
A General Result on Infinite Trees and Its Applications

(pre]|m|nary report)

David Harel

Department of Applied Mathematics
The Weizm~n- Institute of Science

Rehovot 76100, Israel

Abstract

A generic translation between various ~kinds of recur-
sire trees is presented. It is shown that trees of either finite
or countably-infinite branching can be effectively put into
one-one correspondence with infinitely-branching trees in
such a way that the infinite paths of the latter correspond
to the Up-abiding" infinite paths of the former. Here ~ an
be any member of a very wide class of properties of infinite
paths. Two of the applications involve the formulation of
large classes of H~ variants of classical computational prob-
lems, and the existence of a general method for proving ter-
mination of nondeterministic or concurrent programs under
any reasonable notion of fairness.

1. Introduction

In this paper a general theorem is proved, es-
tablishing elementary recursive one-one reductions be-
tween various kinds of infinite trees. The result itself
might seem less appealing than some of its corollaries,
which indeed served as the prime motivation for ob-
taining the result in the first place. Consequently, the
paper is structured in a way that presents much of the
background and technical preliminaries for the applica-
tions before touching upon the main result.

In Section 2 we describe the two levels of
undecidability relevant to the paper: the low

0 0 E1/II 1 (r.e./co-r.e.) level and the high 1 1 E1/II1 (co-
inductive/inductive) level, and indicate their classical
recursive-well-founded-trees characterization. We then
present a recent recursive-recurrence-free-trees alterna-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and i s date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-8979i-133-4184/004/0418 $00.75

t i re to this characterization, taken from [H2] (which
is a precursor of the present paper), and which leads,
among other things, to the description of some simple
highly undecidable problems about NTM's, dominoes,
etc. In Section 3, the current research situation of
the (seemingly unrelated) area of fair computations is
described. The main line of research is the search for
semantically complete methods for proving termination

of nondetermiulstic or concurrent programs under in-
creasingly more complex notions of fairness.

The main result is presented in Section 4. In Sec-
tions 5 and 6 it is applied to the material of Sections 2
and 3, respectively, resulting in large classes of new H I
variants of classical computational problems and, per-
haps more importantly, a generic proof method for the
termination of programs under almost any conceivable
notion of fairness.

The present paper reports on a direct continuation
and culmination of the research described in [H2]. We
expect to publish a final journal version combining the
results of both.

2. Two Levels of UndecidabUity

While there exist many different levels of un-
decidability, there seem to be mainly two which stand
out as being fundamental and naturally-occuring: the

0 0 E1/II 1 (that is, the r.e./co-r.e.) level, and the E1/H 1 1 1
(sometimes called the co-inductive/inductive) level.
The former is the first level of the arithmetical hierar-
chy and is characterized by formulas over arithmetic
with one number quantifier and a recursive matrix,
and the latter is the first level of the analytical hierar-
chy, characterized by formulas over arithmetic with one
function (or predicate) quantifier and an arithmetical
matrix. We shall not at tempt to convince the reader
of the special role these two levels play by a review
of undeeidability results in general, but we do point

418

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800057.808708&domain=pdf&date_stamp=1984-12-01

out that the theoretical computer science community
has repeatedly seen examples of undeeidable problems
which turn out actually to be in one of these levels. A
striking example is in the field of logics of programs,
where numerous entirely different logical systems have
been shown to have Hi-complete validity problems,
cf. [H1]. Fairness and unbounded nondeterminism is
another. To see how unbounded nondeterminism is
connected with IIl one is led to consider trees.

One of classical ways of viewing the low ~l/Hl° 0
level of undecidability is by finitely-branching recur-
sire trees; say, the computation trees of NTM's.
Specifically, this level captures the well-foundedness
predicate (= "are all paths finite?") of these trees.
Similarly, the classical treatment of the ~ / I I l level is
via the well-foundedness of countably-branching recur-
sire trees; the set of (notations for) well-founded such
trees is Hi-complete, and hence also is the set of
(notations for) constructive ordinals. See Rogers JR].

In [H2] it is shown that the 1 1 ~1/II1 level can be
viewed alternatively by considering finitely-branching
recursive trees. It is shown therein, using elemen-
tary transformations between trees, that the set of
(notations for) recursive reeurrence-lree marked binary
trees is II~-complete. Here a marked tree is one in
which some recursive subset of the nodes are marked,
and a recurrence is an infinite path containing infinitely
many marked nodes. (A similar result was proved in-
dependently in [A].) This %hin-trees" characterization
was shown in [H2] to lead to easily describable, highly
undecidable computational problems, that are in fact
variants of well-known ones on the 0 0 ~ l / I I 1 level. Three
of the more appealing of these are the following:

Proposition 1 [EC, Fii,HPS,S,H2]: The problem of
whether a NTM admits an infinite computation on
blank tape, that reenters its start state infinitely often,
is ~l-complete.

A domino is a 1 X 1 square fixed in orientation,
with a color associated with each of its sides. A tiling
requires adjacent edges to be monochromatic. See [W].

Proposition2 [H2]: The fo.owing recurring
dominoe8 problem is ~-complete: Given a set T =
{ do, d l , . . . , dm} of dominoes, can T tile Z X Z such
that do appears infinitely often in the tiling?

