
D i s t r i b u t e d E l e c t i o n s In A n A r c h i m e d e a n R i n g O f P r o c e s s o r s "

(Preliminary Version)

Paul M.B. Vitanyi

Centre for Mathematics and Computer Science (C. W.I.), Amsterdam-[

Summary

Unlimited asynchronism is intolerable in real physically distri-
buted computer systems. Such systems, synchronous or not,
use clocks and timeouts. Therefore the magnitudes of elapsed
absolute time in the system need to satisfy the axiom of
Archimedes. Under this restriction of asynchronicity logically
time-independent solutions can be derived which are nonethe-
less better (in number of message passes) than is possible oth-
erwise. The use of clocks by the individual processors, in elec-
tions in a ring of asynchronous processors without central con-
trol, allows a deterministic solution which requires but a linear
number 'of message passes. To obtain the result it has to be
assumed that the clocks measure finitely proportional absolute
time-spans for their time units, that is, the magnitudes of elapsed
time in the ring network satisfy the axiom of Archimedes. As a
result, some basic subtilities associated with distributed compu-
tations are highlighted. For instance, the known nonlinear lower
bound on the required number of message passes is cracked.
For the synchronous case, in which the necessary assumptions
hold afortiori, the method is -asymptotically- the most efficient
one yet, and of optimal order of magnitude. The deterministic
algorithm is of -asymptotically- optimal bit complexity, and, in the
synchronous case, also yields an optimal method to determine
the ring size. All of these results improve the known ones.

... since the centre of the sphere has no mag-
nitude, we cannot conceive it to bear any
ratio whatever to the surface of the sphere.

Archimedes, The Sand-Reckoner

1. Introduction

We address the issue of time in distributed systems. Under
genuinely reasonable assumptions about time in distributed
systems there exist, for some problems, logically time-
independent solutions which are more efficient than achiev-

* This work was supported by the Stichting Mathematisch Centrum.
t Full Address: Centre for Mathematics and Computer Science

(C.W.I.), K.ruislaan 413, 1098 SJ Amsterdam, The Netherlands.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 A C M 0 - 8 9 7 9 1 - 1 3 3 - 4 / 8 4 / 0 0 4 / 0 5 4 2 $00 .75

542

able with unlimited asynchronism. The point here is that an
algorithm can be robust enough to function under any
assumption whatever about time in the system, but its
efficiency may in a nontrivial sense change with the assump-
tion. The solution for the distributed election problem in
ring networks described below should be taken to illustrate
this thesis rather than as a serious proposal for crash
recovery in token ring networks. Its message pass complex-
ity will be shown O(sN), with s a measure of the asyn-
chronicity in the system and N the number of processors, in
contrast to the optimal O(N logN) solution for the unlim-
ited asynchronous case. So consider a set of processors,
arranged in a circle. Each processor has a unique name, say
a positive integer. Apart from this, the situation for the pro-
cessors is symmetrical. Communication between processors
occurs only between neighbors around the circle. There are
N processors, but this is not known to the processors them-
selves. It is a common logical o r g a ~ a t i o n of a network of
processors to locate them on such a (physical or virtual)
ring. A natural feature of crash recovery in computer net-
works, or other network tasks where there is no central con-
trol, consists in first reaching unanimous agreement on the
choice of a unique leader. For example, in a token ring net-
work, where the token is lost or multiplied, a single new
token has to be created. Thus, following some initial, possi-
bly local, disturbance observed by at least one process, the
distributed processes need to find an extremum on which
they all agree. The problem is treated in [Le, CR, HS, Fr,
Bu, Ca, DKR, PKR, IR]; ring networks in general in e.g.
[DSM, St, SPC, Ta]. Elections appear to be a key problem
since the number of message passes one has to expend, in
order to reach any agreement whatever in a decentralized
network, seems to be at least that required by leader
finding, and usually not of greater order of magnitude
(because after a leader is agreed upon the remainder is not
too costly).

