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Almtraet 

Given a finite set of texts S = [~, ..... ~vt] over 
some fixed finite alphabe t E, a complete 
inverted file for S is an abstract data type 
that provides the functions find('w), which 
returns the longest prefix of ~# which occurs in 
S; freq(zo), which returns the number of 
times ~ occurs in S; and loc=t~ons(~v) which 
returns the set of positions at which ~ occurs. 
We give a data structure to implement a com- 
plete inverted file for S which occupies linear 
space and can be built in linear time, using the 
uniform cost RAM model. Using this data 
structure, the time for each of the above 
query functions is optimal. To accomplish 
this, we use techniques from the theory of 
finite automata to build a deterministic finite 
automaton which recognizes the set of all sub- 
words of the set S. This automaton is then 
annotated with additional information and 
compacted to facilitate the desired query 
functions. 
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Introduction 

The notion of an inverted filefor a textual 
database is common in the literature on infor- 
mation retrieval, but precise definitions of this 
concep t  vary  [Goi 82]. [Rij 78]. [Car 75]. We 
propose the following definition: Given a finite 
a lphabet  ~, a se t  of keywords K ~ ~+, and a 
finite set  of t ex t  words S ~ ~+, an 
~t~eTted ,file for (~, K, S) is an abstract data 
type that implements the following functions. 

I..find: ~+ -~ K u ~AI. where f~,n~(~) is the 
longest prefix z of zv such that zcKu~RI 
and z occurs  in S,  i.e. z is a subword of a t ex t  
in S. 

2. fTeq : K -~ N, where f r e q ( ~ )  is the  number  
of t imes  ~ occurs  as a subword of the tex t s  in 
S .  

3. /°cations : K--~ ENxI~ where/seatioRs(w) is 
a set of ordered pairs giving the text numbers 
and positions within the texts where ~v occurs. 

This definition is simple, and includes many of 
the  essential features of the notions of 
inverted files in the literature, as well as those 
of other more general "content addressable" 
data structures [Koh 80], [Mal 81]. 

In this paper, we consider the problem of 
constructing a cszrtplete ivtverted .file for a 
finite set S. This is an inverted file for S in 
which the set of keywords K is ~b(S), i.e. 
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every substr ing of S is a key'word. We 
describe a da ta  s t ruc tu re  which implements  a 
complete  inverted file for S which occupies 
l inear space in the size of S,  can be built in 
l inear time, and is s t r u c t u r e d  such tha t  each 
of the query functions takes  optimal time. 
Specifically, the t ime for f / r i d ( w )  is propor- 
tional to the length of the output  string z ,  the 
t ime for f r e q u e n c y { w )  is proport ional  to the  
length of w,  and the t ime for loca t ions(w)  is 
proport ional  to the length of tv plus the  
number  of locations retrieved. Time and 
space bounds are given using the uniform cost  
RAM model  of computa t ion  (see [Aho 74]). 

The existence of a da ta  s t ruc tu re  with 
these  proper t ies  is not hard  to demonst ra te .  
It is essent ial ly implied in the early work of 
Morrison on PATRICIA t rees  [Mor 68], which 
are fur ther  refined to the compac t  position 
t rees  of Weiner [Wei 73] and the sulTlx t rees  of 
McCreight [McC 76]. Our p r imary  contr ibut ion 
is a new set  of basic da ta  s t ruc tu res  which are 
functionally equivalent to SUffLX and position 
trees,  but  are  smal ler  and easier  to build. 
Using methods  based on the theory  of finite 
au tomata ,  we replace the t rees  used  in ear l ier  
work with more  compac t  d i rec ted  acyclic 
graphs ! (see Figure 1). These da ta  s t ruc tu res  
will be superior  for o ther  applications of sulTlx 
t rees  as well (e.g. [Apo 83], [Rod B1], lAps 79]). 

In Section 1 we describe the  basic da ta  
s t ruc tu re  tha t  we build to implement  a com- 
plete inver ted file, give space bounds for this 
s t ruc tu re  and indicate how the retr ieval  func- 
tions are implemented  using it. Sections 2, 3 
and 4 are devoted to demons t ra t ing  tha t  this 
da ta  s t ruc tu re  can be built in linear time, 
assuming tha t  the size of the alphabet  is con- 
slant .  

