
Building a Complete Inver ted File for a Set of Text Files
in Linear Time

by
A. Blumer, J. Blumer, A. Ehrenfeucht*,

D. Haussler and R. McConnell

Department of Mathematics and Computer Science
University of Denver

Denver, Colorado 80208

*Department of Computer Science
University of Colorado at Boulder

Boulder, Colorado 80302

All c o r r e s pondence to D. Haussler.

Authors A. Blumer and D.Haussler grateful ly acknowledge the suppor t of NSF gran t IST-83-17918
and au thor A. Eh r en feuch t the suppor t of NSF gran t MCS-83-0524-5.

Almtraet

Given a finite set of texts S = [~, ~vt] over
some fixed finite alphabe t E, a complete
inverted file for S is an abstract data type
that provides the functions find('w), which
returns the longest prefix of ~# which occurs in
S; freq(zo), which returns the number of
times ~ occurs in S; and loc=t~ons(~v) which
returns the set of positions at which ~ occurs.
We give a data structure to implement a com-
plete inverted file for S which occupies linear
space and can be built in linear time, using the
uniform cost RAM model. Using this data
structure, the time for each of the above
query functions is optimal. To accomplish
this, we use techniques from the theory of
finite automata to build a deterministic finite
automaton which recognizes the set of all sub-
words of the set S. This automaton is then
annotated with additional information and
compacted to facilitate the desired query
functions.

Permission to copy without fec all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-8979i-133-4184/004/0349 $00.75

Introduction

The notion of an inverted filefor a textual
database is common in the literature on infor-
mation retrieval, but precise definitions of this
concep t vary [Goi 82]. [Rij 78]. [Car 75]. We
propose the following definition: Given a finite
a lphabet ~, a se t of keywords K ~ ~+, and a
finite set of t ex t words S ~ ~+, an
~t~eTted ,file for (~, K, S) is an abstract data
type that implements the following functions.

I..find: ~+ -~ K u ~AI. where f~,n~(~) is the
longest prefix z of zv such that zcKu~RI
and z occurs in S, i.e. z is a subword of a t ex t
in S.

2. fTeq : K -~ N, where f r e q (~) is the number
of t imes ~ occurs as a subword of the tex t s in
S .

3. /°cations : K--~ ENxI~ where/seatioRs(w) is
a set of ordered pairs giving the text numbers
and positions within the texts where ~v occurs.

This definition is simple, and includes many of
the essential features of the notions of
inverted files in the literature, as well as those
of other more general "content addressable"
data structures [Koh 80], [Mal 81].

In this paper, we consider the problem of
constructing a cszrtplete ivtverted .file for a
finite set S. This is an inverted file for S in
which the set of keywords K is ~b(S), i.e.

349

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800057.808700&domain=pdf&date_stamp=1984-12-01

every substr ing of S is a key'word. We
describe a da ta s t ruc tu re which implements a
complete inverted file for S which occupies
l inear space in the size of S, can be built in
l inear time, and is s t r u c t u r e d such tha t each
of the query functions takes optimal time.
Specifically, the t ime for f / r i d (w) is propor-
tional to the length of the output string z , the
t ime for f r e q u e n c y { w) is proport ional to the
length of w, and the t ime for loca t ions(w) is
proport ional to the length of tv plus the
number of locations retrieved. Time and
space bounds are given using the uniform cost
RAM model of computa t ion (see [Aho 74]).

The existence of a da ta s t ruc tu re with
these proper t ies is not hard to demonst ra te .
It is essent ial ly implied in the early work of
Morrison on PATRICIA t rees [Mor 68], which
are fur ther refined to the compac t position
t rees of Weiner [Wei 73] and the sulTlx t rees of
McCreight [McC 76]. Our p r imary contr ibut ion
is a new set of basic da ta s t ruc tu res which are
functionally equivalent to SUffLX and position
trees, but are smal ler and easier to build.
Using methods based on the theory of finite
au tomata , we replace the t rees used in ear l ier
work with more compac t d i rec ted acyclic
graphs ! (see Figure 1). These da ta s t ruc tu res
will be superior for o ther applications of sulTlx
t rees as well (e.g. [Apo 83], [Rod B1], lAps 79]).

In Section 1 we describe the basic da ta
s t ruc tu re tha t we build to implement a com-
plete inver ted file, give space bounds for this
s t ruc tu re and indicate how the retr ieval func-
tions are implemented using it. Sections 2, 3
and 4 are devoted to demons t ra t ing tha t this
da ta s t ruc tu re can be built in linear time,
assuming tha t the size of the alphabet is con-
slant .