Proposition 3 [H2]: The following variant of
Post's correspondence problem is El-complete: Given
(Z l , - . " , 2~n), (Yl," • ", Y~), Zi, Yi E { 0, 1 }*, is there a se-
q u e n c e ~r = Ci1,i2,...), 1 < i j < n, with infinitely
many occurrences of 1 in ~, such that zlxzi,
Fix Y i 2 " • • ?

In all cases the proofs first establish the fact that
with the objects at hand (NTM's, dominoes or Post
correspondences) one can define any recursive finitely-
branching tree, with the marking corresponding to the
machine being in the start state, or the domino do or
the index 1 being most recently used. The thin/fat
correspondence described above between the two kinds
of trees characterizing the I 1 Ill/H1 level is then envoked.

Note that, just as with Tur'ing machines, the
"recurring ~ highly undecidable problems described here
have finite and infinite analogues that are NP-complete
and H°l-complete, respectively. For example, whether
or not, given a finite set of dominoes T and a num-
ber n, T can tile some n × n square is NP-complete
ILl, whereas whether T can tile Z × Z is II°l-complete
[W, Be]. In this sense Propositions 1-3 are natural ex-
tensions.

In [H1] all Hi-hardness results in logics of pro-
grams (and some NP-, PSPACE-, and H2 °- ones too) are
provided with short transparent proofs using variants
of the recurring-domino problem of Prop. 2.

3. Fa i r n e s s

Much effort has gone recently into the investiga-
tion of the behavior of nondeterministic or concur-
rent programs under the assumption of lairne88, e.g.,
[AO,F,FK,GF,GFMR,LPS,Pa,P,QS]. In a nondeter-
ministic program P with many possibilities (or direc-
tions) to choose from at certain points, an infinite com-
putation is lair if each direction is taken infinitely often:
P fairly termlnate8 if it admits no infinite fair computa-
tions, that is, if it always terminates assuming it acts
fairly.

We shall be referring in this paper to the following
simple bidirectional nondeterministic program, cf. [D]:

D O A ~ a o B ~ OD (I)

(: "repeatedly, if A is true, execute a; if B, execute
8; if both, toss a coin to choose one; if neither, halt" .)
Here a direction is enabled in a state if its guard C A or
B) is true, and is taken if its action C a or 8) is executed.

The main direction of research in this area (as
is evident, for example, from Francez' encyclopaedic
survey IF]) is the search for semantically complete proof
methods for fair termination under increasingly more
complex notions of fairness; notably, those notions that
take into account disabled directions and those that
relativise fairness to given sets of states.

419

Here are three examples of the many notions of
fairness that have been considered:

weak fairness:

An infinite computation is weakly fair if each direc-
tion that is enabled continuously from some point
on, is taken infinitely often.

strong fairness:

An infinite computation is strongly fair if each
direction that is enabled infinitely often, is taken
infinitely often.

extreme fairness:

An infinite computation is extremely fair if for
every first-order state formula p, if p is true
infinitely often then each direction is taken
infinitely often in states satisfying p.

For the first two notions there are known complete
proof methods for fair termination (cf. [LPS,AO,F]) but
for the third, introduced in [P] (as well as for a host of
others (cf. [QS,FD) , the problem has been left open.

One of the difficulties with devising semantically
complete methods lies in the fact that the natural num-
bers do not suffice as the ordinals associated with fair
termination. The two commonly used and closely re-
lated approaches to overcoming this are both connected
with so-called unbounded nondeterminism, that is with
programs allowing assignments of the form z 4-?, set-
ting z to any natural number. We describe one here.

Starting in [AO], and later also in lAPS,F], it is
shown in this approach how to transform programs,
such as program (1) above, which utilize bounded non-
determinism (in the sequel, bnd) into equivalent ones
with unbounded nondeterminism (und), called ezplicit
schedulers. The latter use the z ~ ? assignments to pick
arbitrary finite priorities for scheduling the directions
to be taken in the former, and terminate everywhere
iff the original programs terminate fairly. Now, since
there are complete methods for proving conventional
termination of programs with and, albeit using all con-
structive ordinals (see lAP] based upon ideas of [Bo,C]),
this yields a complete method for]air termination of
programs with bnd.

As an example, the following are the explicit
schedulers associated with program (1) by the methods
of [AO,F] for proving, respectively, weak and strong
fair-termination:

weak-fairness

a ~? ; b ~?;

DO (A A a < b)
(a; a ~-? (if B then b ~-- b - 1 else b ~--?))

D(B A b < a)
(fl; b ~--? (if A then a 4- a - - 1 else a-4--?))OD,

(2)

strong fairness

DO (AA a _< b)-+
(a; a 4--? (if B then b 4- b-- 1))

~ B A b < a)
(fl; b *-? (if A then a 4- a - 1)) OD.

(3)

The reader should be able to convince his/herself
that program (2) (resp. (3)) everywhere-terminates iff
program (1) fairly terminates under weak (resp. strong)
fairness. As mentioned, the proof system of lAP] can be
used to prove termination of (2) or (3)3 that system is in
fact complete relative to an underlying p-calculus-like
language, and might require any constructive ordinal
in the proof.