Previous Solutions for Elections in Asynchronous Rings. In
an asynchronous ring there is no global clock for synchron-
izing the actions. Moreover, arbitrarily long delays may
occur between the sending and receiving of a message. Still,
all such delays are finite. The easiest election strategy is to
have each processor, which becomes aware that an election
is on, send a signed message around the circle in one direc-
tion. If messages of lower indexed processors are not
passed on by higher indexed processors then the only mes-
sage returning to its origin is that of the highest indexed
processor [Le]. This takes ®(N 2) message passes in the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800057.808725&domain=pdf&date_stamp=1984-12-01

- 2 -

worst case. In [Fr] a method with bidirectional message
passing is given using a worst case amount of
2N LlogNj + 3 N message passes. In [Bu], also in [PKR], it
is shown that the problem requires f~(N l o g N) message
passes. Since the methods of [Fr], also [HS, Bu], use
O(N logN) message passes, they are therefore considered to
be asymptotically optimal to within a constant multiplica-
tive factor. The Le Lann method [Le] is superior in the
sense that it operates by passing messages in one direction
only. However, in [DKR] a one directional solution is pro-
posed with O(N logN) message passes in the worst case.
Since in [PKR] the f~(N logN) lower bound is obtained on
the average number of message passes needed to solve the
problem in the asynchronous one directional case, the
matter seemed wholly resolved.

Previous Solutions for Elections in a Synchronized Ring. In a
synchronized ring there is a global clock, or some other
device, which coordinates the actions in the individual pro-
cessors so that they proceed in lock-step. The communica-
tion delay between the sending and receiving of a message
is a priori bounded in terms of time units of the global
clock. Probabilistic algorithms have been proposed [IR] for
solving the election problem in linear time on the average,
provided the size of the ring is known and the processes are
synchronous (with communication delay zero). There is no
nontrivial lower bound for the average number of messages
in the synchronous version when the size of the ring is not
known, nor for the general case where the size of the ring is
known.

Improved Solutions using Time and Clocks. The pur-
pose here is to find a better way, by using clocks, for solv-
ing the decentralized election problem for asynchronous
ring networks, which cracks the established lower bound in
[Bu, PKR]. Despite the simplicity of the method, all results
below improve the known ones.

Asynchronous Case. To achieve the deterministic one-
directional solution with a linear number of message passes,
the concept of asynchronicity has to be restricted to what
may be called Archimedean asynchronicity. Unrestricted
asynchronicity, it will be argued, is too harsh an environ-
ment for the questions at issue. That is, the ~2(N logN)
lower bound is established in [Bu, PKR] under assumptions
so hostile that they preclude a usable solution anyway. In
addition, the proposed solution has an optimal bit complex-
ity. It may need message queues.

Solutions for distributed control problems usually do not
use clocks and time and make no assumptions about rela-
tive time rates. This, in order to rule out constructions that
depend on timing for their correct operation. The message
pass complexity measure to determine the better one of two
solutions is a consequence of this expulsion of time. Some-
times time is introduced afterwards to determine the run-
ning time of a logically time-independent procedure. The
correctness and termination of the solution below is indepen-
dent of the timing assumptions. The message pass complex-
ity and the bit complexity depend on the use of time and
clocks and are better the more synchronous the system
behaves. The presented solution uses O(sN) message passes
and a correspondingly efficient number of bits. The
coefficient s is a scaling factor which measures the asyn-
chronicity of the system. It can be eliminated by the use of

appropriate parameters in the Protocols. Contrast this with
the known f~(N logN) lower bound on the average number
of message passes for the non-Archimedean case. In Sec-
tion 4 we shall express the running time complexity of the
solution in the walk time of the ring, that is, the time for a
single bit to circle the entire ring.

Synchronous Case. The deterministic solution presented.
below is outright superior, viz. runs in a linear number of
message passes, for synchronous systems, for such systems
are afortiori Archimedean (s = 1). The bit complexity is
also optimal. The method can be used to determine the
unknown ring size in optimal complexity in message passes
and passed bits. (Optimal in the sense of order of magni-
tude.) In the synchronous case the method does not need
unbounded message queues.

