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Abstract 

A generic translation between various ~kinds of recur- 
sire trees is presented. It is shown that trees of either finite 
or countably-infinite branching can be effectively put into 
one-one correspondence with infinitely-branching trees in 
such a way that the infinite paths of the latter correspond 
to the Up-abiding" infinite paths of the former. Here ~ an 
be any member of a very wide class of properties of infinite 
paths. Two of the applications involve the formulation of 
large classes of H~ variants of classical computational prob- 
lems, and the existence of a general method for proving ter- 
mination of nondeterministic or concurrent programs under 
any reasonable notion of fairness. 

1. Introduction 

In this paper a general theorem is proved, es- 
tablishing elementary recursive one-one reductions be- 
tween various kinds of infinite trees. The result itself 
might  seem less appealing than some of its corollaries, 
which indeed served as the prime motivation for ob- 
taining the result in the first place. Consequently, the 
paper is structured in a way that  presents much of the 
background and technical preliminaries for the applica- 
tions before touching upon the main result. 

In Section 2 we describe the two levels of 
undecidability relevant to the paper: the low 

0 0 E1/II  1 (r.e./co-r.e.) level and the high 1 1 E1/II1 (co- 
inductive/inductive) level, and indicate their classical 
recursive-well-founded-trees characterization. We then 
present a recent recursive-recurrence-free-trees alterna- 
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t i re  to this characterization, taken from [H2] (which 
is a precursor of the present paper), and which leads, 
among other things, to the description of some simple 
highly undecidable problems about NTM's, dominoes, 
etc. In Section 3, the current research situation of 
the (seemingly unrelated) area of fair computations is 
described. The main line of research is the search for 
semantically complete methods for proving termination 

of nondetermiulstic or concurrent programs under in- 
creasingly more complex notions of fairness. 

The main result is presented in Section 4. In Sec- 
tions 5 and 6 it is applied to the material of Sections 2 
and 3, respectively, resulting in large classes of new H I 
variants of classical computational problems and, per- 
haps more importantly, a generic proof method for the 
termination of programs under almost any conceivable 
notion of fairness. 

The present paper reports on a direct continuation 
and culmination of the research described in [H2]. We 
expect to publish a final journal version combining the 
results of both. 

2. Two Levels of UndecidabUity 

While there exist many different levels of un- 
decidability, there seem to be mainly two which stand 
out as being fundamental and naturally-occuring: the 

0 0 E1/II 1 (that is, the r.e./co-r.e.) level, and the E1/H 1 1  1 
(sometimes called the co-inductive/inductive) level. 
The former is the first level of the arithmetical hierar- 
chy and is characterized by formulas over arithmetic 
with one number quantifier and a recursive matrix, 
and the latter is the first level of the analytical hierar- 
chy, characterized by formulas over arithmetic with one 
function (or predicate) quantifier and an arithmetical 
matrix.  We shall not at tempt to convince the reader 
of the special role these two levels play by a review 
of undeeidability results in general, but  we do point 
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out that  the theoretical computer science community 
has repeatedly seen examples of undeeidable problems 
which turn out actually to be in one of these levels. A 
striking example is in the field of logics of programs, 
where numerous entirely different logical systems have 
been shown to have Hi-complete validity problems, 
cf. [H1]. Fairness and unbounded nondeterminism is 
another. To see how unbounded nondeterminism is 
connected with IIl one is led to consider trees. 

One of classical ways of viewing the low ~l/Hl° 0 
level of undecidability is by finitely-branching recur- 
sire trees; say, the computation trees of NTM's. 
Specifically, this level captures the well-foundedness 
predicate ( =  "are all paths finite?") of these trees. 
Similarly, the classical treatment of the ~ / I I l  level is 
via the well-foundedness of countably-branching recur- 
sire trees; the set of (notations for) well-founded such 
trees is Hi-complete, and hence also is the set of 
(notations for) constructive ordinals. See Rogers JR]. 

In [H2] it is shown that  the 1 1 ~1/II1 level can be 
viewed alternatively by considering finitely-branching 
recursive trees. It is shown therein, using elemen- 
tary transformations between trees, that the set of 
(notations for) recursive reeurrence-lree marked binary 
trees is II~-complete. Here a marked tree is one in 
which some recursive subset of the nodes are marked, 
and a recurrence is an infinite path containing infinitely 
many marked nodes. (A similar result was proved in- 
dependently in [A].) This %hin-trees" characterization 
was shown in [H2] to lead to easily describable, highly 
undecidable computational problems, that  are in fact 
variants of well-known ones on the 0 0 ~ l / I I  1 level. Three 
of the more appealing of these are the following: 

Proposition 1 [EC, Fii,HPS,S,H2]: The problem of 
whether a NTM admits an infinite computation on 
blank tape, that  reenters its start state infinitely often, 
is ~l-complete. 