Without going into the details of the other
approach to proof methods for fair termination
(represented, for example, by the results in [LPS]) we
can say that it yields Floyd-like methods in which the
prover is required to find some well-founded set and
prove certain properties of the program w.r.t, that
set. Showing completeness of such methods involves
associating with the original bnd program a computa-
tion tree with infinite outdegree, and then using the
ordinals corresponding to nodes in the tree as the well-
founded set.

Upon reading the literature on fairness one gets the
feeling that the connections, exposed by these methods
and their completeness proofs, between the infinite
paths of the computation trees of und programs and
the fair infinite paths of those of bnd programs, are
more fundamental, and that they should generalize. In
a sense the %hin/fat trees" correspondence lemma of
[H2] captures such a connection, but it is one of only a
very simple nature.

420

4. The Main Result

The general setting is that of recursive trees. A
node is a finite sequence of natural numbers (i.e., an
element of N*) denoting the path leading to it from the
root)~, and a tree is simply a subset of N* closed under
the prefix operation. We take a recursive tree to be one
for which both membership and leafship ("is z a leaf?")
are recursive. This is the strongly recursive of Rogers
JR]. A tree is well-founded if all its paths are finite; it
is finitely-branching if each node has only finitely many
offspring, and is k-branching if it is actually a subset of

0 , . . . , k - 1 }* (so that in particular each node has at
most k offspring).

Let ~ be some fixed (possibly infinite) alphabet.
A marked tree is one in which nodes are labelled with
(possibly infinitely many) letters from ~ ; i.e., W comes
complete with a marking predicate Mw C W X ~ .
A marked tree will be said to be recursise if it is
a recursive tree and if, in addition, Mw is recur-
sire. Let T, T +, T~, T~ stand, respectively, for the
sets of recursive trees, recursive marked trees, recur-
sire finitely-branching marked trees, and recursive k-
branching marked trees.

Throughout, we understand a recursive tree to be
represented by some Turing machine defining it. For
example, a tree W in T is represented by some machine
computing

Xw(z) : z E W, z a leaf;
z E W, z not a leaf.

We now define a language L for stating properties
of infinite paths in marked trees. An atomic formula is
an expression of one of the forms 3 a, Va, 3°°a or V°°a,
where a E ~ is a m a r k . Define Lo to be the set of
atomic formulas. For each i ~ 0, let/.~ be the closure
of L/ under finite conjunctions and disjunctions, and
under denumerable recursive conjunctions (i.e., if { tot }
is a recursive sequence of formulas of/.~ then A/Io/ i s
in L~). L/+i is taken to be the closure of /~ under
denumerable recursive disjunctions. Let L = U/L/ .
Here we talk about L with the convention that each
formula to G L is given together with the least n for
which ~o E Ln. This n is called ~o's type.

Note: L is (superficially) similar to the "~fullpath" frag-
ment of Emerson and Clarke's [EC] language CTF, for
which they provide a translation into fixpoint-theoretic
terms.

Informally, each ~o E L is interpreted over a given
infinite path p by interpreting 3 a as "there is a node

on p marked with a", and 3°% as "there are infinitely
many nodes on p marked with a"; V a and V°°a denote
the appropriate duals. This meaning is then extended
up through the Boolean and infinitary connectives.

For example, consider playing chess on an infinite
board (but with the standard set of 32 pieces) where
moving rules are generalized in some reasonable way.
An infinitely long game is a draw iff both players call
"cheek" infinitely often, otherwise it is a win for the
player with the most calls. The game tree can be
regarded as an element of T + (or T~ if pieces are not
allowed to move too far) with, say O and (D marking
nodes where player 1 or 2 checks, respectively. The
draw criterion is then given simply by the formula of
L : 3°°OA 3 °° ®.

For ta E L an infinite path is said to be to-abiding
ff it satisfies ~, and a tree is p-avoiding if it has no io-
abiding paths. Note that the recursiveness of markings
and trees allows referring in effect to ancestors of nodes,
as in the following (liberally formulated) formula of L,

3°°a A A(v°°(number of nodes between two
i

most recent a's from root > I(i))),

for some recursive f . Here the Io-abiding paths have
infinitely many nodes marked a and the distances be-
tween these "grow" in the special manner described.
Clearly, each of the countably many right-hand con-
juncts can be associated with a recursive mark.

Note that by definition a tree is well-founded
iff it is (3°°true)-avoiding, for the trivial everywhere-
occuring mark true.

Another important special formula in L is 3°°0,
where® is any fixed mark in ~ . A 3°°t~)-abiding path
is what was termed recurrence in Section 2, and we
can now restate the recurrence lemma of [H2] (cf. also
[A,ECD:

Recurrence Lemma: For each k > 1, the set of well-
founded trees in T is recursively isomorphic to the set
of 3°°~)-avoiding trees in T~'.