2. Distributed systems and Archimedean time

In asynchronous distributed systems it is usually assumed
that each processor has its own clock. Although it may have
been explicitly stated that these clocks are not synchronized,
it is usually either implied or stated in plain words that,
although these clocks do not indicate the same time, there is
some proportion between elapsed time spans. That is, if an
interval of time has passed on the clock for processor A, a
proportional period of time has passed on the clock for pro-
cessor B. This assumption allows us to challenge the
f~(N logN) lower bound on the required number of message
passes in [Bu, PKR].

We can express the assumption by stating that in the
type of asynchronous network we consider, the magnitudes
of elapsed time satisfy the axiom of Archimedes. The axiom
of Archimedes holds for a set of magnitudes if, for any pair
a ,b of such magnitudes, there is a multiple na which
exceeds b for some natural number n. It is called
Archimedes' axiom* possibly due to application on a grand
scale in The Sand-Reckoner.

We assume that the magnitudes of elapsed time, for
instance as measured by local clocks amongst different pro-
cessors or by the clock of the same processor at different
times, as well as the magnitudes consisting of communica-
tion delays between the sending and receiving of messages,
measured in for instance absolute physical time, all together
considered as a set of magnitudes of the same kind, satisfy
the Archimedean axiom. In physical reality it is always pos-
sible to replace a magnitude of elapsed time, of any clock
or communication delay, by a corresponding magnitude of

* In Sphere and Cylinder and Quadrature of the Parabola Ar-
chimedes formulates the postulate as follows. "The larger of two
lines, areas or solids exceeds the smaller in such a way that the
difference, added to itself, can exceed any given individual of the
type to which the two mutually compared magnitudes belong".
The axiom appears earlier as Definition 4 in Book 5 of Euclid's
Elements which elaborates the work on proportion of Eudoxus of
Knidos (408 BC - 355 BC): "Magnitudes are said to have a ratio
to one another, which are capable, when multiplied, of exceeding
one another". The Archimedean axiom, together with Definition
5 in lOp. cit.], yields the complete theory of proportion for kinds
of magnitudes that have a ratio to one another. It also figures
prominently in the limit arguments of Eudoxus' exhaustion
method.

543

- 3 -

elapsed absolute physical time, thus obtaining magnitudes
of the same kind. Purists may throw in relativistic correc-
tions. We assume a global absolute time to calibrate the
individual clocks; using relative time by having the docks
send messages to one another yields the same effect - for
the purposes at hand. If we do not restrict ourselves, so to
speak, to Archimedean distributed systems, then the proces-
sors in the system may not have any sense of time or have
docks which keep purely subjective time, so that the unit
time span of each processor is unrelated to that of another.
That is, the set of time units is non-Archimedean by the
length of every time unit not being less than a finite times
that of any other in the absolute global time scale; or the
communication delays having no finite ratio among them-
selves or with respect to subjective processor clocks. As a
consequence Extrema Finding or any other type of syn-
chronization in a deterministic fashion becomes impossible.
For consider:
-Any process, pausing indefinitely long with respect to the

time-scale of the others, between events like the receiving
and passing of a message, and also any infinite communica-
tion delay, effectively aborts an election in progress. A pro-
eess can never be sure that it is the only one which consid-
ers itself elected.
-Without physical time and clocks there is no way to dis-

tingnish a failed process from one just pausing between
events,
-A user or a process can tell that a system has crashed only

because he has been waiting too long for a response.

The nature of time and clocks in distributed systems is dis-
cussed in detail in [Le, La, Ga]; where the notion of a dis-
tfibuted system, in which elections as described are at all
possible, agrees with that of an Archimedean distributed
system as defined below. Distributed systems in the sense
of physically distributed computer networks communicate by
sending signed messages and setting timers. If an ack-
nowledgement of safe receipt by the proper addressee is not
received by the sender before the timer goes off, the sender
sends out a new copy of the message and sets a correspond-
ing timer. This process is repeated until either a proper ack-
nowledgement is received or the sender concludes that the
message cannot be communicated due to failures. Thus,
docks and timeouts seem necessary attributes of real distri-
buted systems [Ta] and non-Archimedean time in the sys-
tem is intolerable outright.