A domino is a 1 X 1 square fixed in orientation, 
with a color associated with each of its sides. A tiling 
requires adjacent edges to be monochromatic. See [W]. 

Proposition2 [H2]:  The fo.owing recurring 
dominoe8 problem is ~-complete:  Given a set T = 
{ do, d l , . . . ,  dm} of dominoes, can T tile Z X Z such 
that  do appears infinitely often in the tiling? 

Proposition 3 [H2]: The following variant of 
Post's correspondence problem is El-complete: Given 
(Z l ,  - . "  , 2~n), (Yl," • ", Y~), Zi,  Yi E { 0, 1 }*, is there a se- 
q u e n c e  ~r = Ci1,i2,...), 1 < i j  < n, with infinitely 
many occurrences of 1 in ~, such that  zlxzi, . . . .  
Fix Y i 2 "  • • ? 

In all cases the proofs first establish the fact that  
with the objects at hand (NTM's, dominoes or Post 
correspondences) one can define any recursive finitely- 
branching tree, with the marking corresponding to the 
machine being in the start state, or the domino do or 
the index 1 being most recently used. The thin/fat  
correspondence described above between the two kinds 
of trees characterizing the I 1 Ill/H1 level is then envoked. 

Note that, just as with Tur'ing machines, the 
"recurring ~ highly undecidable problems described here 
have finite and infinite analogues that  are NP-complete 
and H°l-complete, respectively. For example, whether 
or not, given a finite set of dominoes T and a num- 
ber  n, T can tile some n × n square is NP-complete 
ILl, whereas whether T can tile Z × Z is II°l-complete 
[W, Be]. In this sense Propositions 1-3 are natural ex- 
tensions. 

In [H1] all Hi-hardness results in logics of pro- 
grams (and some NP-, PSPACE-, and H2 °- ones too) are 
provided with short transparent proofs using variants 
of the recurring-domino problem of Prop. 2. 

3. Fa i r n e s s  

Much effort has gone recently into the investiga- 
tion of the behavior of nondeterministic or concur- 
rent programs under the assumption of lairne88, e.g., 
[AO,F,FK,GF,GFMR,LPS,Pa,P,QS]. In a nondeter- 
ministic program P with many possibilities (or direc- 
tions) to choose from at certain points, an infinite com- 
putation is lair if each direction is taken infinitely often: 
P fairly termlnate8 if it admits no infinite fair computa- 
tions, that  is, if it always terminates assuming it acts 
fairly. 

We shall be referring in this paper to the following 
simple bidirectional nondeterministic program, cf. [D]: 

D O A ~ a o B ~  OD (I) 

( :  "repeatedly, if A is true, execute a; if B, execute 
8; if both, toss a coin to choose one; if neither, halt" .) 
Here a direction is enabled in a state if its guard C A or 
B) is true, and is taken if its action C a or 8) is executed. 

The main direction of research in this area (as 
is evident, for example, from Francez' encyclopaedic 
survey IF]) is the search for semantically complete proof 
methods for fair termination under increasingly more 
complex notions of fairness; notably, those notions that  
take into account disabled directions and those that  
relativise fairness to given sets of states. 
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Here are three examples of the many notions of 
fairness that  have been considered: 

weak fairness: 

An infinite computation is weakly fair if each direc- 
tion that  is enabled continuously from some point 
on, is taken infinitely often. 

strong fairness: 

An infinite computation is strongly fair if each 
direction that  is enabled infinitely often, is taken 
infinitely often. 

extreme fairness: 

An infinite computation is extremely fair if for 
every first-order state formula p, if p is true 
infinitely often then each direction is taken 
infinitely often in states satisfying p. 

For the first two notions there are known complete 
proof methods for fair termination (cf. [LPS,AO,F]) but 
for the third, introduced in [P] (as well as for a host of 
others (cf. [QS,FD) , the problem has been left open. 

One of the difficulties with devising semantically 
complete methods lies in the fact that  the natural num- 
bers do not suffice as the ordinals associated with fair 
termination. The two commonly used and closely re- 
lated approaches to overcoming this are both connected 
with so-called unbounded nondeterminism, that  is with 
programs allowing assignments of the form z 4-?, set- 
ting z to any natural number. We describe one here. 

Starting in [AO], and later also in lAPS,F], it is 
shown in this approach how to transform programs, 
such as program (1) above, which utilize bounded non- 
determinism (in the sequel, bnd) into equivalent ones 
with unbounded nondeterminism (und), called ezplicit 
schedulers. The latter use the z ~ ?  assignments to pick 
arbitrary finite priorities for scheduling the directions 
to be taken in the former, and terminate everywhere 
iff the original programs terminate fairly. Now, since 
there are complete methods for proving conventional 
termination of programs with and, albeit using all con- 
structive ordinals (see lAP] based upon ideas of [Bo,C]), 
this yields a complete method for ]air termination of 
programs with bnd. 