Sect ion 2 int roduces  the Directed Acyclic 
Word Graph (DAWG) for a set of texts  S (see 
[Blu 83]), which is essential ly a determinis t ic  
finite au tomaton  t h a t  recognizes the set  of all 
subwords of S.  s In Section 3 we describe an 

! ,~imi.lar work in [Sei 83] has recently been brought 
to our attention. 

e An equivalent data structure is also described in 
[Sei 83], along with a similar construct.ion algorithm. [n- 
sishts into the relationsLh3p between tbAs and earlier data 
stxuctures, especially those of [Pra 73], [Sli 80] and [Wei 
73], are also given in this paper. 

on-line linear t ime algori thm to cons t ruc t  the 
DAWG for S. In Section 4 we give a collection of 
l inear t ime procedures  to "compact"  the 
edges of the DAWG and label its nodes, creat-  
ing the final da ta  s t ruc tu re  as descr ibed in 
Section 1. 

N o t a t i o n  

Throughout this paper  ~ denotes  an arbi- 
t r a ry  nonempty  finite alphabet  and E* denotes  
the  set  of all str ings over ~. The empty  word is 
denoted  by k. ~÷ denotes  ~ * - I X I .  S will 
always denote a finite subset  of ~*. For any 
w c E * ,  Iw] denotes the length of w.  

l lsl l  = I .  I f  = for  . o r b  
z,  y ,  z E ~*, then  y is a subword of w,  z is a 
pref iz  of w, and z is a suf f /z  of w. sub(S)  
denotes  the union of all subwords of the 
members  of S. For w eZ*,  It  u] =re,  tu has 
re + 1 pss i t /ons ,  numbered  f rom 0 to re. Posi- 
t ion 0 is a t  the beginning of w,  before the first 
le t ter ,  and subsequent  positions follow the 
corresponding le t te rs  of w.  For 
S = ~w, . . . . .  w~J, S has HS1] + k positions, each  
denoted  by a pair <i, j > where 1 ~ i ~ k and j 
is a position in w t. For  any z e s u b ( S ) ,  
endposs(z) denotes the se t  of all positions 
<i, j > in S immedia te ly  following occur rences  
of z and beginposs(z ) denotes  the se t  of all 
positions immedia te ly  preceding occur rences  
of z. For z £ sub(S), beginposs(z ) 
: e r e @ o s s ( = )  : ¢. 

Given a d i rec ted  aeyclic graph  G with 
edges labeled f rom ~÷, a p a t h  p in G is a 
sequence of nodes connec ted  by edges, or jus t  
a single node. For any edge • in G, label(e) 
denotes  the  label of e. label(p) is t he  word 
obtained by concatenat ing  the labels of the 
edges along p .  hzbel (p)=~ if p is a single 
node. 

,Section 1. Imp lemen t ing  a Complete  Inve r t ed  
F t l e  

We begin by describing the  basic da ta  
s t ruc tu re  used  to implement  a complete  
inverted file for a set  Of texts S.  

Definition. A ru2e of S is a product ion  
m ~oucfl where z Esub(S ) ,  a, f lE~*,  and 
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every t ime z occurs in S, it is p receded  by a 
and followed by ft. z ~ azfl  is a me_ me2 ru/e 
of S if it is a rule of S and a and f are as long 
as possible (i.e. for no 6, 7 £ Z*, where 67 # 
is z ~ 6oczf7 a rule of S). If z ~ az~ is a maxi- 
mal rule of S. then  a z f  is called the implica- 
t~rrt of z in S, denoted  imps(z) .  
 ps(sub (S))  = IC" Ps(=) : x c s u b  • 

For example, if S = ~ababc, abcab I then 
 ps(x) = = i m p s ( b )  = ab,  
imps(ca) = abcab and imps(sub(S))  = 
~k. ab, abc, ababc, abcab i. 

Definition. For any z e'izrrps(sub(S)) 
and a e Z, the a-successor of z is imps(za  ) if 
za e sub(S),  otherwise it is undefined. The 
compact DAB'G of S is the d i rec ted  graph 
Gs = (V, E) with edges labeled with words in 
E +, where V=imps(s 'ub(S))  and E = 

: a e X  . = a  e (s)L 

label ((z, a z a f ) )  = aft. The node h is called the 
source of g s .  • 

The compact  DAWG for S = 
~ababc, abcab~ is given in in Figure la.  For 
comparison, the  SUffLX t ree  ([McC 76]) for S '  = 
lababc $1, abcab ~ i  is given in Figure lb. Here 
we assume the na tura l  extension of 
McCreight's da ta  s t ruc tu re  f rom individual 
words to sets of words, using unique endmark-  
ers. Notice tha t  the compact  DAWG for S can 
be obtained f rom the suffix t ree  for S'  by 
merging isomorphic (edge labeled) subtrees in 
this s t ruc ture  and deleting the s t ruc ture  asso- 
ciated with the endmarkers ,  s We elaborate  
fur ther  on this connection in Section 2. 