Sect ion 2 int roduces the Directed Acyclic
Word Graph (DAWG) for a set of texts S (see
[Blu 83]), which is essential ly a determinis t ic
finite au tomaton t h a t recognizes the set of all
subwords of S. s In Section 3 we describe an

! ,~imi.lar work in [Sei 83] has recently been brought
to our attention.

e An equivalent data structure is also described in
[Sei 83], along with a similar construct.ion algorithm. [n-
sishts into the relationsLh3p between tbAs and earlier data
stxuctures, especially those of [Pra 73], [Sli 80] and [Wei
73], are also given in this paper.

on-line linear t ime algori thm to cons t ruc t the
DAWG for S. In Section 4 we give a collection of
l inear t ime procedures to "compact" the
edges of the DAWG and label its nodes, creat-
ing the final da ta s t ruc tu re as descr ibed in
Section 1.

N o t a t i o n

Throughout this paper ~ denotes an arbi-
t r a ry nonempty finite alphabet and E* denotes
the set of all str ings over ~. The empty word is
denoted by k. ~÷ denotes ~ * - I X I . S will
always denote a finite subset of ~*. For any
w c E * , Iw] denotes the length of w.

l lsl l = I . I f = for . o r b
z, y , z E ~*, then y is a subword of w, z is a
pref iz of w, and z is a suf f /z of w. sub(S)
denotes the union of all subwords of the
members of S. For w eZ*, It u] =re, tu has
re + 1 pss i t /ons , numbered f rom 0 to re. Posi-
t ion 0 is a t the beginning of w, before the first
le t ter , and subsequent positions follow the
corresponding le t te rs of w. For
S = ~w, w~J, S has HS1] + k positions, each
denoted by a pair <i, j > where 1 ~ i ~ k and j
is a position in w t. For any z e s u b (S) ,
endposs(z) denotes the se t of all positions
<i, j > in S immedia te ly following occur rences
of z and beginposs(z) denotes the se t of all
positions immedia te ly preceding occur rences
of z. For z £ sub(S), beginposs(z)
: e r e @ o s s (=) : ¢.

Given a d i rec ted aeyclic graph G with
edges labeled f rom ~÷, a p a t h p in G is a
sequence of nodes connec ted by edges, or jus t
a single node. For any edge • in G, label(e)
denotes the label of e. label(p) is t he word
obtained by concatenat ing the labels of the
edges along p . hzbel (p)=~ if p is a single
node.

,Section 1. Imp lemen t ing a Complete Inve r t ed
F t l e

We begin by describing the basic da ta
s t ruc tu re used to implement a complete
inverted file for a set Of texts S.

Definition. A ru2e of S is a product ion
m ~oucfl where z Esub(S) , a, f lE~*, and

350

every t ime z occurs in S, it is p receded by a
and followed by ft. z ~ azfl is a me_ me2 ru/e
of S if it is a rule of S and a and f are as long
as possible (i.e. for no 6, 7 £ Z*, where 67 #
is z ~ 6oczf7 a rule of S). If z ~ az~ is a maxi-
mal rule of S. then a z f is called the implica-
t~rrt of z in S, denoted imps(z) .
 ps(sub (S)) = IC" Ps(=) : x c s u b •

For example, if S = ~ababc, abcab I then
 ps(x) = = i m p s (b) = ab,
imps(ca) = abcab and imps(sub(S)) =
~k. ab, abc, ababc, abcab i.

Definition. For any z e'izrrps(sub(S))
and a e Z, the a-successor of z is imps(za) if
za e sub(S), otherwise it is undefined. The
compact DAB'G of S is the d i rec ted graph
Gs = (V, E) with edges labeled with words in
E +, where V=imps(s 'ub(S)) and E =

: a e X . = a e (s)L

label ((z, a z a f)) = aft. The node h is called the
source of g s . •

The compact DAWG for S =
~ababc, abcab~ is given in in Figure la. For
comparison, the SUffLX t ree ([McC 76]) for S ' =
lababc $1, abcab ~ i is given in Figure lb. Here
we assume the na tura l extension of
McCreight's da ta s t ruc tu re f rom individual
words to sets of words, using unique endmark-
ers. Notice tha t the compact DAWG for S can
be obtained f rom the suffix t ree for S' by
merging isomorphic (edge labeled) subtrees in
this s t ruc ture and deleting the s t ruc ture asso-
ciated with the endmarkers , s We elaborate
fur ther on this connection in Section 2.

The fundamenta l propert ies of G a are
given in the following

/ ,emma 1. For any z ~ sub (S) there is a
single pa th p in Gs from the source to
imps(X) such tha t x is a prefix of label(p) and
z is not a prefix of the label of any proper ini-
tial segment of p . Conversely, for any path p
from the source to imps(z), label(p) is a
suffix of ~,mps(z) and for any prefix y of
label(p) which is not a prefix of the label of a
proper initial segment of p,
 ps(y) = i m p s (=) . °

a A similar observation was made for the DAWG (see
Section 2) in [Sei 8,2].