Definition. A distributed system is Archimedean from time
t I to time t 2 if the ratio of the time intervals between the
ticks of the clocks of any pair of processors, and the ratio
between the communication delay between any adjacent
pair of processors and the time interval between the ticks of
the clock of any processor, is bounded by a fixed integer
during the time interval from t l to t 2-

3. Decentralized leader finding using docks

Asynchronous Case. The basic feature of all efficient solu-
tions for the decentralized election problem is how to elim-
inate future losers and the messages they send fast enough.
The matter is compficated by the symmetry of the indivi-
dual processors in the ring; hence the fl(N logN) lower
bound on the number of message passes. Yet the situation

544

for the individual processors is not entirely symmetrical,
since they have unique names. (For a ring consisting of
wholly identical processors deterministic leader finding is
impossible, since the situation is symmetrical for each pro-
cessor.) In previous solutions the unique names are used in
the selection process to shut off losing processors or to elim-
inate their messages. Rather than using names only in com-
parisons, we can also use them to restrict the number of
message passes of messages originated by future losers. To
achieve this, we use time and docks. Assume that each pro-
cessor has its own clock and that the absolute time span
that elapses between the ticks of any dock, together with
the greatest communication delay between two neighbors in
the ring, is always less than a fixed multiple of the absolute
time span elapsed between the ticks of any other dock. By
setting that fixed multiple to [u / m], where u / i n is the
ratio between the first mentioned time interval u and the
second one m, for the given docks and communication
delays, we see that the assumption holds for Archimedean
rings of processors.

The algorithm is basically a souped-up version of Le Lann's
method. Initially all processors are functioning happily in
their normal mode which we, for the present purposes, call
being asleep. Suddenly, one or more awake, that is, become
aware that an election is due. Between this time and the
time the Elected One is determined, and all processors have
been notified thereof, any processor which awakes executes
the Protocol below. Processes awake spontaneously, and in
any event when they receive a wakeup message from their
anticlockwise neighbor. On notification of a successful elec-
tion by a sleepwell message a process falls asleep again. We
give the Protocol, explain the method, prove it correct and
analyse its complexity.

Subsequent to the initial prodding of any processor, in N
message passes around the ring, all processors are aware
that an election is in progress. This is encouched in the Pro-
tocol as follows. Each processor can be asleep or awake. If
a processor changes its state from asleep to awake it sends
a wakeup message to its clockwise neighbor; a processor
changes its state from asleep to awake either because it
receives a wakeup message while asleep or spontaneously.
The moment a processor is awake it knows that an election
is in progress. In precisely N message passes of wakeup
messages all processors in the ring are awake. The wakeup
message can consist of a single bit. Now recall that all pro-
cessors are supposed to have a unique name, which can be
interpreted as a positive integer. Following the wakeup
message emission, each processor i generates a single elec-
tion message Mi. The Protocol states that a message M~,
originating from processor i, waits f (i) of the local time
units, of the processor which received it, before being
transmitted to the clockwise next processor. Assume that f
is a monotone strictly increasing function. Each election
message Mi containing i is preceded by a wakeup signal
also originating from processor i. Thus, with respect to the
election campaign, all processors are effectively awake, as
soon as one of them is awake. During the campaign, when-
ever a message with a higher number meets a lower num-
bered processor, that message is annihilated. Whenever a
lower numbered message overtakes a higher numbered mes-
sage, it annihilates the latter. Hence, all messages -but its

- 4 -

Protocol to be executed when processor i awakes.