The fundamenta l  propert ies  of G a are 
given in the following 

/ ,emma 1. For any z ~ sub (S) there  is a 
single pa th  p in Gs from the source to 
imps(X) such tha t  x is a prefix of label(p) and 
z is not a prefix of the label of any  proper  ini- 
tial segment  of p .  Conversely, for any path  p 
from the source to imps(z), label(p) is a 
suffix of ~,mps(z) and for any prefix y of 
label(p) which is not a prefix of the label of a 
proper  initial segment  of p,  
 ps(y) = i m p s ( = ) .  ° 

a A similar observation was made for the DAWG (see 
Section 2) in [Sei 8,2]. 
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Informally, this l emma says tha t  for any 
z ,  y e sub(S),  z and y "lead to the same 
node" in Gs if and only if imps(z )  = "hm.ps(Y). 
Thus the nodes of Gs r ep resen t  the 
equivalence classes of sub(S)  with respec t  to 
the  foUowing equivalence relat ion on E*. 

Definition. For z ,  y e sub (S), z •-s Y if 
and only if i m p s ( z ) = i m p s ( y ) .  For all 
=, yZsub (S ) ,  z ~sY .  

Note tha t  the words in any one of these  
equivalence classes all occur with the same 
frequency and in roughly the samelocations in 
S. 

A complete inverted file for a finite set of 
texts S is implemented using the compact 
DAWG. Gs, annotated with certain additional 
information to facilitate the retr ieval  func- 
tions. 

Definition. The labeled compact  DAWG is 
the  graph Is, obtained from CGs by adding the 
following labeling to each node z .  
1. A frequency label, t ha t  is, an in teger  indi- 
cating the number  of t imes tha t  z occurs in S.  
2. A (possibly empty)  list of /dentif icat/~rn 
po/nters  indicating all texts  of S of which z is 
a suffix. • 

The labeled compact  DAWG for 
S = tctbabc, abcvLb I is given in in Figure ld. 
Note tha t  the identification pointers  play a 
role analogous to the enclmarkers in the suffix 
tree.  

]n the actual  implementat ion of Is,  we 
assume tha t  the texts of S are s tored  in RAM, 
and tha t  the strings labeling the edges of Is 
are each given by a pointer  to an occurrence  
of the string in S and a length. Thus using the 
uniform cost RAM model, the space required 
for each of these labels is constant ,  as is the 
size of each  frequency label and identification 
pointer.  The overall size bounds for Is are 
given in the following 

Theorem 1. Let Is=(V, E). Let k be the 
number  of words in S and let m be the 
number  of identification pointers in Is.  Then 
I vl I1 1+1 and I E l + m  211Sll+ . 

Sketch of proof. This bound is re la ted to 
the well-known bounds for suffix t rees  ([McC 
76]). In particular,  for ~v ~ ~*, the  suffux ti'ee 
for ~ $ ,  has ]'w] + 1 leaves, a t  most  ]~ ]  



i n t e r n a l  n o d e s  and  t hus  a t  m o s t  2 ] w ]  edges .  
For  a se t  of t e x t s  S = ~wl . . . . .  ~v~l and  S '  = 
{IriS1 . . . . .  ~ $ ~ 1 ,  t he  suffix t r e e  fo r  S '  will have  
HS~I + k leaves  and  at  m o s t  I I~l - k + 1 i n t e r -  
nal  nodes ,  s ince  the  r o o t  nodes  of the  t r e e s  fo r  
the  individual  words  a r e  s h a r e d  in the  suffix 
t r e e  for  S ' .  Hence  the  n u m b e r  of edges  in this  
t r e e  is a t  m o s t  2IIS~]. It  c a n  be  shown t h a t  this  
gives an u p p e r  b o u n d  of 211Sll + k on t h e  
n u m b e r  of edges  and  iden t i f i ca t ion  p o i n t e r s  in 
Is, w h e r e  t h e  add i t iona l  k c o m e s  f r o m  th e  
iden t i f i ca t ion  p o i n t e r s  in the  nodes  for  
/ r nps (wi ) ,  l ~ i  ~ k .  The u p p e r  b o u n d  of 
IIS~I + 1 nodes  in I s  c o m e s  f r o m  th e  
I],51i- k + 1 i n t e r n a l  n o d e s  of the  suffix t r e e  
for  S '  and  a t  m o s t  k add i t iona l  nodes ,  aga in  
for  imlas (sue), 1 ~ i ~ k. • 

A s imple  e x a m p l e  of a s e q u e n c e  of t e x t  
s e t s  S ,  for  which 13 reaches these u p p e r  
bounds  is S n = ~anl where  a is a single l e t t e r .  
P r e l i m i n a r y  e x p e r i m e n t a l  e v i d e n c e  i n d i ca t e s  
e x p e c t e d  sizes of .291]3~l n o d e s  an d  1.0]]3~l 
edges  and  iden t i f i ca t ion  p o i n t e r s  fo r  I S when  
S is a single English t ex t .  F o r  DNA s e q u e n c e s  
( fou r  l e t t e r  a l p h a b e t )  t he  va lues  a r e  h i g h e r  a t  
• 5311sii and L411Sll for a single "strand". 