35]

Informally, this l emma says tha t for any
z , y e sub(S), z and y "lead to the same
node" in Gs if and only if imps(z) = "hm.ps(Y).
Thus the nodes of Gs r ep resen t the
equivalence classes of sub(S) with respec t to
the foUowing equivalence relat ion on E*.

Definition. For z , y e sub (S), z •-s Y if
and only if i m p s (z) = i m p s (y) . For all
=, yZsub (S) , z ~sY .

Note tha t the words in any one of these
equivalence classes all occur with the same
frequency and in roughly the samelocations in
S.

A complete inverted file for a finite set of
texts S is implemented using the compact
DAWG. Gs, annotated with certain additional
information to facilitate the retr ieval func-
tions.

Definition. The labeled compact DAWG is
the graph Is, obtained from CGs by adding the
following labeling to each node z .
1. A frequency label, t ha t is, an in teger indi-
cating the number of t imes tha t z occurs in S.
2. A (possibly empty) list of /dentif icat/~rn
po/nters indicating all texts of S of which z is
a suffix. •

The labeled compact DAWG for
S = tctbabc, abcvLb I is given in in Figure ld.
Note tha t the identification pointers play a
role analogous to the enclmarkers in the suffix
tree.

]n the actual implementat ion of Is, we
assume tha t the texts of S are s tored in RAM,
and tha t the strings labeling the edges of Is
are each given by a pointer to an occurrence
of the string in S and a length. Thus using the
uniform cost RAM model, the space required
for each of these labels is constant , as is the
size of each frequency label and identification
pointer. The overall size bounds for Is are
given in the following

Theorem 1. Let Is=(V, E). Let k be the
number of words in S and let m be the
number of identification pointers in Is. Then
I vl I1 1+1 and I E l + m 211Sll+ .

Sketch of proof. This bound is re la ted to
the well-known bounds for suffix t rees ([McC
76]). In particular, for ~v ~ ~*, the suffux ti'ee
for ~ $, has]'w] + 1 leaves, a t most]~]

i n t e r n a l n o d e s and t hus a t m o s t 2] w] edges .
For a se t of t e x t s S = ~wl ~v~l and S ' =
{IriS1 ~ $ ~ 1 , t he suffix t r e e fo r S ' will have
HS~I + k leaves and at m o s t I I~l - k + 1 i n t e r -
nal nodes , s ince the r o o t nodes of the t r e e s fo r
the individual words a r e s h a r e d in the suffix
t r e e for S ' . Hence the n u m b e r of edges in this
t r e e is a t m o s t 2IIS~]. It c a n be shown t h a t this
gives an u p p e r b o u n d of 211Sll + k on t h e
n u m b e r of edges and iden t i f i ca t ion p o i n t e r s in
Is, w h e r e t h e add i t iona l k c o m e s f r o m th e
iden t i f i ca t ion p o i n t e r s in the nodes for
/ r nps (wi) , l ~ i ~ k . The u p p e r b o u n d of
IIS~I + 1 nodes in I s c o m e s f r o m th e
I],51i- k + 1 i n t e r n a l n o d e s of the suffix t r e e
for S ' and a t m o s t k add i t iona l nodes , aga in
for imlas (sue), 1 ~ i ~ k. •

A s imple e x a m p l e of a s e q u e n c e of t e x t
s e t s S , for which 13 reaches these u p p e r
bounds is S n = ~anl where a is a single l e t t e r .
P r e l i m i n a r y e x p e r i m e n t a l e v i d e n c e i n d i ca t e s
e x p e c t e d sizes of .291]3~l n o d e s an d 1.0]]3~l
edges and iden t i f i ca t ion p o i n t e r s fo r I S when
S is a single English t ex t . F o r DNA s e q u e n c e s
(fou r l e t t e r a l p h a b e t) t he va lues a r e h i g h e r a t
• 5311sii and L411Sll for a single "strand".

We now t u r n ou r a t t e n t i o n to i m p l e m e n t -
ing t he func t ions f i nd , f req and locations.

L e m r n a g. Using Is, fo r any word ~v c ~*,
= = f / ~ . d (~) c a n be d e t e r m i n e d in t i m e
O (I z l) , and for any z Csub(S) , f r e q (z) can
be d e t e r m i n e d in t i m e O (I z I).