Send wakeup message to clockwise neighbor; Set k equal to
i and set timer equal to 1;
REPEAT IN EACH (LOCAL) TIME "UNIT":

Read incoming message M from anticlockwise neigh-
bor (if no message is received in this time unit then as-
sume M = Mj w i t h j > i) ;
if "I am asleep" and M is the sleepwell message then
the election is finished; #Everyone knows the winner
is me, that is, i. The sleepwell message need not con-
tain the name of the Elected One.#
if "I am awake" and M is the sleepwdl message then

begin
Elected One ,~- k ;
send sleepwell message to clockwise neighbor
and go asleep

end

if "I am awake" and M = Mj is an election message
then

begin
i f j = k then

Elected One <-- k ; # k = i #
send sleepwell message to clockwise neigh-
bor and go asleep

end

i f j < k then begin k ~--j; timer t--f (k) end

i f j > k then

begin
timer ~ timer - 1;
if timer = 0 then send Mk, containing k,
to clockwise neighbor

end
end

Figure. Election Protocol.

own- are annihilated by the lowest numbered processor and
the lowest numbered message annihilates all other messages
when it overtakes them. So all messages have been smashed
between hammer and anvil by the time the lowest num-
bered message returns to its origin, leaving it the only one
in the ring. It immediately follows that the algorithm is
correct. It remains to estimate its complexity. Globally and
absolutely speaking, u is an upper bound on the lengths of
the individual time units increased with the largest com-
munication delay, and m > 0 is a lower bound on the length
of the individual time units. Let, furthermore, the least
name of a processor be 1. Then the message Mt needs no
more than Nf(l)u absolute time to make the tour around
the ring of processors. Subsequently, 1 sends a special
sleepwell message around, informing the other processors it
is the elected one. The sleepwell message circles the ring at
top speed, so it takes no more than Nu absolute time. This
message need not contain index l, since message Mt has
passed all processors in the ring and therefore set all local
variables k to I. Thus, the sleepwell message can consist of
but a few bits. Following the original prodding, in N mes-
sage passes and in no more than Nu absolute time, all pro-
cessors are awake. In the course of these events, an election
message Mi can, during its allotted time, engage in no more
than

545

Nu(f(I)+ 1) (1)
mr(i)

message passes. Hence, the total number of message passes
in the system is not greater than:

2N + N u (f (I) + l) ~ 1
m i__ f (i) ' (2)

where I denotes the set of processor names. Thus, for
f (i) I> 2 i , the sum converges to something between
1 / f (l) and 2 / f (l) . Consequently, the number of message
passes in the system is bounded above by 2N + 3 N u / m
(1~>1). Assuming that u / m does not depend on N, the
method yields a linear upper bound on the number of mes-
sage passes in the system. Alternatively, we can eliminate
u / m from the upper bound by incorporating it in f , for
instance, by choice of f = (u 2 / m)i or larger. See Section
4 for more discussion on this topic.

Separating the effects of the clock delays and the interpro-
cessor signal propagation delays yields the following. Let
u ' stand for the upper bound on the length of the indivi-
dual time units of the clocks. Let the combined interpro-
cessor signal propagation delay around the ring be %. Then
Nu >! N u ' + w s. If there is some quality control in the
clock factory, so that u ' - m < ¢ for some fixed t, then a
statistically sound assumption is to distribute the clock
delays homogeneoas~ over the interval [u',m], and
u ' / m < 1 + (/ m. This approach yields equations analo-
gous to (1) and (2) and a similar result. In (1) we add 2%
to the numerator and w s to the denominator, and replace u
by u'. The resulting message pass complexity turns out to
be less than 7N + 3¢N / m.