We now t u r n  ou r  a t t e n t i o n  to  i m p l e m e n t -  
ing t he  func t ions  f i nd ,  f req  and  locations. 

L e m r n a  g. Using Is, fo r  any  word  ~v c ~*, 
= = f / ~ . d ( ~ )  c a n  be  d e t e r m i n e d  in t i m e  
O ( I z l ) ,  and  for  any z Csub(S) ,  f r e q ( z )  can 
be d e t e r m i n e d  in t i m e  O ( I z  I). 

Sketch of proof. To i m p l e m e n t  f / r i d ,  we 
beg in  a t  t he  s o u r c e  of I s  a n d  t r a c e  a p a t h  
c o r r e s p o n d i n g  to  t he  l e t t e r s  of tv as long as  
possible .  By Lemrna  1, this  " s e a r c h  p a t h "  is 
d e t e r m i n e d  a n d  c o n t i n u e s  un t i l  t h e  l o n g es t  
p re f ix  z of to in sub  ( S )  has  b e e n  found.  To 
i m p l e m e n t  f r eq ,  we n o t e  t h a t  f r e q ( z )  = 
freq(irnps(z))  for  any z ~sub(S) .  Thus 
f r e q ( z )  c a n  be  o b t a i n e d  by  following t h e  p ro -  
c e d u r e  of f / r i d  and  t h e n  r e t u r n i n g  t h e  f re -  
q u e n c y  label  of t he  node  t h a t  t he  final edge  of 
th is  s e a r c h  pa th  leads  to. Clear ly  b o t h  o p e r a -  
t ions  a r e  O ( I z  I). • 

In i m p l e m e n t i n g  l oca t i ons ,  l e t  us  a s s u m e  
t h a t  S = { w l  . . . . .  ~v~l and  t h a t  fo r  e a c h  
i ,  l ~ i  ~ k ,  t he  l eng th  of ~v t is avai lable.  
Assume f u r t h e r  t h a t  l o c a l i o n s ( z )  r e t u r n s  

beginposs(z), as d e s c r i b e d  above.  

Lern.rrm 3. Let  z E s u b ( S )  and  imps(x)  = 

~ f l .  Let L = =L~g locab ions(z f l= ) .  Let  T = 
t < / , J >  : z/3 is a suffix of toe and 
] = I ~ ]  - lzf l l  I. Then  locations(z) = L u T. 

Sketch of proof. Since imps(z  ) = a~fl, 
e v e r y  o c c u r r e n c e  of z is fol lowed by  ft. Thus 
o c c u r r e n c e s  of z c a n  be  c lass i f ied  as t hose  
t h a t  a re  o c c u r r e n c e s  of x # =  for  s ome  ¢ e Z, 
i.e. t hose  fol lowed by still m o r e  l e t t e r s ,  and  
those  t h a t  a r e  o c c u r r e n c e s  of zf l  a t  t he  e n d  of 
a word.  • 

F r o m  the  above  l e m m a ,  it  is c l e a r  t h a t  
t h e r e  is a s imple  r e e u r s i v e  p r o c e d u r e  for  com-  
pu t ing  laca2ions(z) fo r  an y  word  z E sub(S),  
given  t h a t  we are a t  the  node  a z f l  = imps(z  ) 
a n d  we have  t h e  l en g th  of ft. We s imply  com-  
p u t e  the  list L d e s c r i b e d  above  r e c u r s i v e l y  b y  
e x a m i n i n g  e a c h  of the  s u c c e s s o r s  of i m p s ( z )  
a n d  t h e n  c o n c a t e n a t e  this  list  wi th  the  l ist  T, 
o b t a i n e d  f r o m  the  list  of i den t i f i ca t ion  
pointers associated with the node azfl. Since 
all sublists involved in this computation are 
obviously disjoint, the time required is clearly 
linear in the size rn of the final list. Since the 
t i m e  for  t h e  init ial  s t ep  of finding t he  node  
imps(z  ) and  the  l en g th  of /3 is O ( [ z l ) ,  t he  
total time for /oca.tionsCz) is O(l=l +~). 
Thus we have 

Theorerrt ,~. Using Is, the  f u n c t i ons  fiwxl, 
f req  an d  l o c a t i o n s  can  be  i m p l e m e n t e d  in 
o p t i m a l  t ime.  • 

The r e m a i n d e r  of the  p a p e r  is d e v o t e d  to  
t h e  t a sk  of showing t h a t  I s c a n  be  bui l t  in t i m e  
l i nea r  in t h e  s ize  of S .  