Sketch of proof. To i m p l e m e n t f / r i d , we
beg in a t t he s o u r c e of I s a n d t r a c e a p a t h
c o r r e s p o n d i n g to t he l e t t e r s of tv as long as
possible . By Lemrna 1, this " s e a r c h p a t h " is
d e t e r m i n e d a n d c o n t i n u e s un t i l t h e l o n g es t
p re f ix z of to in sub (S) has b e e n found. To
i m p l e m e n t f r eq , we n o t e t h a t f r e q (z) =
freq(irnps(z)) for any z ~sub(S) . Thus
f r e q (z) c a n be o b t a i n e d by following t h e p ro -
c e d u r e of f / r i d and t h e n r e t u r n i n g t h e f re -
q u e n c y label of t he node t h a t t he final edge of
th is s e a r c h pa th leads to. Clear ly b o t h o p e r a -
t ions a r e O (I z I). •

In i m p l e m e n t i n g l oca t i ons , l e t us a s s u m e
t h a t S = { w l ~v~l and t h a t fo r e a c h
i , l ~ i ~ k , t he l eng th of ~v t is avai lable.
Assume f u r t h e r t h a t l o c a l i o n s (z) r e t u r n s

beginposs(z), as d e s c r i b e d above.

Lern.rrm 3. Let z E s u b (S) and imps(x) =

~ f l . Let L = =L~g locab ions(z f l=) . Let T =
t < / , J > : z/3 is a suffix of toe and
] = I ~] - lzf l l I. Then locations(z) = L u T.

Sketch of proof. Since imps(z) = a~fl,
e v e r y o c c u r r e n c e of z is fol lowed by ft. Thus
o c c u r r e n c e s of z c a n be c lass i f ied as t hose
t h a t a re o c c u r r e n c e s of x # = for s ome ¢ e Z,
i.e. t hose fol lowed by still m o r e l e t t e r s , and
those t h a t a r e o c c u r r e n c e s of zf l a t t he e n d of
a word. •

F r o m the above l e m m a , it is c l e a r t h a t
t h e r e is a s imple r e e u r s i v e p r o c e d u r e for com-
pu t ing laca2ions(z) fo r an y word z E sub(S),
given t h a t we are a t the node a z f l = imps(z)
a n d we have t h e l en g th of ft. We s imply com-
p u t e the list L d e s c r i b e d above r e c u r s i v e l y b y
e x a m i n i n g e a c h of the s u c c e s s o r s of i m p s (z)
a n d t h e n c o n c a t e n a t e this list wi th the l ist T,
o b t a i n e d f r o m the list of i den t i f i ca t ion
pointers associated with the node azfl. Since
all sublists involved in this computation are
obviously disjoint, the time required is clearly
linear in the size rn of the final list. Since the
t i m e for t h e init ial s t ep of finding t he node
imps(z) and the l en g th of /3 is O ([z l) , t he
total time for /oca.tionsCz) is O(l=l +~).
Thus we have

Theorerrt ,~. Using Is, the f u n c t i ons fiwxl,
f req an d l o c a t i o n s can be i m p l e m e n t e d in
o p t i m a l t ime. •

The r e m a i n d e r of the p a p e r is d e v o t e d to
t h e t a sk of showing t h a t I s c a n be bui l t in t i m e
l i nea r in t h e s ize of S .

S e c t i o n 2. The DAWG

As a p r e l i m i n a r y s t ep in bui lding I s, we
c o n s t r u c t a d i r e c t e d g r a p h ca l l ed the DAWG
(Directed Acyclic Word Graph) for S. This
graph is essentially a deterministic finite auto-
maton which recognizes the set of subwords of
S.

.Definition. Let z and y in ~* be r/ght
equivalent on S if endposa(z) = ere~poss(y).
This relation is denoted by z ~R s y. For any
word z, the equivalence class of z with respect

352

to -=Rs is denoted [z]=R s. The equivalence

class of all words which are not subwords of S
is called the degenerate class. All other
classes are nondegenera2e. •

Obviously ---R s is a r ight invariant
equivalence relation on E* of finite index. Thus
since sub (S) is the union of all nondegenera te
classes of ~-e s , using s tandard methods ([Ner
58]), we can define from mR s a determinist ic
finite au tomaton which accepts sub (S).
Removing the one non-accepting state, which
corresponds to the degenerate class of =-R s ,
we obtain the following graph (see [Blu 83]).

Definition. The Directed Acyclic Word
Graph (DAWG) for S, denoted Ds, is the
d i rec ted graph (V, E) with edges labeled with
le t ters in ~, where V is the set of all nondegen-
era te equivalence classes in - = R s and
E = l ([z] = R s , [Z a] = ~ s) : z EZ*, a EE and

== ~ s u b (S) l . The edge ([=] .~. , [~] . ~ .) is

labeled a. [~],,R$ is called the source of Ds. "

The DAWG for the se t S = lababc, abcab I
is given in Figure lc.

It is enlightening to compare the DAWG
for S to the compact DAWG Gs (Figure la) and
to the suffix tree for S' (Figure ib), imagining
the endmarkers removed. The remaining
nodes of the suffix tree naturally correspond
to left invariant equivalence classes of S based
on equivalence of sets of beginning positions in
S, i.e. z mLsy if and only if be~nposs (z)
= beginposs(y). This correspondence is analo-

gous to tha t described for the equivalence
classes of Gs in Lemma 1. In fact, the nodes of
Gs represent the classes of the union of these
two equivalence relations.