The one-one recursive transformations used in [H2]
to prove this lemma (relying on a theorem of MyhiU
JR. p. 85] to obtain an isomorphism from them) are
particularly simple. The main technical result of this
paper is the following, in which the ~ i direction of
the recurrence lemma is significantly strengthened by
generalizing the property of infinite paths which is used.
In passing, we also remove the k subscript.

421

Theorem 4: Let p be an arbitrary formula of L.
The set of p-avoiding trees in T + (and hence also those
in T~ and T~" for each k) is one-one reducible to the
set of well-founded trees in T.

Proof of Theorem 4: We actually establish the follow-
ing stronger claim:

(*) Let p be an •arbitrary formula of L. There is a
recursive 1 - 1 function y : T + --~ T that, for
each W 6 T + induces a recursive transformation
from the infinite paths of y(W) o,to the p-abiding
(infinite) paths of W.

Note that the p-abiding paths of W are thus required
to be recursively isomorphic to the elements of a par-
tition of the infinite paths of y(W). As a special case,
of course, W has no p-abiding paths iff y(14~ has no
infinite paths; hence the Theorem.

The proof is in three steps and is illustrated by the
following table.

tree W step 1 step 2 step 3

class I T+ T + T2 + T
path property I ~, 3¢°~) 3¢°~) 3 ¢° true

In step 1, the main one of the proof, one shows, by
induction on the structure of p, how to construct for
each W C T + a tree W~ 6 ~ containing only the single
mark®, with the p-abiding paths of W corresponding
to the recurrences of Wi. The w-hranching W1 is then
turned into a binary tree W2, preserving recurrences.
Finally, the proof of the > 1 direction of the Recur-
rence Lemma, appearing in [H2], is used to obtain the
final unmarked tree r/(W) 6 T, with recurrences in W2
corresponding to the infinite paths of ~/(W). All trans-
formations are one-one and reeursive, and the path cor-
respondences of the two last steps are actually recur-
sire isomorphisms; it is the first step that yields the
one-many aspect of the path correspondence.

The third step appears in detail in [H2] and is
hence omitted. For the second, simply replace each
node in Wi of the form of Fig. 1 by one of the form
of Fig. 2, with the newly introduced nodes unmarked.
The new infinite path, being unmarked from u onwards,
does not affect recurrences.

Let us now concentrate on the first step. For each
p 6 L we have to describe a recursive one-one procedure
taking a tree W 6 ~ to a tree W1 6 T + involving the
mark~) (assumed not to mark W), with the recurrences
of W, being associated in a many-one fashion with the

Fi q u re 1

F i g u r e 2

Figure 3

p-abiding paths of W. For ease of exposition, and since
W, depends on p, we denote the desired W~ by W~,.

First define the mark-free version of W~,, denoted
W~, as follows. Given W 6 T +, denote by W ° the
tree obtained by duplicating each subtree of W in the
manner illustrated in Fig. 3. Formally, for a node z =
(Z l , . . . , z ,) 6 ~l*, let z + l = (zl + 1 , . . . , z , + 1) , and
let W + 1 = { z + 1 I z 6 W }. W ° is then defined as

W ° = W + I U U {(u+l)Ouluyew, ye N*}.
uEW

Referring to Fig. 3, the node u is actually replaced
by u + 1, and its leftmost offspring is (u + 1)0. We
call these, respectively, the old and new u's, and use
this terminology for their subtrees too. Thus, in W °
each node has one old occurrence and an old and new
subtree. Moreover, given a node z 6 W ° it is easy
to determine whether or not z is old (z has no O's),

422

and if it is not, it is equally easy to find its old root,
i.e., its nearest old ancestor, since in this case we have
z ~ (u + 1)0y. In either case each z 6 W ° corresponds
effectively to a unique ~ 6 W. This correspondence
preserves ancestorship. Now, for every i ~ O, W i÷1 is

defined as

z E W ~

and is illustrated in Fig. 4. The j ' th subtree from the
left is called the j ' th copy of W ~.

Given W 6 T + and a formula ~ E L of type n (i.e.,
n is the least integer such that ~ 6 L,}, take W~ to be
simply W ~.

We now describe the marking of W~ with®, yield-
ing W~ = W~, by induction on the structure of ~. The
base case of the induction are the four atomic formulas,
all of whose types are 0, and the tree to be marked in
each case is, therefore W °.

For the ~ooa case, simply mark z 6 W ° w i t h ~ iff
6 W was marked a. For the ~ a case (respectively, the

V a case) murk z 6 M~ iff some ancestor (respectively
all ancestors) y of ~ in W was (were) marked a. Clearly,
recurrences of~) in W ° are associated, as required, with
the appropriately abiding paths of W.

For the Vooa case, no old nodes of W ° are marked
(D, and a new node is marked iff for every one of its new
ancestors z, the corresponding $ is marked with a in
W. Assume that p is a recurrence of® in W °. By the
construction, p = q(u + 1}r where u + 1 is old and r
is an infinite path in u's new subtree; moreover, for r
to contain infinitely many(D's it has to be universally
marked ~ . Consequently, in the corresponding path

= ~u~ in W, ~ is universally marked a, and hence
satisfies Vooa. The argument for the converse is similar.