As an example, the following are the explicit 
schedulers associated with program (1) by the methods 
of [AO,F] for proving, respectively, weak and strong 
fair-termination: 

weak-fairness 

a ~? ;  b ~?; 

DO (A A a < b) 
(a; a ~-? (if B then b ~-- b - 1 else b ~--?)) 

D(B A b < a) 
(fl; b ~--? (if A then a 4- a - -  1 else a-4--?))OD, 

(2) 

strong fairness 

DO (AA a _< b)-+ 
(a; a 4--? (if B then b 4- b-- 1)) 

~ B A b  < a) 
(fl; b *-? (if A then a 4- a -  1)) OD. 

(3) 

The reader should be able to convince his/herself 
that  program (2) (resp. (3)) everywhere-terminates iff 
program (1) fairly terminates under weak (resp. strong) 
fairness. As mentioned, the proof system of lAP] can be 
used to prove termination of (2) or (3)3 that  system is in 
fact complete relative to an underlying p-calculus-like 
language, and might require any constructive ordinal 
in the proof. 

Without going into the details of the other 
approach to proof methods for fair termination 
(represented, for example, by the results in [LPS]) we 
can say that  it yields Floyd-like methods in which the 
prover is required to find some well-founded set and 
prove certain properties of the program w.r.t, that  
set. Showing completeness of such methods involves 
associating with the original bnd program a computa- 
tion tree with infinite outdegree, and then using the 
ordinals corresponding to nodes in the tree as the well- 
founded set. 

Upon reading the literature on fairness one gets the 
feeling that  the connections, exposed by these methods 
and their completeness proofs, between the infinite 
paths of the computation trees of und programs and 
the fair infinite paths of those of bnd programs, are 
more fundamental, and that  they should generalize. In 
a sense the %hin/fat trees" correspondence lemma of 
[H2] captures such a connection, but it is one of only a 
very simple nature. 
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4. The Main Result 

The general setting is that  of recursive trees. A 
node is a finite sequence of natural numbers (i.e., an 
element of N*) denoting the path leading to it from the 
root )~, and a tree is simply a subset of N* closed under 
the prefix operation. We take a recursive tree to be one 
for which both membership and leafship ("is z a leaf?") 
are recursive. This is the strongly recursive of Rogers 
JR]. A tree is well-founded if all its paths are finite; it 
is finitely-branching if each node has only finitely many 
offspring, and is k-branching if it is actually a subset of 

0 , . . . ,  k - 1 }* (so that  in particular each node has at 
most k offspring). 

Let ~ be some fixed (possibly infinite) alphabet. 
A marked tree is one in which nodes are labelled with 
(possibly infinitely many) letters from ~ ;  i.e., W comes 
complete with a marking predicate Mw C W X ~ .  
A marked tree will be said to be recursise if it is 
a recursive tree and if, in addition, Mw is recur- 
sire. Let T, T +, T~,  T~ stand, respectively, for the 
sets of recursive trees, recursive marked trees, recur- 
sire finitely-branching marked trees, and recursive k- 
branching marked trees. 

Throughout, we understand a recursive tree to be 
represented by some Turing machine defining it. For 
example, a tree W in T is represented by some machine 
computing 

Xw(z) : z E W, z a leaf; 
z E W, z not a leaf. 

We now define a language L for stating properties 
of infinite paths in marked trees. An atomic formula is 
an expression of one of the forms 3 a, Va, 3°°a or V°°a, 
where a E ~ is a m a r k .  Define Lo to be the set of 
atomic formulas. For each i ~ 0, let/.~ be the closure 
of L/ under finite conjunctions and disjunctions, and 
under denumerable recursive conjunctions (i.e., if { tot } 
is a recursive sequence of formulas of/.~ then A/Io/ i s  
in L~). L/+i is taken to be the closure of /~ under 
denumerable recursive disjunctions. Let L = U/L/ .  
Here we talk about L with the convention that  each 
formula to G L is given together with the least n for 
which ~o E Ln. This n is called ~o's type. 

Note: L is (superficially) similar to the "~fullpath" frag- 
ment of Emerson and Clarke's [EC] language CTF, for 
which they provide a translation into fixpoint-theoretic 
terms. 

Informally, each ~o E L is interpreted over a given 
infinite path p by interpreting 3 a as "there is a node 

on p marked with a", and 3°% as "there are infinitely 
many nodes on p marked with a"; V a and V°°a denote 
the appropriate duals. This meaning is then extended 
up through the Boolean and infinitary connectives. 