Lemrna 4. ~s is the transitive closure of
---£s U mR s .

Proof. For any z , y EE*, if z z L sy or
z -=R s y then it is clear tha t
"b'nps(z) = i m p s (y), hence z ~-sY. On the
other hand, if ~n1~s(z) = azfl = a'yfl'
= i m p s (y) for some a, fl, a',fl' E E*, then

z ~ R S a z --=LsOLZi~ = a'y~'----Lsa'y --=RSy. •
While in principle, the compact DAWG can

be obtained f rom either the suffix t ree or the
DAWG, it is easier and more effmient computa-

tionally to use the DAWG. As is the case for th~
suffix tree, it can be shown tha t the size of the
DAWG for S is linear in I]$11. More precisely, we
have the following.

Lernma 5. Assume]151[> 1. Then the
DAWG for S has at most 2H51[- 1 nodes. •

Lemms 8, Assume 11511 > 1. If the DAWG
for S has N nodes and E edges, t h e n
E N + IlSll - 2. •

The proofs of these lemmas are simple
extensions of those given for Theorems 1 and 2
of [Blu 88] for the special case where S has
cardinal i ty one. Worst case examples which
achieve these bounds asymptot ical ly are also
given in tha t paper for this special case.

Using Lemmas 5 and 6, we can give
bounds on the total size of the DAWG for S as
follows.

Theorem 8. Assume IIS~J > 1. Then the
DAWG for S has at most 211511- 1 nodes and
3ll511 - 3 e d g e s . •

Preliminary experimental results indicate
t ha t the expected values are approximately
1.511Sll nodes and 2.211511 edges when S is a sin-
gle English text. For DNA sequences (four
le t te r alphabet), it appears tha t the expected
values are approximately 1.6[1511 nodes and
asl1511 edges.

Section 3. Constracting the DAWG

We now turn to the problem of construct-
ing the DAWG for S. The algorithm we have
developed builds the DAWG in a simple on-line
fashion, reading each word from S and updat-
ing the current DAWG to reflect the addition of
the new word. Individual words are also pro-
cessed on-line in one left-to-right scan (see
[Maj 80] for a discussion of the advantages of
an on-line algorithm).

The heart of the algorithm is given in the
function update, and its auxiliary function,
split. Given a DAWG for the set
S = { t u , , ' ' ' , ~ I (annotated with certain
additional information described below), a
pointer to the node representing ['uui],,,R#

(called a~tivenode) and a letter a, update
modifies the annotated DAWG to create the
annotated DAWG for S' = l~i, ' • ', tui-l, 'wlaI.

353

When processing on a new word begins,
activenode is set to the source. Split is called
by update when an equivalence class from
---Re mus t be par t i t ioned into two classes in
=R~,.

Two types of annota t ion are required.
First, each of the t rans i t ion edges of the DAWG
is labeled e i ther as a p r imary or as a secon-
dary edge. P r imary edges form a d i rec ted
spanning t ree of the DAWG defined by taking
only the longest pa th f rom the source to each
node. The second kind of annota t ion is the
addition of a s~z f f i z pointer to each node,
analogous to the pointers used in [McC 76] 4 •
If the equivalence class of node A consists of
the words ~ a l " ' ' a t , . , a z ' ' ' a r a l ' ' ' a r l
where ay E Z, 1 ~ j ~ r , then the sufftx pointer
of A points to the node H represent ing the
equivalence class of ~ + l ' ' ' a r Since the
source represents the equivalence class of h,
its suffix pointer is null.

The algorithm to build the DAWG is given
in the Appendix. It consists of the main pro-
cedure bu//.ddmn 9 and auxiliary functions
update and spl/t.

The key to the linear time bound for this
construction algorithm is that using SUffLX
pointers and primary or secondary marked
edges, all of the s t ruc tu re s which mus t be
modified by update can be located rapidly.
Here it is impor tan t tha t suf~x pointers allow
us to work f rom the longest suffixes backwards
to successively shor te r suffixes, stopping when
no more work needs to be done (see [McC 76]).
Simpler methods, which involve keeping t r ack
of all "active sufftxes" will be potential ly O(n ~)
(e.g. [Maj 80]). In addition, it is impor tan t tha t
the s ta tes do not need to be marked with
s t ruc tu ra l informat ion about the equivalence
classes they represent . This is in cont ras t to
the O(n 2) methods of [Tan 81], which build
similar s t ruc tu res by direct ly parti t ioning the
equivalence classes in an i terat ive manner .