Another measure of interest is the total number of bits
passed in the system. In previous solutions the way of
encoding the signature i in a message M i did not matter
very much. Any scheme using logN bits sufficed. In the
present solution though, we can take advantage of the fact
that large messages are not passed often. Thus, we code the
signature i of Mi in dyadic numbers without leading zeroes.
Recall, that dyadic numbers use the digits 1 and 2, with the
normal binary weight in their respective positions, instead
of the customary digits 0 and 1, and 1, 2, 3,4, 5, 6, . " are
encoded as 1 , 2 , 1 1 , 2 1 , 1 2 , 2 2 , By the argumentation
above, and assuming that the message Mi contains but
O(logi) bits, by dyadic encoding, the total number of bits
passed in the system in the sketched strategy is bounded by

2N + N u (f (l) + l) ~ log/
~ t f (i) . (3) m

Similar to above, for f (i) i > 2 i , the sum converges to
c ' l o g l / f (l) for some constant c' , and the total number of
bits passed is bounded above by cNu l o g / / m for some
small constant c.

4. A closer look

The worst case performance. The O(Nu / rn) upper bound
on the number of message passes of the solution is linear m
N and u / m . If compelled by practical considerations and
accompanying quality control to consider only networks
with u / m < s, where s is some fixed constant, then the

- 5 -

number of message passes is truly O(N). The assumption
of Archimedean time and clocks in the system has enabled
us to use the names of the processors in a new way to cut
down on the number of message passes. The implied slack
with the known fl(N logN) lower bound on the number of
message passes for the unlimited asynchronous case is taken
up by the asynchronicity factor u / m which is by its nature
independent of N. It seems contrived to suppose that u / m
rises unboundedly with N. Even if we do suppose this to be
the case then the factor u / m can be eliminated by incor-
poration in f as follows. (Incorporating u / m in f has
the drawback of implicitly using a global system parameter
in the Protocol.) The wirming message Mt makes precisely
N message passes. Therefore, we can replace the upper
bound (2) on the number of message passes by

3N + Nu(f (l)+l) l
i El~{l} f (i) , (4) m

which for, e.g., f (i) = (2 u / m) i yields no more than
3N + N (l + l / f (l)) < 5N (11>1) message passes. Simi-
larly, the number of passed bits is, for this choice of f ,
bounded above by 2N + 3N log/. Thus, the number of
passed bits is linear in N, if we can assume that apart from
the ratio u / m (if not incorporated in f) also 1 is indepen-
dent of N. If 1 would depend on N at all then it seems
more natural to suppose that it decreases with N. (If we
add a new processor to the system then we choose a new
name for the new processor only and not for all the old
ones.) The problem requires ~(N log/) passed bits in any
case, since the name of processor l has to be communicated
to all processors. The time complexity of the above pro-
eedure is, for f (i) = 2 i, no more than Nu(2 t +2), which is
pretty good if l is reasonably low, like 1.

Note that any f such that l imi~ooi ' / f (i) = 0, for some
c> 1, gives asymptotically similar results. The message pass
complexity for such f is O(Nul / m) since
~ i ~ t l ' / i " E 0(l).
Synchronous case. In the synchronous case the above deter-
ministic solution yields the various stated asynchronous
upper bounds with u = m. This without any assumptions
whatever, since synchronous systems are a fortiori
Archimedean. Since all of the resulting bounds are linear
in N and within a small multiplicative constant of the
trivial lower bounds, for the respective measures, the solu-
tion is optimal. By counting time, as part of the Protocol of
each processor, the network can determine the unknown
ring size N in the extreme processor I using a total of O(N)
message passes and O(N log/) passed bits.

The Worst-Case Performance under adversary scheduling with
fixed f . If we assume that f is fixed and the system can be
adjusted then the worst what can happen by adversary
scheduling both the unit delays of all processors and the
processor placement around the ring is square in N. Let
the unit delay of processor i be ui = 2 N - i + l and
f (i) = 2 i. Place furthermore the processors, in ascending
order, clockwise around the ring. Thus, 1 is the clockwise
neighbor of N and i + 1 the clockwise neighbor of i,
l < i < N . Under these conditions, no message can overtake
another one, so all messages are annihilated by processor 1.
So message M~ makes N - - i + 1 message passes leading to

546

N (N + 2) / 2 message passes altogether. This is essentially
the case covered in [Le, CR]. This shows that the upper
bound estimate in the last section is too crude, since it
exceeds this bound by choice of u / m ~ ~(N 1+') for all
c>0.