S e c t i o n  2. The DAWG 

As a p r e l i m i n a r y  s t ep  in bui lding I s, we 
c o n s t r u c t  a d i r e c t e d  g r a p h  ca l l ed  the  DAWG 
(Directed Acyclic Word Graph) for S. This 
graph is essentially a deterministic finite auto- 
maton which recognizes the set of subwords of 
S. 

.Definition. Let z and y in ~* be r/ght 
equivalent on S if endposa(z ) = ere~poss(y ). 
This relation is denoted by z ~R s y. For any 
word z, the equivalence class of z with respect 
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to -=Rs is denoted  [z]=R s. The equivalence 

class of all words which are not subwords of S 
is called the degenerate class. All other  
classes are nondegenera2e. • 

Obviously ---R s is a r ight  invariant 
equivalence relation on E* of finite index. Thus 
since sub (S) is the union of all nondegenera te  
classes of ~-e s , using s tandard  methods ([Ner 
58]), we can define from mR s a determinist ic  
finite au tomaton  which accepts  sub (S). 
Removing the one non-accepting state, which 
corresponds to the degenerate  class of =-R s ,  
we obtain the following graph (see [Blu 83]). 

Definition. The Directed Acyclic Word 
Graph (DAWG) for S, denoted Ds, is the 
d i rec ted  graph (V, E) with edges labeled with 
le t ters  in ~, where V is the set  of all nondegen- 
era te  equivalence classes in - = R s  and 
E = l ( [ z ] = R s , [ Z a ] = ~ s )  : z EZ*, a EE and 

== ~ s u b ( S ) l .  The edge ([=] .~. ,  [ ~ ] . ~ . )  is 

labeled a. [~],,R$ is called the source of Ds. " 

The DAWG for the se t  S = lababc, abcab I 
is given in Figure lc. 

It is enlightening to compare the DAWG 
for S to the compact DAWG Gs (Figure la) and 
to the suffix tree for S' (Figure ib), imagining 
the endmarkers removed. The remaining 
nodes of the suffix tree naturally correspond 
to left invariant equivalence classes of S based 
on equivalence of sets of beginning positions in 
S, i.e. z mLsy  if and only if be~nposs ( z )  
= beginposs(y ). This correspondence is analo- 

gous to tha t  described for the equivalence 
classes of Gs in Lemma 1. In fact, the nodes of 
Gs represent  the classes of the union of these 
two equivalence relations. 

Lemrna 4. ~s  is the transitive closure of 
---£s U mR s .  

Proof. For any z , y  EE*, if z z L  sy or 
z -=R s y then it is clear tha t  
"b'nps(z ) = i m p s ( y  ), hence z ~-sY. On the 
other hand, if ~n1~s(z) = azfl  = a'yfl' 
= i m p s ( y )  for some a, fl, a',fl' E E*, then 

z ~ R S a z  --=LsOLZi~ = a'y~'----Lsa'y --=RSy. • 
While in principle, the compact  DAWG can 

be obtained f rom either  the suffix t ree or the 
DAWG, it is easier  and more effmient computa-  

tionally to use the DAWG. As is the case for th~ 
suffix tree,  it can be shown tha t  the size of the 
DAWG for S is linear in I]$11. More precisely, we 
have the following. 

Lernma 5. Assume ]151[ > 1. Then the 
DAWG for S has at  most  2H51[ - 1 nodes. • 

Lemms  8, Assume 11511 > 1. If the DAWG 
for S has N nodes and E edges, t h e n  
E N + IlSll - 2. • 

The proofs of these lemmas are simple 
extensions of those given for Theorems 1 and 2 
of [Blu 88] for the special case where S has 
cardinal i ty  one. Worst case examples which 
achieve these bounds asymptot ical ly  are also 
given in tha t  paper  for this special case. 

Using Lemmas 5 and 6, we can give 
bounds on the total  size of the DAWG for S as 
follows. 

Theorem 8. Assume IIS~J > 1. Then the 
DAWG for S has at  most  211511- 1 nodes and 
3ll511 - 3 e d g e s .  • 

Preliminary experimental results indicate 
t ha t  the expected values are approximately 
1.511Sll nodes and 2.211511 edges when S is a sin- 
gle English text. For DNA sequences (four 
le t te r  alphabet), it appears tha t  the expected 
values are approximately 1.6[1511 nodes and 
asl1511 edges. 

