and infor-
mation retrieval,” Journal of Docu-
mentation, v. 32, no. 4, December
1976, 294-317.

Rodeh, Michael, Vaughan R. Pratt,
and Shimon Even; "Linear algorithm
for data compression via string
matching,” JACM, v. 28, no. 1, Jan.
1981, 16-24.

Seiferas, J. and Chen, M. T,
"Efficient and Elegant Subword-Tree
Construction,” Univ. of Rochester
198384 C.S. and C.E. Research
Review, 10-14.

Slisenko, A. 0., "Detection of periodi-
cities and string matching in real
time," (English translation) J. Sov.
Hath., 22 (3) (1983) 1316-1387. (ori-
ginally published 1980).

Tanimoto, S. L, “A Method for
Detecting Structure in Polygons,”
Pattern Recognition, 1981, v. 13, no.
6, pp. 389-394.

Weiner, P.; "Linear pattern matching
algorithms,” JEEE 14th Annual Sym-
posium on Switching and Automata
Theory, 1973, 1-11.