For example, consider playing chess on an infinite 
board (but with the standard set of 32 pieces) where 
moving rules are generalized in some reasonable way. 
An infinitely long game is a draw iff both players call 
"cheek" infinitely often, otherwise it is a win for the 
player with the most calls. The game tree can be 
regarded as an element of T + (or T~ if pieces are not 
allowed to move too far) with, say O and (D marking 
nodes where player 1 or 2 checks, respectively. The 
draw criterion is then given simply by the formula of 
L : 3°°OA 3 °° ®. 

For ta E L an infinite path is said to be to-abiding 
ff it satisfies ~, and a tree is p-avoiding if it has no io- 
abiding paths. Note that  the recursiveness of markings 
and trees allows referring in effect to ancestors of nodes, 
as in the following (liberally formulated) formula of L, 

3°°a A A(v°°(number of nodes between two 
i 

most recent a's from root > I(i))), 

for some recursive f .  Here the Io-abiding paths have 
infinitely many nodes marked a and the distances be- 
tween these "grow" in the special manner described. 
Clearly, each of the countably many right-hand con- 
juncts can be associated with a recursive mark. 

Note that  by definition a tree is well-founded 
iff it is (3°°true)-avoiding, for the trivial everywhere- 
occuring mark true. 

Another important special formula in L is 3°°0,  
where® is any fixed mark in ~ .  A 3°°t~)-abiding path 
is what was termed recurrence in Section 2, and we 
can now restate the recurrence lemma of [H2] (cf. also 
[A,ECD: 

Recurrence Lemma: For each k > 1, the set of well- 
founded trees in T is recursively isomorphic to the set 
of 3°°~)-avoiding trees in T~'. 

The one-one recursive transformations used in [H2] 
to prove this lemma (relying on a theorem of MyhiU 
JR. p. 85] to obtain an isomorphism from them) are 
particularly simple. The main technical result of this 
paper is the following, in which the ~ i  direction of 
the recurrence lemma is significantly strengthened by 
generalizing the property of infinite paths which is used. 
In passing, we also remove the k subscript. 
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Theorem 4: Let p be an arbitrary formula of L. 
The set of p-avoiding trees in T + (and hence also those 
in T~ and T~" for each k) is one-one reducible to the 
set of well-founded trees in T. 

Proof of Theorem 4: We actually establish the follow- 
ing stronger claim: 

(*) Let p be an •arbitrary formula of L. There is a 
recursive 1 - 1 function y : T + --~ T that,  for 
each W 6 T + induces a recursive transformation 
from the infinite paths of y(W) o,to the p-abiding 
(infinite) paths of W. 

Note that  the p-abiding paths of W are thus required 
to be recursively isomorphic to the elements of a par- 
tition of the infinite paths of y(W). As a special case, 
of course, W has no p-abiding paths iff y(14~ has no 
infinite paths; hence the Theorem. 

The proof is in three steps and is illustrated by the 
following table. 

tree W step 1 step 2 step 3 

class I T+ T + T2 + T 
path property I ~, 3¢°~) 3¢°~) 3 ¢° true 

In step 1, the main one of the proof, one shows, by 
induction on the structure of p,  how to construct for 
each W C T + a tree W~ 6 ~ containing only the single 
mark®,  with the p-abiding paths of W corresponding 
to the recurrences of Wi. The w-hranching W1 is then 
turned into a binary tree W2, preserving recurrences. 
Finally, the proof of the > 1 direction of the Recur- 
rence Lemma, appearing in [H2], is used to obtain the 
final unmarked tree r/(W) 6 T, with recurrences in W2 
corresponding to the infinite paths of ~/(W). All trans- 
formations are one-one and reeursive, and the path cor- 
respondences of the two last steps are actually recur- 
sire isomorphisms; it is the first step that  yields the 
one-many aspect of the path correspondence. 

The third step appears in detail in [H2] and is 
hence omitted. For the second, simply replace each 
node in Wi of the form of Fig. 1 by one of the form 
of  Fig. 2, with the newly introduced nodes unmarked. 
The new infinite path, being unmarked from u onwards, 
does not affect recurrences. 

Let us now concentrate on the first step. For each 
p 6 L we have to describe a recursive one-one procedure 
taking a tree W 6 ~ to a tree W1 6 T + involving the 
mark~) (assumed not to mark W), with the recurrences 
of W, being associated in a many-one fashion with the 

Fi q u re  1 

F i g u r e  2 

Figure 3 

p-abiding paths of W. For ease of exposition, and since 
W, depends on p,  we denote the desired W~ by W~,. 