The essentials of the timing analysis of
the DAWG algori thm can be given as follows.
Since we are assuming tha t the alphabet size
is constant , we can assume tha t the DAWG is

• These pointers are orisina].ly due to Pratt, who gives
an edgorithm related to ours in [Pra 73].

implemented using linked lists of edges in the
standard fashion (see e.g. [Aho 82]). Under
these assumptions, it is clear that apart from
the while loop in update, the total processing
time is linear in I15~I. Furthermore, since each
pass through the body of this while loop except
the last installs an edge, and no edges are ever
deleted, the total number of times this loop is
executed is bounded by the number of edges
in the final DAWG, which is linear in fISH
(Theorem 3). Finally, the total processing
time for each execution of the loop is con-
stant, apart from the while loop in spl/t. Thus
the time bound is reduced to the problem of
bounding the total time spent in the while loop
of spl~t by a linear function of HAl- This can be
done as follows.

De tim/t/on. Let S = ~w, ~=I. tails is
the longest suff, x of ~# which occurs more
than once in S. If tail s = A then
shortt~l s = A. otherwise shorthzils iS the long-
es t suffix ~ of tail s such that ~ ~R s tails. •

Lemm, ta Z Let S =~, ~I and
S' = ~I ~a I. The number of times that
the while loop of spl~ is executed when D8 is
updated to D$, is bounded by]shorttail$ l
I sh.orttaiZs. I + 2. •

To complete the proof of the l inear t ime
bound, we observe tha t when we sum the
bounds given by Lemma 7 over the ent i re
course of the computat ion, most of the t e rms
cancel, leaving an 0(11,51[) remainder . (See
similar techniques in [McC 76]).

S e c t i o n 4. CreaUng an Inverted File f rom t h e
DAWG

It remains to demonstrate how the DAWG
can be compacted and labeled to create tlne
data structure Is described in Section I.

First, let us assume that the'DAWG con-
struction algorithm given in the previous sec-
tion has been extended so that each node of
the DAWG is labeled with a pointer to the posi-
tion in S immediately following the first
occurrence of longest member of the
equivalence class it represents. The functions
update and split are easily extended so that
they maintain this information during the con-
struction of the DAWG. This requires only that

354

update have the cu r ren t location in S at the
t ime it adds a new node for the equivalence
class of ~via, as described above. New nodes
c rea ted by spl/t can simply take these
pointers from the original nodes being split.
These additions will not affect the linear t ime
bound for construction. We also assume tha t
each node is augmented with a list of
identification pointers, which indicate all texts
in S, if any, of which a representa t ive of the
equivalence class of this node is a suffix. (Of
course, all members of the equivalence class
will be suffixes of these texts.) After the DAWG
is built, these pointers can be added by a pro-
cedure tha t t races the sufftx pointers from the
node represent ing [w~].R s to the source for

each wi e S, adding identification pointers for
wi to each node visited. The additional t ime
and space for this procedure is bounded by
the number of suffixes of the words in S, and
hence is O(IIS~[).

Given these extensions to the DAWG con-
struction algorithm, it remains to show how
the DAWG can be compacted to form Is, and
how the frequency labels are added.

In view of Lemma 4 of Section 2, each of
the equivalence classes represented by the
nodes of Is are ~ composed of one or more right
equivalence classes represented by nodes in
the DAWG. The process of "compacting" the
DAWG essentially consists of removing all but
one of the nodes for each equivalence class,
replacing the chains of classes removed by
multi-letter edges. As a preliminary step to
compaction, we make a recursive depth-first
search of the DAWG adding the following
pointers to the nodes.

Definition. For each node A of the DAWG
for S representing the equivalence class
[z] ~ s. the implication pointer of A is a

pointer to the node B represent ing [azfl]=R s,

where azfl = imps(z). The tabel of this impli-
cation pointer is ft. •

Lemma 8. a) The label of an implication
pointer is well-defined, i.e. if z , y e sub(S)
and z ---R s y then ~xnps(z) = azfl = imps(y) =
a'y~ for some ct, a', ~ e Z*.
b) Let A be a node of the DAWG for S
represent ing [z]=s s. If A has a single outgoing

edge labeled e leading to a node B and an
empty set of identification pointers then the
implication pointer of A is equal to the impli-
cation pointer of B. except that its label is
preceded by the letter ~. Otherwise, the
implication pointer of A points to A itself and
has label k.

Sketch of proof. Par t (a) follows easily
from the definitions of q2rtps(z) and ~R s , as in
Lemma 4, Section 2. For part (b), if A has a
single outgoing edge labeled ~ and no
identi~cation pointers, then words in the
equivalence class represented by A are always
followed by the letter =. Hence irnps(z) =
im.ps(za) for any z in this class. Otherwise. no
letter is "predicted to the right" by the words
in this class, so the longest member of the
class is im/~s(z) for an z in this class. •

From Par t (b) of the above Lernma. it is
clear tha t we can install implication pointers
in the DAWG using a simple recursive depth-
first search. By using the pointers to
occurrences of the longest string of each right
equivalence class tha t are also presen t in the
nodes, we can create the labels on the implica-
tion pointers using pointers to occurrences of
the strings they represen t and lengths, each in
constant time. Since the size of the DAWG for
S is linear in I[SJl (Theorem 3). the entire
labeling procedure is linear in IIS~[. Following
this labeling, another traversal of the DAWG
can be made in which the nodes whose impli-
cation pointers do not point to themselves are
removed, and edges leading to them from the
remaining nodes are replaced with the
appropriate successor edges of Is, derived
from the implication pointers of these nodes.
The resulting graph will be Is, without the fre-
quency labels.