Assume now that ~ = ~b~ V ~2, and that ~ is of
type n. By the definition of type, at least one of ~/,, and
¢2 is of type n, say, w.l.o.g., ~/'1. Given W 6 T + we can
effectively find W~,, and W¢, and by our assumption
W~, (the unmarked version of We,) is W n, whereas,

say, 14r~ is W ~, with m < n. First, upgrade W '~ to
W ~, by carrying out the w-duplication of Fig. 4 n - m

times, with each copy of W ~ retaining the~D marking
of We,. The resulting trees VW¢, = W¢~,and W~¢,, are
now identical in structure. The desired tree W~ for
¢~ V ¢2 is simply W n with a node marked ® itI it is
marked in either 14z¢,, or 14z¢,.

For the case ~ = ¢1 A ¢2, first upgrade the
simpler tree to yield W~¢, and 14z¢,~ from the inductive
hypothesis as before, both being now of type n. Now to

Figure 4

obtain W~, nodes in W n are marked inductively as fol-
lows: the root k is marked, and a node z = (z l , . . . , z,)
is marked iffthere are m < i ,] < t, where (z , , . . . , z,T,)
is the closest marked ancestor of z, with (z i , . . . , z l)
marked in 14ZC, x and (m, , . . . , zi) marked in Wt~,. In
short, one marks a node in W~ by checking that there
has been at least one mark in each of WI¢,, and 14z~, l
since the most recent marking of a node in Wv along
the present path. This procedure is clearly reeursive
in the markings of I4Z~b, and MZ¢,, and can easily be
seen to yield the correspondence between recurrences
required by the conjunction.

The case ~ = Ai~/'~ is treated similarly, with
each tree W~, c from the inductive hypothesis being first
upgraded to be of type W". Here, though, a node z =
(Zl,... , mr) in Wry is marked just when there are m ~
i o , i 2 , . . . , i k < ~, with m as before, and (z , , . . . , z i~) is
marked in W~¢j for each 0 < j < k, and where k is the
number of nodes along the path from ~ to z already
marked. In this way, a recurrence in Wv can occur just
when the path is marked in the 14z¢t by some sequence

consistent with { 0 }, { 0, 1 }, { 0, 1, 2 }, Hence the
marking in each of the Wt¢. is represented infinitely
often in the path of W~,, any vice versa.

For the case ~ = Vi ~/'i, the type of ~ is n + 1,
and, consequently, the trees W÷~ from the inductive
hypothesis can be upgraded to be marked versions of
W". Now Wv is simply taken to be W n+~ marked by
having the i 'th copy of W n in it inherit the marking
from W~,~, for each i 6 w. It is easy to see that the
recurrences correspond as required. |

As an immediate corollary we have:

Corollary 5: For every ~ 6 L, the sets of (notations

for) p-avoiding trees in each of T +, T~ or T~, is in H I .

Obviously, many ~ E L are equivalent to trivial
formulas (like 3®) that give rise to classes of trees much
simpler than II~, and in this sense Theorem I is but an
upper bound. It is of interest that even Voo®, the dual
of 3°°0, resides much lower down, at least for finite
branching:

423

Theorem 6: The VC©(~)-avoiding trees in any of the
Y~" (respectively, in T~) form a If2 ° set (resp., II~).

Proof: Consider the statement S: =3 node zVi 3 y (y on
the i ' th level of z's subtree and Vz on path from z to
y, inclusive, z is marked~)" . It is easy to see that ,9 is
II2 ° or II~ °, depending, respectively, on whether the tree
is of bounded or merely finite outdegree (i.e., whether
or not the 3 y quantifier is bounded or not).

We show that ,q is equivalent, for trees in T~, to
U3path V°°(D". One direction is obvious. Conversely,
consider a tree satisfying S, and let z be the node
whose existence is guaranteed by 8. We show that
there is a path rooted at z and universally marked wit h
®. The argument proceeds in a KSnig-like fashion by
inductively proceeding down levels of z's subtree along
nodes for which infinitely many i's satisfy the "3 y . . . "
part of S. At each level there are finitely many offspring
and so one of them at least must account for infinitely
many of the i's, and, in particular, ,.q guarantees that
it itself is marked@. |

Providing more general lower-bound information
on p-avoiding trees for various ~ E L seems like an
interesting topic for future work, especially in view of
Section 5.

Theorem I can apparently be generalized in several
ways. The bounded-depth restriction can be removed,
and the theorem proved for a language L r which is
simply the closure of the atomic formulas under the
Boolean, and recursive-infinite conjunctions and dis-
junctions. Also, one can actually close the language un-
der the 3, V, 3 °0 and V °° quantifiers, so that it is possible
to write, say, 3 °0 A~o~. Both these extensions seem to
require a considerably more delicate argument, and for
our applications do no t seem to justify the additional
w o r k .

Another kind of generalization is important for the
applications in Section 6, and so we present it here. Let
an arithmetical tree be a tree whose membership, leaf-
ship and markedship predicates are arithmetical (i.e.,
not necessarily recursive but expressable in first-order
arithmetic). Denote the resulting classes of trees T=,
T=t, T=h, T~, etc. Also let L= be the language L in
which the infinite conjunctions and disjunctions are
also allowed to be arithmetical. Theorem 4 holds for
this richer language with these richer trees:

Theorem 7: For every ~o E L=, the set of p-avoiding
trees in T~" (and hence also those in Ya+ r and T~h for

each k) is one-one arithmetically reducible to the set of
well-founded trees in T=.