First define the mark-free version of W~,, denoted 
W~, as follows. Given W 6 T +, denote by W ° the 
tree obtained by duplicating each subtree of W in the 
manner illustrated in Fig. 3. Formally, for a node z = 
( Z l , . . . , z , )  6 ~l*, let z + l =  (zl + 1 , . . . , z , + 1 ) ,  and 
let W + 1 = { z + 1 I z 6 W }. W ° is then defined as 

W ° = W + I U  U {(u+l)Ouluyew, ye  N*}. 
uEW 

Referring to Fig. 3, the node u is actually replaced 
by u + 1, and its leftmost offspring is (u + 1)0. We 
call these, respectively, the old and new u's, and use 
this terminology for their subtrees too. Thus, in W ° 
each node has one old occurrence and an old and new 
subtree. Moreover, given a node z 6 W ° it is easy 
to determine whether or not z is old (z has no O's), 
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and if it is not, it is equally easy to find its old root, 
i.e., its nearest old ancestor, since in this case we have 
z ~ (u + 1)0y. In either case each z 6 W ° corresponds 
effectively to a unique ~ 6 W. This correspondence 
preserves ancestorship. Now, for every i ~ O, W i÷1 is 

defined as 

z E W  ~ 

and is illustrated in Fig. 4. The j ' th  subtree from the 
left is called the j ' th  copy of W ~. 

Given W 6 T + and a formula ~ E L of type n (i.e., 
n is the least integer such that  ~ 6 L,}, take W~ to be 
simply W ~. 

We now describe the marking of W~ with®, yield- 
ing W~ = W~, by induction on the structure of ~. The 
base case of the induction are the four atomic formulas, 
all of whose types are 0, and the tree to be marked in 
each case is, therefore W °. 

For the ~ooa case, simply mark z 6 W ° w i t h ~  iff 
6 W was marked a. For the ~ a case (respectively, the 

V a case) murk z 6 M~ iff some ancestor (respectively 
all ancestors) y of ~ in W was (were) marked a. Clearly, 
recurrences of~) in W ° are associated, as required, with 
the appropriately abiding paths of W. 

For the Vooa case, no old nodes of W ° are marked 
(D, and a new node is marked iff for every one of its new 
ancestors z, the corresponding $ is marked with a in 
W. Assume that  p is a recurrence of® in W °. By the 
construction, p = q(u + 1}r where u + 1 is old and r 
is an infinite path in u's new subtree; moreover, for r 
to contain infinitely many(D's it has to be universally 
marked ~ .  Consequently, in the corresponding path 

= ~u~ in W, ~ is universally marked a, and hence 
satisfies Vooa. The argument for the converse is similar. 

Assume now that  ~ = ~b~ V ~2, and that  ~ is of 
type n. By the definition of type, at least one of ~/,, and 
¢2 is of type n, say, w.l.o.g., ~/'1. Given W 6 T + we can 
effectively find W~,, and W¢, and by our assumption 
W~, (the unmarked version of We,) is W n, whereas, 

say, 14r~ is W ~, with m < n. First, upgrade W '~ to 
W ~, by carrying out the w-duplication of Fig. 4 n - m 

times, with each copy of W ~ retaining the~D marking 
of We,. The resulting trees VW¢, = W¢~,and W~¢,, are 
now identical in structure. The desired tree W~ for 
¢~ V ¢2 is simply W n with a node marked ® itI it is 
marked in either 14z¢,, or 14z¢,. 

For the case ~ = ¢1 A ¢2, first upgrade the 
simpler tree to yield W~¢, and 14z¢,~ from the inductive 
hypothesis as before, both being now of type n. Now to 

Figure 4 

obtain W~, nodes in W n are marked inductively as fol- 
lows: the root k is marked, and a node z = ( z l , . . . ,  z,) 
is marked iffthere are m < i , ]  < t, where ( z , , . . . ,  z,T,) 
is the closest marked ancestor of z, with ( z i , . . . , z l )  
marked in 14ZC, x and (m, , . . . ,  zi) marked in Wt~,. In 
short, one marks a node in W~ by checking that there 
has been at least one mark in each of WI¢,, and 14z~, l 
since the most recent marking of a node in Wv along 
the present path. This procedure is clearly reeursive 
in the markings of I4Z~b, and MZ¢,, and can easily be 
seen to yield the correspondence between recurrences 
required by the conjunction. 

The case ~ = Ai~/'~ is treated similarly, with 
each tree W~, c from the inductive hypothesis being first 
upgraded to be of type W". Here, though, a node z = 
(Zl,... ,  mr) in Wry is marked just when there are m ~ 
i o , i 2 , . . . , i k  < ~, with m as before, and ( z , , . . . , z i~ )  is 
marked in W~¢j for each 0 < j < k, and where k is the 
number of nodes along the path from ~ to z already 
marked. In this way, a recurrence in Wv can occur just 
when the path is marked in the 14z¢t by some sequence 

consistent with { 0 }, { 0, 1 }, { 0, 1, 2 }, . . . .  Hence the 
marking in each of the Wt¢. is represented infinitely 
often in the path of W~,, any vice versa. 