To finish the construction, we can add the
frequency labels using another simple recur-
sive procedure, analogous to that used to com-
pute locations (see Lemma 3).

Since each step of the construction of Is
from the DAWG for S is linear in S, we have
the following

Theorem, 4. Is can be built in t ime linear
in IISII."

355

F u r t h e r R e s e a r c h

N u m e r o u s d i r ec t i ons for f u r t h e r r e s e a r c h
r ema in . We list only a few.
1. Can a t h e o r e t i c a l ana lys i s of the e x p e c t e d
size of I s fo r a r a n d o m t e x t be given?
2. Can I S, w i thou t f r e q u e n c y labels , be bui l t
d i r e c t l y on-l ine in l i nea r t i m e ?
3. What a re t he m o s t e f f ic ien t m e t h o d s of
upda t ing I s when new t e x t s a r e a d d e d o r
r e m o v e d f r o m S ?
4. Not ice t h a t t he def in i t ion of t he nodes of I s
is s y m m e t r i c with r e g a r d to the d i r e c t i o n in
which the texts of S are read. A symmetric set
of edges can be added to the existing edges of
Is which give the "left" a-successors of the
nodes of S, in a manner analogous to the
(right) a-successors defined here. An analo-
gous set of "prefix identification pointers" can
also be added. What might be the further
applications of this "symmetric inverted file"?
Can it be built in linear time?
5. By a simple extension of our algorithm, the
nodes of Is can be labeled with a pointer to
the word they represent and a length. With
this extension, imps(x) can be computed for
any z E sub (S) in optimal time. Does this have
further applications in other areas of text pro-
cessing, e.g. spelling correction?

Acknowledgement

Author D. H a u s s l e r would like to t h a n k Prof .
Jan Mycielsld fo r s eve ra l en l igh ten ing d iscus-
sions on t h e s e a n d r e l a t e d top ics . We would
also like to t h a n k Joel Se i f e r a s fo r point ing ou t
his r e c e n t work in this a r ea . and for send ing
us this work and seve ra l r e l a t e d pape r s . F i ~ r e l d

~ |an,lr'e la

¢ o m : a ~ DAN G s . f o r S = ~ab ab c . a~.=ab~

S u f f i x t r e e f o r : ' • ~ababc31 , abcab32~

Fi~urt le

b c

D A ~ f o r S • [e b a ~ . a l~ : ab |

I s f o r S - lWl w2~. where w t - a b a b e , w 2 = a b e a b

356

Appendix

The following is a detai led a lgor i thm to build the DAWG for a se t of texts S.

builddaw 9 (S)
1. Create a node named source.
2. Let activenode be source.
3. For each word zu of S do:

A. For each l e t t e r a of ~ do:
Let activensde be u ~ a t e (aztivenode , a).

B. Let aztivenode be source.
4. Return source.

update (activenode , ¢)
A. If aztivenode has an outgoing edge labeled ¢ then

1. Let newactivenode be the node tha t this edge leads to.
2. If this edge is pr imary, r e t u r n newactivenode.
3. Else, r e t u rn split (azfivenode, ne~uactivenode).

B. Else
1. Create a node named nevvactivenode
2. Create a p r imary edge labeled a f rom activenode to xtewactivevtode.
3. Let currentnode be activenode.
4. Let s u f f i znode be undefined.
5. While currentnode isn' t source and su f f / zn .ode is undefined do:

a. Let currentnode be the node pointed to by the suMx poin ter of currentnode.
b. If currentnode has a p r imary outgoing edge labeled a then let su f , f /xnode be
the node tha t this edge leads to.
e. Else, if currentnode has a secondary outgoing edge labeled a then:

1. Let childztode be the node tha t this edge leads to.
2. Let s u f]~.~vtode be split (currentnode, child~mde).

d. Else, create a secondary edge from curre~ztnode to ne~uactivenode labeled a.
8. If s u f f i z n o d e is still undefined, let suff / .zvmde be source.
7. Set the suMx poin ter of ne~uaztivenode to point to su l f i zv tode .
8. Return ne~uaztivenodm.

split (parentno~, chilchtods)
I. Create a node called ne~ch~Idnode.
2. Make the secondary edge fromparentnode to chitdnode into a primary edge fromparentnode
to ne~childnode (with the same label).
3. For every primary and secondary outgoing edge of childnode, create a secondary outgoing
edge of ne~ch/tdnode with the same label and leading to the same node.
4. Set the suffix poin ter of nevuchildnode equal to tha t of childnode.
5. Reset the suMx poin te r of childnode to point to nezuchildnode.
6. Let currem2node be parentnode.
7. While currevdrmde isn't source do:

a. Let currentnode be the node pointed to by the suffix pointer of currentnode.
b. If currentnode has a secondary edge to childzzode, Make i t a secondary edge to
~e~uchildnodm (with the same label).
e. Else, break out of the while loop.