Section 3. Constracting the DAWG 

We now turn to the problem of construct- 
ing the DAWG for S. The algorithm we have 
developed builds the DAWG in a simple on-line 
fashion, reading each word from S and updat- 
ing the current DAWG to reflect the addition of 
the new word. Individual words are also pro- 
cessed on-line in one left-to-right scan (see 
[Maj 80] for a discussion of the advantages of 
an on-line algorithm). 

The heart of the algorithm is given in the 
function update, and its auxiliary function, 
split. Given a DAWG for the set 
S = { t u , , ' ' ' , ~ I  (annotated with certain 
additional information described below), a 
pointer to the node representing ['uui],,,R# 

(called a~tivenode) and a letter a, update 
modifies the annotated DAWG to create the 
annotated DAWG for S' = l~i, ' • ', tui-l, 'wlaI. 
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When processing on a new word begins, 
activenode is set  to the source. Split is called 
by update  when an equivalence class from 
---Re mus t  be par t i t ioned into two classes in 
=R~,. 

Two types of annota t ion are required. 
First, each  of the t rans i t ion  edges of the DAWG 
is labeled e i ther  as a p r imary  or as a secon- 
dary  edge. P r imary  edges form a d i rec ted  
spanning t ree  of the  DAWG defined by taking 
only the longest pa th  f rom the source to each 
node. The second kind of annota t ion is the  
addition of a s~z f f i z  pointer to each node, 
analogous to the  pointers  used in [McC 76] 4 • 
If the equivalence class of node A consists of 
the  words ~ a l " ' ' a t , . ,  a z ' ' ' a r  . . . . .  a l ' ' ' a r l  
where ay E Z, 1 ~ j ~ r ,  then  the sufftx pointer  
of A points to the node H represent ing the  
equivalence class of ~ + l ' ' ' a r  Since the  
source represents the equivalence class of h, 
its suffix pointer is null. 

The algorithm to build the DAWG is given 
in the Appendix. It consists of the main pro- 
cedure bu//.ddmn 9 and auxiliary functions 
update and spl/t. 

The key to the linear time bound for this 
construction algorithm is that using SUffLX 
pointers and primary or secondary marked 
edges, all of the s t ruc tu re s  which mus t  be 
modified by update can be located rapidly. 
Here it is impor tan t  tha t  suf~x pointers  allow 
us to work f rom the longest  suffixes backwards 
to successively shor te r  suffixes, stopping when 
no more work needs to be done (see [McC 76]). 
Simpler methods,  which involve keeping t r ack  
of all "active sufftxes" will be potential ly O(n ~) 
(e.g. [Maj 80]). In addition, it is impor tan t  tha t  
the s ta tes  do not  need to be marked  with 
s t ruc tu ra l  informat ion about  the equivalence 
classes they  represent .  This is in cont ras t  to  
the O(n 2) methods  of [Tan 81], which build 
similar s t ruc tu res  by direct ly  parti t ioning the  
equivalence classes in an i terat ive manner .  

The essentials  of the timing analysis of 
the DAWG algori thm can be given as follows. 
Since we are assuming tha t  the  alphabet  size 
is constant ,  we can assume tha t  the DAWG is 

• These pointers are orisina].ly due to Pratt, who gives 
an edgorithm related to ours in [Pra 73]. 

implemented  using linked lists of edges in the 
standard fashion (see e.g. [Aho 82]). Under 
these assumptions, it is clear that apart from 
the while loop in update, the total processing 
time is linear in I15~I. Furthermore, since each 
pass through the body of this while loop except 
the last installs an edge, and no edges are ever 
deleted, the total number of times this loop is 
executed is bounded by the number of edges 
in the final DAWG, which is linear in fISH 
(Theorem 3). Finally, the total processing 
time for each execution of the loop is con- 
stant, apart from the while loop in spl/t. Thus 
the time bound is reduced to the problem of 
bounding the total time spent in the while loop 
of spl~t by a linear function of HAl- This can be 
done as follows. 

De tim/t/on. Let S = ~w, ..... ~=I. tails is 
the longest suff, x of ~# which occurs more 
than once in S. If tail s = A then 
shortt~l s = A. otherwise shorthzils iS the long- 
es t  suffix ~ of tail s such that ~ ~R s tails. • 

Lemm, ta Z Let S =~, ..... ~I and 
S' = ~I ..... ~a I. The number of times that 
the  while loop of spl~ is executed  when D8 is 
updated to D$, is bounded by ]shorttail$ l 
I sh.orttaiZs. I + 2. • 

To complete  the proof of the  l inear t ime 
bound, we observe tha t  when we sum the  
bounds given by Lemma 7 over the ent i re  
course of the computat ion,  most  of the t e rms  
cancel, leaving an 0(11,51[) remainder .  (See 
similar techniques  in [McC 76]). 