For the case ~ = Vi ~/'i, the type of ~ is n + 1, 
and, consequently, the trees W÷~ from the inductive 
hypothesis can be upgraded to be marked versions of 
W". Now Wv is simply taken to be W n+~ marked by 
having the i 'th copy of W n in it inherit the marking 
from W~,~, for each i 6 w. It is easy to see that the 
recurrences correspond as required. | 

As an immediate corollary we have: 

Corollary 5: For every ~ 6 L, the sets of (notations 

for) p-avoiding trees in each of T +, T~ or T~,  is in H I . 

Obviously, many ~ E L are equivalent to trivial 
formulas (like 3®) that  give rise to classes of trees much 
simpler than II~, and in this sense Theorem I is but an 
upper bound. It is of interest that  even Voo®, the dual 
of 3°°0,  resides much lower down, at least for finite 
branching: 
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Theorem 6: The VC©(~)-avoiding trees in any of the 
Y~" (respectively, in T~) form a If2 ° set (resp., II~). 

Proof: Consider the statement S: =3 node zVi  3 y (y on 
the i ' th  level of z's subtree and Vz on path from z to 
y, inclusive, z is marked~)" .  It is easy to see that  ,9 is 
II2 ° or II~ °, depending, respectively, on whether the tree 
is of bounded or merely finite outdegree (i.e., whether 
or not the 3 y quantifier is bounded or not). 

We show that  ,q is equivalent, for trees in T~, to 
U3path V°°(D". One direction is obvious. Conversely, 
consider a tree satisfying S, and let z be the node 
whose existence is guaranteed by 8. We show that  
there is a path rooted at z and universally marked wit h 
®. The argument proceeds in a KSnig-like fashion by 
inductively proceeding down levels of z's subtree along 
nodes for which infinitely many i's satisfy the "3 y . . . "  
part of S. At each level there are finitely many offspring 
and so one of them at least must account for infinitely 
many of the i's, and, in particular, ,.q guarantees that  
it itself is marked@. | 

Providing more general lower-bound information 
on p-avoiding trees for various ~ E L seems like an 
interesting topic for future work, especially in view of 
Section 5. 

Theorem I can apparently be generalized in several 
ways. The bounded-depth restriction can be removed, 
and the theorem proved for a language L r which is 
simply the closure of the atomic formulas under the 
Boolean, and recursive-infinite conjunctions and dis- 
junctions. Also, one can actually close the language un- 
der the 3, V, 3 °0 and V °° quantifiers, so that  it is possible 
to write, say, 3 °0 A~o~. Both these extensions seem to 
require a considerably more delicate argument, and for 
our applications do no t  seem to justify the additional 
w o r k .  

Another kind of generalization is important for the 
applications in Section 6, and so we present it here. Let 
an arithmetical tree be a tree whose membership, leaf- 
ship and markedship predicates are arithmetical (i.e., 
not necessarily recursive but expressable in first-order 
arithmetic). Denote the resulting classes of trees T=, 
T=t, T=h, T~, etc. Also let L= be the language L in 
which the infinite conjunctions and disjunctions are 
also allowed to be arithmetical. Theorem 4 holds for 
this richer language with these richer trees: 

Theorem 7: For every ~o E L=, the set of p-avoiding 
trees in T~" (and hence also those in Ya+ r and T~h for 

each k) is one-one arithmetically reducible to the set of 
well-founded trees in T=. 

Proof: Identical to the proof of Theorem 4, but with 
=arithmetical" replacing "recursive" throughout. | 

Corollary 8: For every ~ E L=, the set of (notations 
for) to-avoiding trees in each of T= +, T~t or Y=+k, is in 

n~. 

Proof: The set of well-founded arithmetical trees is also 
II~-complete, [cf. [R]). | 

5. A p p l i c a t i o n s  to  H i g h  U n d e c i d a b i l i t y  

That the computation tree of a NTM is recur- 
sire and finitely branching is obvious. If one thinks of 
properties of points in the computation (such as the cur- 
rent state and tape symbol or similar information con- 
cerning the computation leading to the point) as recur- 
sire marks, one obtains a tree in T~, for an appropriate 
k. Similarly, Post correspondence problems and many 
variants of the domino problem give rise to trees in T~, 
as do many other computational and combinatorical 
formalisms. In each of these, the language L allows one 
to specify many complex properties of the infinite com- 
putation, or infinite tiling, etc. For example, the simple 
3°°® recurrence property can specify, say that  a par- 
ticular domino in the input set T occurs infinitely often 
in the required tiling. Clearly, in L one can state com- 
plex properties of the required tiling, enforcing recur- 
ring or effectively growing patterns, distances, etc. A 
generic corollary of Theorem 4 is the fact that  deter- 
mining whether any of these can occur is within the 

1 1 ~1/II1 level of undecidability. For some cases, such as 
3~(D, it is no better, and for others, such as V°°Q, it 
is significantly better. 