Proof: Identical to the proof of Theorem 4, but with
=arithmetical" replacing "recursive" throughout. |

Corollary 8: For every ~ E L=, the set of (notations
for) to-avoiding trees in each of T= +, T~t or Y=+k, is in

n~.

Proof: The set of well-founded arithmetical trees is also
II~-complete, [cf. [R]). |

5. A p p l i c a t i o n s to H i g h U n d e c i d a b i l i t y

That the computation tree of a NTM is recur-
sire and finitely branching is obvious. If one thinks of
properties of points in the computation (such as the cur-
rent state and tape symbol or similar information con-
cerning the computation leading to the point) as recur-
sire marks, one obtains a tree in T~, for an appropriate
k. Similarly, Post correspondence problems and many
variants of the domino problem give rise to trees in T~,
as do many other computational and combinatorical
formalisms. In each of these, the language L allows one
to specify many complex properties of the infinite com-
putation, or infinite tiling, etc. For example, the simple
3°°® recurrence property can specify, say that a par-
ticular domino in the input set T occurs infinitely often
in the required tiling. Clearly, in L one can state com-
plex properties of the required tiling, enforcing recur-
ring or effectively growing patterns, distances, etc. A
generic corollary of Theorem 4 is the fact that deter-
mining whether any of these can occur is within the

1 1 ~1/II1 level of undecidability. For some cases, such as
3~(D, it is no better, and for others, such as V°°Q, it
is significantly better.

Theorem 7: For any ~ E L, the following problems
are in ~ :

(i) does a NTM admit an infinite to-abiding computa-
tion?

(ii) does a set T of dominoes admit an infinite
abiding tiling?

(iii) does a Post instance (~), (y) E ({ 0, 1 }*)" admit an
infinite to-abiding correspondence?

Theorem 8: For ~o = VC':'~) the problems of
Theorem 7 are in II~.

As an example, whether or not T can tile Z ×
Z with do occurring only finitely often is in II2 °, i.e.,
equivalent to the totality problem for TM's.

424

We note that Theorem 7 holds also for NTM's with
infinitely many states and/or an infinite alphabet, Post
problems over an infinite alphabet and with infinite
input sets, and infinite dominoes. In these cases the
trees are in T +.

Another corollary of Theorem 4 concerns the
topological characterizations of infinite behaviors of the
transition systems iTS's) of Arnold [A]. In [A] a result
similar to the recurrence lemma was (independently)
proved in a different setting, and was used to establish
the fact, stated now in the present terminology, that
the class of sets of recurrences in T~ is a Souslin set
(see [A] for definitions). Since the proof of Theorem 4
involves correspondences between the p-abiding paths
of W and the infinite paths of y(W) one concludes:

Proposition 9: For each ~ 6 L and for each W 6
T +, the set of to-abiding infinite paths in W is a Souslin
set.

6 . . A p p l i c a t i o n s t o F a i r n e s s

Let us fix some arbitrary conventional program-
ming language PL with nondeterminism (even un-
bounded) and/or concurrency, such as those in [D,H].
Each program a in PL can be associated with a formal
computation tree Ca which consists essentially of all
possible sequences of the atomic actions and tests, with
common prefixes identified. In a given s tar t state s (i.e.,

s provides initial values for all variables, etc.) one ob-
tains the induced computation tree at s, Co(s), in which
each node u corresponds to an actual state reachable
from s by performing the actions and passing the tests
along the path from the root to u. False tests, or other
impassable parts of a program encountered during ex-
ecution, entail truncation of the subtree rooted at the
appropriate node.

Given that conventional languages employ effective
atomic actions and tests (although we allow even arith-
metical ones), and given t ha t the finitary nature of the
programs results in a finite (albeit possibly unbounded)
amount of state information relevant to each point in
the computation, one sees that Co(s), for each a and
s, is a tree in Ta. For most languages it will actually
be in Tt~, i.e., recursive and finitely-branching, but we
can afford to be liberal here. Here we are tacitly as-
suming tha t the structures over which programs run
are standard arithmetic or some effective enrichment
thereof (this is in line with all reasonable applications
of programming languages). With this established, we
can now assume we are given an effective enumeration
so, sx , . . , of all possible start states, and can consider
the univereal computation tree Ca, illustrated in Fig. 5,

Figure 5

consisting of Ca(n0), Ca(s ,) , . . • connected to a common
root.

A state property p of interest can be modelled as
a mark marking nodes of Co, and if it is first-order
definable, the marked version of Ca will be in Ta +.
What we are saying in more general terms is that given
any ~ E L or ~ E L~, where the marks involved model
properties of states of the computation of a program

a E PL, the appropriately marked tree 0~ + is in T~ + and
therefore is a candidate for application of (the proof of)
Theorems 4 and 7.

Doing so results in a tree +) in whose
^+

infinite paths correspond to the to-abiding paths of C o .