S e c t i o n  4. CreaUng an  Inverted  File f rom t h e  
DAWG 

It remains to demonstrate how the DAWG 
can be compacted and labeled to create tlne 
data structure Is described in Section I. 

First, let us assume that the'DAWG con- 
struction algorithm given in the previous sec- 
tion has been extended so that each node of 
the DAWG is labeled with a pointer to the posi- 
tion in S immediately following the first 
occurrence of longest member of the 
equivalence class it represents. The functions 
update and split are easily extended so that 
they maintain this information during the con- 
struction of the DAWG. This requires only that 
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update have the  cu r ren t  location in S at  the 
t ime it adds a new node for the equivalence 
class of ~via, as described above. New nodes 
c rea ted  by spl/t can simply take these 
pointers from the original nodes being split. 
These additions will not affect the  linear t ime 
bound for construction.  We also assume tha t  
each node is augmented  with a list of 
identification pointers,  which indicate all texts  
in S, if any, of which a representa t ive  of the 
equivalence class of this node is a suffix. (Of 
course, all members  of the equivalence class 
will be suffixes of these  texts.) After the DAWG 
is built, these pointers  can be added by a pro- 
cedure tha t  t races  the sufftx pointers from the 
node represent ing [w~].R s to the source for 

each wi e S,  adding identification pointers for 
wi to each node visited. The additional t ime 
and space for this procedure is bounded by 
the number  of suffixes of the words in S, and 
hence is O(IIS~[). 

Given these extensions to the DAWG con- 
struction algorithm, it remains to show how 
the DAWG can be compacted to form Is, and 
how the frequency labels are added. 

In view of Lemma 4 of Section 2, each of 
the equivalence classes represented by the 
nodes of Is are ~ composed of one or more right 
equivalence classes represented by nodes in 
the DAWG. The process of "compacting" the 
DAWG essentially consists of removing all but 
one of the nodes for each equivalence class, 
replacing the chains of classes removed by 
multi-letter edges. As a preliminary step to 
compaction, we make a recursive depth-first 
search of the DAWG adding the following 
pointers to the nodes. 

Definition. For each node A of the DAWG 
for S representing the equivalence class 
[ z ] ~  s. the implication pointer of A is a 

pointer  to the node B represent ing [azfl]=R s, 

where azfl = imps(z ). The tabel of this impli- 
cation pointer  is ft. • 

Lemma 8. a) The label of an implication 
pointer is well-defined, i.e. if z ,  y e sub(S)  
and z ---R s y then  ~xnps(z) = azfl = imps(y)  = 
a'y~ for some ct, a', ~ e Z*. 
b) Let A be a node of the DAWG for S 
represent ing [z ]=s s. If A has a single outgoing 

edge labeled e leading to a node B and an 
empty set of identification pointers then the 
implication pointer of A is equal to the impli- 
cation pointer of B. except that its label is 
preceded by the letter ~. Otherwise, the 
implication pointer of A points to A itself and 
has label k. 

Sketch of proof. Par t  (a) follows easily 
from the definitions of q2rtps(z) and ~R s , as in 
Lemma 4, Section 2. For part (b), if A has a 
single outgoing edge labeled ~ and no 
identi~cation pointers, then words in the 
equivalence class represented by A are always 
followed by the letter =. Hence irnps(z ) = 
im.ps(za) for any z in this class. Otherwise. no 
letter is "predicted to the right" by the words 
in this class, so the longest member of the 
class is im/~s(z) for an z in this class. • 

From Par t  (b) of the above Lernma. it is 
clear tha t  we can install implication pointers 
in the DAWG using a simple recursive depth- 
first search. By using the pointers to 
occurrences  of the longest string of each right 
equivalence class tha t  are also presen t  in the 
nodes, we can create  the labels on the implica- 
tion pointers using pointers to occurrences of 
the strings they  represen t  and lengths, each in 
constant  time. Since the size of the DAWG for 
S is linear in I[SJl (Theorem 3). the entire 
labeling procedure is linear in IIS~[. Following 
this labeling, another traversal of the DAWG 
can be made in which the  nodes whose impli- 
cation pointers do not point to themselves are 
removed, and edges leading to them from the 
remaining nodes are replaced with the 
appropriate successor edges of Is, derived 
from the implication pointers of these nodes. 
The resulting graph will be Is, without the fre- 
quency labels. 