Theorem 7: For any ~ E L, the following problems 
are in ~ :  

(i) does a NTM admit an infinite to-abiding computa- 
tion? 

(ii) does a set T of dominoes admit an infinite 
abiding tiling? 

(iii) does a Post instance (~), (y) E ({ 0, 1 }*)" admit an 
infinite to-abiding correspondence? 

Theorem 8: For ~o = VC':'~) the problems of 
Theorem 7 are in II~. 

As an example, whether or not T can tile Z × 
Z with do occurring only finitely often is in II2 °, i.e., 
equivalent to the totality problem for TM's. 
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We note that  Theorem 7 holds also for NTM's with 
infinitely many states and/or an infinite alphabet, Post 
problems over an infinite alphabet and with infinite 
input sets, and infinite dominoes. In these cases the 
trees are in T +. 

Another corollary of Theorem 4 concerns the 
topological characterizations of infinite behaviors of the 
transition systems iTS's) of Arnold [A]. In [A] a result 
similar to the recurrence lemma was (independently) 
proved in a different setting, and was used to establish 
the fact, stated now in the present terminology, that  
the class of sets of recurrences in T~ is a Souslin set 
(see [A] for definitions). Since the proof of Theorem 4 
involves correspondences between the p-abiding paths 
of W and the infinite paths of y(W) one concludes: 

Proposition 9: For each ~ 6 L and for each W 6 
T +, the set of to-abiding infinite paths in W is a Souslin 
set. 

6 . . A p p l i c a t i o n s  t o  F a i r n e s s  

Let us fix some arbitrary conventional program- 
ming language PL with nondeterminism (even un- 
bounded) and/or concurrency, such as those in [D,H]. 
Each program a in PL can be associated with a formal 
computation tree Ca which consists essentially of all 
possible sequences of the atomic actions and tests, with 
common prefixes identified. In a given s tar t  state s (i.e., 

s provides initial values for all variables, etc.) one ob- 
tains the induced computation tree at s, Co(s), in which 
each node u corresponds to an actual state reachable 
from s by performing the actions and passing the tests 
along the path  from the root to u. False tests, or other 
impassable parts of a program encountered during ex- 
ecution, entail truncation of the subtree rooted at the 
appropriate node. 

Given that  conventional languages employ effective 
atomic actions and tests (although we allow even arith- 
metical ones), and given t ha t  the finitary nature of the 
programs results in a finite (albeit possibly unbounded) 
amount of state information relevant to each point in 
the computation, one sees that  Co(s), for each a and 
s, is a tree in Ta. For most languages it will actually 
be in Tt~, i.e., recursive and finitely-branching, but we 
can afford to be liberal here. Here we are tacitly as- 
suming tha t  the structures over which programs run 
are standard arithmetic or some effective enrichment 
thereof (this is in line with all reasonable applications 
of programming languages). With this established, we 
can now assume we are given an effective enumeration 
so, sx , . . ,  of all possible start  states, and can consider 
the univereal computation tree Ca, illustrated in Fig. 5, 

Figure 5 

consisting of Ca(n0), Ca(s , ) , . .  • connected to a common 
root. 

A state property p of interest can be modelled as 
a mark marking nodes of Co, and if it is first-order 
definable, the marked version of Ca will be in Ta +. 
What we are saying in more general terms is that given 
any ~ E L or ~ E L~, where the marks involved model 
properties of states of the computation of a program 

a E PL, the appropriately marked tree 0~ + is in T~ + and 
therefore is a candidate for application of (the proof of) 
Theorems 4 and 7. 

Doing so results in a tree +) in whose 
^+ 

infinite paths correspond to the to-abiding paths of C o . 

Definition: Given a 6 PL and Io 6 L, we say that  
a ~-Jairly terminates if for all s tar t  states s, a admits 
no p-abiding infinite computations starting in s. 

The discussion above and Corollaries 5 and 8 hence 
yield 

Theorem 10: For each a 6 PL, ~ 6 L~, the prob- 
lem of whether a p-fairly terminates is in II l .  