Definition: Given a 6 PL and Io 6 L, we say that
a ~-Jairly terminates if for all s tar t states s, a admits
no p-abiding infinite computations starting in s.

The discussion above and Corollaries 5 and 8 hence
yield

Theorem 10: For each a 6 PL, ~ 6 L~, the prob-
lem of whether a p-fairly terminates is in II l .

We now observe tha t L can express every hitherto
proposed notion of fairness and many more. In fact, it
is hard to imagine any notion of fairness, or unfairness,
or any other property of infinite computations that
might be of interest for programs in such languages but
that is not expressible in L. For example, weak, strong,
and extreme fairness for the program (1) of Section 3
can be writ ten as follows (with liberal formulation of
the arithmetical or reeursive meanings of marks):

weak fairness:

(V°Q(A true) B°°(a executed))
A (V (B trudD3 (#

and more generally

A (V~i'enabledD3~i-taken);

425

strong fairness:

(3¢°(A true) 3°°(ezecuted))
h 3 °(B true) S°°(# ezeeuted));

and more generally

A (3~i-enabledDq~i-taken);
l _< i_< n

extreme fairness:

(here { ~pj } is an effective enumeration of all first-
order formulas)

A(3°°(~i true)D(3°°(a executed with ~o i true)
J

A 3~°(fl executed with ~ i true)));

and more generally

hi(3~(~oy true)D hl< i<n(q°° (i - t aken with 9i true))).

How can Theorems 4 and 7 help in actual proofs
of fair termination? We venture the following:

Claim 11: For each ta E La, Theorems 4 and 7
and their proofs provide a semantically complete proof
method for ~o-fair termination.

Justification of Claim: The claim can be justified
in several ways. In a pure mathematical sense, given
an arbitrary fixed W E La and a program a E PL,

~+
the tree C a is an arithmetical (or recursive) marked

^ +

tree, and hence its translate ~/(C,~) w.r.t, ta can be rep-
resented by some finite machine (perhaps with arith-
metical oracles). This machine can be thought of as
a program with and, and the proof method of [AP],
for example, can be used to prove the programs's ter-
mination, i.e., the translate tree's well-foundedness.
Since the method of [AP] is complete relative to an
appropriate program-free language, the method out-
lined (translation via y; then proof of termination) is
semantically complete, and in fact also complete rela-
tive to the same underlying language.

In a more pragmatic sense one can consider the
formal computation tree CC,~, expand it by duplicating
nodes for each mark, one copy being marked and the
other not, and then carry out the 11 translation before
considering the various start states ,i . Again, this tree
can be written as a program with and, but now the

result is a uniform explicit scheduler sq~ which can then
be applied to the various s/. It seems reasonable to
suppose that H~ can be written, in general, in terms
of the basic actions and tests of a and the marks of
is, with some insignificant extra recursive machinery.
Fully exploiting this possibility, however, would seem to
require additional work beyond our general Theorems
4 and 7. |

We have worked through the proof of Thin. 4 in
the cases of weak and strong fairness for program (1) of
Section 3, and have indeed been able to exhibit ezplicit
explicit schedulers Ha, written in terms of the original
program, which are the result of the ~7 translation.
As mentioned above, however, this procedure justifies
further work and can, we believe, be generalized in the
spirit of Thm's 4 and 7 to all ~ E La.

The new explicit schedulers for program (1) are
the following, and the reader should have no difficulty
convincing his/herself that they terminate iff program
(1) fairly terminates with the appropriate notion of
fairness:

weak fairness:

while A V B d__o (IF_ A -+ a o-~A ~ skip FI) +

(_~B ~ fl [2-,B ~ skip FI) + 0_4,

strong fairness:

(IF A - , a t 2 B ~ ,e FI)*;
while A V B d_9_ ((if A then a) + (if B then fl)+

o_r (if "-A then fl)
or (if --B then a)) 0.._4.

Here '7* = U~>o'7 i is short for i +-?;,~/, and ,7 + =
U/>o,/ / is short for i ÷-?; i +-- i + 1; ,7/.

7. Conclusion

We have presented a general result providing
elementary recursive translations between classes of
recursive (or arithmetical) trees, yielding applications
to high undecidabUity and fairness. We feel that
characterizing H I in terms of "thin" Io-avoiding trees
for some appropriate ~ is more beneficial for computer
science than with well-founded w-trees. This is because
computer science deals with finite objects (programs,
machines, graphs, combinatorical objects such as finite
sets of dominoes, etc.) which usually give rise to finite
branching. A detailed account of one aspect of this
apparent advantage is given in [H1].

426

As mentioned at the end of Section 6, there is still
much work to be done, in the spirit of [AO, F, FK, GF,
LPS], in finding clean and useful special purpose proof
methods for fair termination of various kinds, since
even if the uniform explicit schedulers sqa described
above are worked out generally, they might more often
than not turn out to be quite unwieldly.

As another direction for further work we sug-
gest generalifing the results to languages for describing
properties of certain infinite ~ubtreea, not merely paths.
This would parallel the investigation of branching-time
vs. linear-time formalisms for reasoning about pro-
grams.