8. Return neu:childnode.

357

References

[Aho 82]

[Apo 79]

[Apo s3]

[Blu 83]

[Car 75]

[Col s2]

[Koh 80]

[Maj 80]

[Mal eli

[McC 7e]

Aho, Alfred V., John E. Hopcroft and
Jeffrey D. Ullrnan; The Design and
Analysis o I Computer Algorithms,
Addison-Wesley, Reading Mas-
sachusetts 0974).

Apostolico, A.; "Some linear time
algorithms for string statistics prob-
lems," Publication Series Ill, 176,
Instituto per le Applicazioni del Cal-
colo "Mauro Picone" (IAC), Rome,
1979, 28pp.

Apostolico, A. and F. P. P r epa ra t a ;
"Optimal off-line de tec t ion of repet i-
tions in a string," Theoret/ca/ Com-
ixuter Science, v. 22, 1983, 297-315.

Blumer, A., J. Blurner, A. Ehren-
feucht, D. Haussler, R. McConneU;
"Linear size finite au tomata for the
set of all subwords of a word: an out-
line of results ," Bul. Ear. Assoc.
Theor. Cernp. Sci., 1983, no. 21, 12-
20.

Cardenas, A. F.; "Analysis and per-
fo rmance of inver ted data base
s t ruc tures ," Comrn ACM, 1975, v. 18,
no. 5., 253.

Goldsmith, N.; "An appraisal of fac-
tors al~ecting the pe r fo rmance of
t ex t retr ieval systems,"/nJtorrnat/o~
Technology: Research ~ d Develop-
m a r t , 1982, 1, 41-53.

Kohonen, T.; Cbntent-Addressable
Memories, Springer-Verlag, Berlin,
Heidelberg, New York, 1980.

Majster, M. E. and Angelika Reiser;
"Efficient on-line cons t ruc t ion and
cor rec t ion of position trees," SIAM
J. Comput., v. 9, no. 4, Nov. 1980,
785-807.
Mailer, V.; "The content addressable
file s tore - a technica l overview,"
Angzvte. lnfor. (3) (1981), 100-106.

McCreight, Edward M.; "A space-
economical suffix t ree cons t ruc t ion
algorithm," JACM, v. 23, no. 2, April
1978, 262-272.

[Mor 68]

[Ner 58]

[Pra 73]

[P i 7s]

[Rod 81]

[Sei s3]

[Sli so]

[Tan 81]

[Wei 73]

Morrison, Donald R.; "PATRICIA
Pract ical Algorithm To Retrieve
Information Coded In
Alphanumeric," JACM, v. 15, no. 4,
October 1968, 514-534.

Nerode, Anil; "Linear au tomaton
t ransformat ions ," Proc. AMS, v. 9,
1958, 541-544.

Prat t , V. R., " Improvements and
applications for the Weiner repet i-
tion finder," unpublished
manuscr ipt , May 1973 (revised Oct.
1973, March 1975).

Van Rijsbergen, C. J.; "File organiza-
tion in l ibrary au tomat ion and infor-
mat ion retrieval," Journal of Docu-
menta t ion , v. 32, no. 4, December
1978, 294-317.

Rodeh, Michael, Vaughan 8.. Prat t ,
and Shimon Even; "Linear algori thm
for da ta compress ion via string
matching," JACM, v. 28, no. 1, Jan.
1981, 18-24.

Seiferas, J. and Chen, M. T.,
"Efficient and Elegant Subword-Tree
Construction," Univ. o I Rochester
1983-84 C.S. and C.E. Research
Review, 10-14.

Slisenko, A. 0., "Detection of periodi-
cities and string matching in real
t ime," (English translat ion) J. Soy.
Math., 22 (3) (1983) 1316-1387. (ori-
ginaUy published 1980).

Tanimoto, S. L., "A Method for
Detecting Structure in Polygons,"
Pattern Recognition, 1981, v. 13, no.
6, pp. 389-394.

Weiner, P.; "Linear p a t t e r n matching
algorithms," IEEE 14th Annual Sym-
poe/urn on S~uitching and Au2oTrmZa
Theory, 1973, 1-11.

358