We now observe tha t  L can express every hitherto 
proposed notion of fairness and many more. In fact, it 
is hard to imagine any notion of fairness, or unfairness, 
or any other property of infinite computations that  
might be of interest for programs in such languages but 
that  is not expressible in L. For example, weak, strong, 
and extreme fairness for the program (1) of Section 3 
can be writ ten as follows (with liberal formulation of 
the arithmetical or reeursive meanings of marks): 

weak fairness: 

(V°Q(A true) B°°(a executed)) 
A (V (B trudD3 (# 

and more generally 

A ( V~i'enabledD3~i-taken); 
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strong fairness: 

(3¢°(A true) 3°°(  ezecuted)) 
h 3 °(B true) S°°(# ezeeuted)); 

and more generally 

A (3~i-enabledDq~i-taken); 
l _< i_< n 

extreme fairness: 

(here { ~pj } is an effective enumeration of all first- 
order formulas) 

A(3°°(~i true)D(3°°(a executed with ~o i true) 
J 

A 3~°(fl executed with ~ i  true))); 

and more generally 

hi(3~(~oy true)D hl< i<n(q°° ( i - t aken  with 9i true))). 

How can Theorems 4 and 7 help in actual proofs 
of fair termination? We venture the following: 

Claim 11: For each ta E La, Theorems 4 and 7 
and their proofs provide a semantically complete proof 
method for ~o-fair termination. 

Justification of Claim: The claim can be justified 
in several ways. In a pure mathematical sense, given 
an arbitrary fixed W E La and a program a E PL, 

~+ 
the tree C a is an arithmetical (or recursive) marked 

^ +  

tree, and hence its translate ~/(C,~ ) w.r.t, ta can be rep- 
resented by some finite machine (perhaps with arith- 
metical oracles). This machine can be thought of as 
a program with and, and the proof method of [AP], 
for example, can be used to prove the programs's ter- 
mination, i.e., the translate tree's well-foundedness. 
Since the method of [AP] is complete relative to an 
appropriate program-free language, the method out- 
lined (translation via y; then proof of termination) is 
semantically complete, and in fact also complete rela- 
tive to the same underlying language. 

In a more pragmatic sense one can consider the 
formal computation tree CC,~, expand it by duplicating 
nodes for each mark, one copy being marked and the 
other not, and then carry out the 11 translation before 
considering the various start  states ,i .  Again, this tree 
can be written as a program with and, but now the 

result is a uniform explicit scheduler sq~ which can then 
be applied to the various s/. It seems reasonable to 
suppose that  H~ can be written, in general, in terms 
of the basic actions and tests of a and the marks of 
is, with some insignificant extra recursive machinery. 
Fully exploiting this possibility, however, would seem to 
require additional work beyond our general Theorems 
4 and 7. | 

We have worked through the proof of Thin. 4 in 
the cases of weak and strong fairness for program (1) of 
Section 3, and have indeed been able to exhibit ezplicit 
explicit schedulers Ha, written in terms of the original 
program, which are the result of the ~7 translation. 
As mentioned above, however, this procedure justifies 
further work and can, we believe, be generalized in the 
spirit of Thm's 4 and 7 to all ~ E La. 

The new explicit schedulers for program (1) are 
the following, and the reader should have no difficulty 
convincing his/herself that  they terminate iff program 
(1) fairly terminates with the appropriate notion of 
fairness: 

weak fairness: 

while A V B d__o (IF_ A -+ a o-~A ~ skip FI) + 

(_~B ~ fl [2-,B ~ skip FI) + 0_4, 

strong fairness: 

(IF A - ,  a t 2 B  ~ ,e FI)*; 
while A V B d_9_ ((if A then a) + (if B then fl)+ 

o_r (if "-A then fl) 
or (if --B then a)) 0.._4. 

Here '7* = U~>o'7 i is short for i +-?;,~/, and ,7 + = 
U/>o,/ / is short for i ÷-?; i +-- i + 1; ,7/. 

7. Conclusion 

We have presented a general result providing 
elementary recursive translations between classes of 
recursive (or arithmetical) trees, yielding applications 
to high undecidabUity and fairness. We feel that  
characterizing H I in terms of "thin" Io-avoiding trees 
for some appropriate ~ is more beneficial for computer 
science than with well-founded w-trees. This is because 
computer science deals with finite objects (programs, 
machines, graphs, combinatorical objects such as finite 
sets of dominoes, etc.) which usually give rise to finite 
branching. A detailed account of one aspect of this 
apparent advantage is given in [H1]. 
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As mentioned at the end of Section 6, there is still 
much work to be done, in the spirit of [AO, F, FK, GF, 
LPS], in finding clean and useful special purpose proof 
methods for fair termination of various kinds, since 
even if the uniform explicit schedulers sqa described 
above are worked out generally, they might more often 
than not turn out to be quite unwieldly. 

As another direction for further work we sug- 
gest generalifing the results to languages for describing 
properties of certain infinite ~ubtreea, not merely paths. 
This would parallel the investigation of branching-time 
vs. linear-time formalisms for reasoning about pro- 
grams. 
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