To finish the construction, we can add the 
frequency labels using another simple recur- 
sive procedure, analogous to that used to com- 
pute locations (see Lemma 3). 

Since each step of the construction of Is 
from the DAWG for S is linear in S, we have 
the following 

Theorem, 4. Is can be built in t ime linear 
in IISII." 
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F u r t h e r  R e s e a r c h  

N u m e r o u s  d i r ec t i ons  for  f u r t h e r  r e s e a r c h  
r ema in .  We list  only  a few. 
1. Can a t h e o r e t i c a l  ana lys i s  of the  e x p e c t e d  
size of I s  fo r  a r a n d o m  t e x t  be  given? 
2. Can I S, w i thou t  f r e q u e n c y  labels ,  be  bui l t  
d i r e c t l y  on-l ine in l i nea r  t i m e ?  
3. What a re  t he  m o s t  e f f ic ien t  m e t h o d s  of  
upda t ing  I s when  new t e x t s  a r e  a d d e d  o r  
r e m o v e d  f r o m  S ?  
4. Not ice  t h a t  t he  def in i t ion  of t he  nodes  of I s  
is s y m m e t r i c  with r e g a r d  to  the  d i r e c t i o n  in 
which the texts of S are read. A symmetric set 
of edges can be added to the existing edges of 
Is which give the "left" a-successors of the 
nodes of S, in a manner analogous to the 
(right) a-successors defined here. An analo- 
gous set of "prefix identification pointers" can 
also be added. What might be the further 
applications of this "symmetric inverted file"? 
Can it be built in linear time? 
5. By a simple extension of our algorithm, the 
nodes of Is can be labeled with a pointer to 
the word they represent and a length. With 
this extension, imps(x) can be computed for 
any z E sub (S) in optimal time. Does this have 
further applications in other areas of text pro- 
cessing, e.g. spelling correction? 
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Appendix 

The following is a detai led a lgor i thm to build the DAWG for a se t  of texts  S. 

builddaw 9 ( S ) 
1. Create  a node named  source. 
2. Let activenode be source. 
3. For each  word zu of S do: 

A. For each  l e t t e r  a of ~ do: 
Let activensde be u ~ a t e  (aztivenode , a ). 

B. Let aztivenode be source. 
4. Return source. 

update (activenode , ¢)  
A. If aztivenode has an outgoing edge labeled ¢ then  

1. Let newactivenode be the node tha t  this edge leads to. 
2. If this edge is pr imary,  r e t u r n  newactivenode.  
3. Else, r e t u rn  split (azfivenode, ne~uactivenode ). 

B. Else 
1. Create  a node named  nevvactivenode 
2. Create  a p r imary  edge labeled a f rom activenode to xtewactivevtode. 
3. Let currentnode be activenode. 
4. Let s u f  f i znode  be undefined. 
5. While currentnode isn' t  source and su f f / zn .ode  is undefined do: 

a. Let currentnode be the node pointed to by the suMx poin ter  of currentnode.  
b. If currentnode has a p r imary  outgoing edge labeled a then  let  su f , f /xnode  be 
the node tha t  this edge leads to. 
e. Else, if currentnode has a secondary  outgoing edge labeled a then: 

1. Let childztode be the node tha t  this edge leads to. 
2. Let s u f  ]~.~vtode be split (currentnode, child~mde ). 

d. Else, create a secondary edge from curre~ztnode to ne~uactivenode labeled a. 
8. If s u f f i z n o d e  is still undefined, let  suff / .zvmde be source. 
7. Set  the suMx poin ter  of ne~uaztivenode to point to su l f i zv tode .  
8. Return  ne~uaztivenodm. 

split (parentno~, chilchtods) 
I. Create a node called ne~ch~Idnode. 
2. Make the secondary edge fromparentnode to chitdnode into a primary edge fromparentnode 
to ne~childnode (with the same label). 
3. For every primary and secondary outgoing edge of childnode, create a secondary outgoing 
edge of ne~ch/tdnode with the same label and leading to the same node. 
4. Set the suffix poin ter  of nevuchildnode equal to tha t  of childnode. 
5. Reset  the  suMx poin te r  of childnode to point to nezuchildnode. 
6. Let currem2node be parentnode. 
7. While currevdrmde isn't  source do: 

a. Let currentnode be the node pointed to by the suffix pointer of currentnode. 
b. If currentnode has a secondary edge to childzzode, Make i t  a secondary edge to 
~e~uchildnodm (with the same label). 
e. Else, break out of the while loop. 

8. Return neu:childnode. 
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