Acknowledgements

We thank A. Pnueli and G. Plotkin for their most
useful comments in the critical stages of the research.

REFERENCES

[XO]

b~P]

lAPS]

[A]

[Be]

[Bol

[c]

fDI

[EC]

Apt, K.R. and E.R. Olderog, Proof Rules and
Transformations Dealing with Fairness, TR 82-
47, LITP, University of Paris, 7, October 1982.
To appear.

Apt, K.R. and G.D. Plotkin, Countable Nondeter-
minism and Random Assignment, Manuscript,
1982. To appear in JACM.

Apt, K.R., A. Pnueli and J. Stavi, Fair ter-
mination revisited with delay, TR 82-51, LITP,
University of Paris, 7, October 1982. Also in Prec.

~ d Confernee on Foundation# of Software Technol-
ogy and Theoretical Computer Science (FST-TCS),
Bangaiore, India, December 1982.

Arnold, A., Topological Characterizations of
Infinite Behaviours of Transition Systems, Prec.

10 th Int'l. Colloq. Automata Lang., Pros., Springer-
Verlag LNCS 154, 1983, pp. 28-38.

Berger, R., The Undecidability of the Domino
Problem, Merit Amer. Math. 8oc. 66 (1966).

Boom, H.J., A Weaker Precondition for Loops,
ACM Tran#. Pros. Lang. 8y#t. 4, (1982), 668-677.

Chandra, A.K., Computable Nondeterministic

Functions, I ~ h IEEE Syrup. Found. of Comp. 8ei.,
127-131, 1978.

Dijkstsra, E.W., A Discipline of Programming,
Prentice Hall, Engiewood Cliffs, N J, 1976.

Emerson, B.A. and E.M. Clarke, Characterizing
Correctness Properties ~f Parallel Programs Using

Fixpoints. Pro¢. 7 th Int'l. Colloq. Automata, Lang.
Prog., Springer-Verlag LNCS 85, 1980, pp. 169-
181.

IF]
[Fg]

[GF]

[GFMR]

[H1]

[H2]

[HPS]

[HI

[LPS]

ILl

[PA]

[e]

[QS]

JR]

[S]

[Wl]

Francez, N., Fairne#:, Manuscript, 1983.

Francez, N. and D. Kozen, Generalized Fair Ter-

mination, Prec. l l th ACM BUmp. on Print. Pros.
Lang., 1984.

Fiirer, M., Alternation and the Ackermann Case
of the Decision Problem, L'Er~eignement m6the-
mat/que, T.XXVII, fasc 1-2 (1981), 137-162.

Grumberg, O. and N. Francez, A Complete Proo
Rule for Weak Equifairness, IBM RC-9634, 1982.

Griimberg, O., N. Francez, J.A. Makowsky, W.P.
de Roever, A Proof Rule for Fair Termination
of Guarded Commands, Prec. o] the Int. Syrup. o
AlgorithmlcL~nguages, Amsterdam, October, 1981.

Harel, D., Recurring Dominos: Making the Highly
Undecidable Highly Understandable, (Prec. Int'l.
Conf. Fund. Comput. Theory,, Burgholm, Sweden,
1983.) Amt Dieerete Mark, In press.

Harel, D., A Simple Highly Undecidable Domino
Problem (or, A Lemma on Infinite Trees, with
Applications), Prec. Logic and Computation Con-
Ierenoe. Clayton, Victoria, Australia, Jan. 1984.

Harel, D., A. Pnueli and J. Stavi, Propositional
Dynamic Logic of Nonregular Programs, Y. Corn-
put. 8y#t. 8ei. 26 (1983), 222-243.

Hoare, C.A.R., Communicating Sequential
Processes, Comm. ACM 21 (1978), 666-677.

Lehmann, D., A. Pnueli and J. Stavi, Impar-
tiality, Justice and Fairness: The Ethics of Con-

current Termination, Prec. 8 th lnt'l. Colloq. oa
Automata, Lang. and Programming, Springer-Verlag
LNCS 115, 1981.

Lewis, H.R., Complexity of Solvable Cases of the

Decision Problem for the Predicate Calculus, 19 th
IEEE Syrup. Found. Comput. 8d., 35-47, 1978.

Park, D., A Predicate Transformer for Weak Fair

Iteration, Prec. 6thlBM Symp. o M d k Found. Corn-
put. 8d., Hakone, Japan, 1981.

Pnueli, A., On the Extremely Fair Treatment o~

Probabilistic Algorithms, Prec. 15 th ACM Syrup.
on Th#ory of Computing, 1983, pp. 278-290.

Queille, J.P. and J. Sifakis, Fairness and Related
Properties in Transition Systems--A Temporal
Logic to Deal with Fairness, Act. Information 19
(1983), 195-220.

Rogers, H., Theory of Reeuraive Fanetion# an
Effective Computability, McGraw-Hill, 1967.

Streett, R.S. Global Process Logic is Hi-Com-
plete, Manuscript, 1982.

Wang, H., Proving Theorems by Pattern Recog-
nition H, Ball By#t#. Teek Y. 40 (1961), 1-41.

427