The Average-Case Performance. In [CR] the expected
number of message passes over all possible permutations of
the processors over the ring is considered. They find
O(N logN). We will do the same for the method described
under the assumption that each permutation of names of
processors over the ring has the same probability. We do
not need to assume anything about the distribution of the
delays. The walk time w = wp + ws consists of the combined
1 bit per station delay wp plus the signal propagation delay
ws over the entire ring [DSM, St, Stu, Ta]. More precisely,
the walk time of a token ring network is the time it takes
for a single bit to circumnavigate an empty ring. It has two
components: the propagation time on the cable, about 5
nanoseconds per meter of cable, and the node delays. Each
node has 1 or more bits of storage. In effect, the node
buffers are like a big distributed shift register. At every
clock tick, all bits shift one position. Each node needs at
least one bit of delay so it can inspect the last bit of the
token and change it to remove the token, if need be. A
current ring may have 5 bits per node, so a short two node
network will have enough bits to hold a token with a little
room to spare. In a short network with 1 bit of delay per
node, a two node network would be too small to store a
token. The walk time is independent of the message length,
and in fact, has nothing to do with messages at all; it is
only a function of the cable length, number of delay bits
per node, and the transmission speed (the reciprocal of
which is how often the big shift register is advanced). Thus,
a one-bit message circles the entire ring in w absolute time.
An i-bit election message takes in the order of
ws + wpf(i)logi absolute time, since in our solution we
assume that all bits of the messages are read by the proces-
sors in the ring and acted upon before release. The
expected number of message passes of election message Mi
is found by dividing the maximal available time
O(w +w s +wpf (l)logl) by the time ~(ws +wpf (i)logi) for
Mi to circumnavigate the entire ring and multiplying this
fraction with the total number N of passes around the ring.
Reasoning analogous to before, the expected number of
message passes in the ring is therefore not greater than of
order

w + ws + wef(i)logl
2N + N~i~i Ws + w~f(i)logi (5)

This is, f o r f (i) ~ 2 i and 1~1, of O(Nw/we) , or more pre-
cisely of O(N(1 + (w/(wt, f(l)logl))). If we assume that
the communication delays are negligible, or w / w e is a con-
stant independent of N, or f (i)~>w2i /wp, then the
expected number of message passes is O(N).

Minimal Time Performance. If, instead of the number of
message passes in the system, we want to rninirrtize the
absolute time for the solution, then the previous message-
pass optimal solutions in the references will all do pretty
poorly when we consider adversary scheduling of delays,
processor names and wake-up moments around the ring.
The solution given above will take time not greater than

- 6 -

2w + w s + w p f (l)logl.

By a simple variant we can eliminate the factor f (I) .
Choose f , depending on both the processor P, and the
entrant message M 1, as f (i , j) = [2J- iJ in the Protocol.
Then the winning election message Mt takes precisely
w s + w e log l absolute time to circle the ring. Therefore, the
solution time is not greater than 3w + w e (l o g / - 1). This is
a reversion to the method in [CR] and reaches virtually the
trivial lower bound on the absolute running time, but uses
O(N 2) message passes in the worst case, and O(N l o g N) on
the average. By choice of f in the above Election Protocol
we can optimize different complexity measures separately;
can we also optimize them simultaneously?

REFERENCES
Bu Bums, J.E., A formal model for message passing systems.

Tech. Rep. No. 91, Comp. Sci. Dept., Indiana Univ., May
1980.

CR Chang, E., & R. Roberts, An improved algorithm for decen-
tralized extrema-finding in circular configurations of
processes, Communications of the Ass. Comp. Mach. 22
(1979) 281 - 283.

DSM Dixon, R.C., N.G. Strole and J.D. Markov, A token-ring
network for local data communications, IBM Systems Jour-
nal 22 (1983) 47 -62.

DKRDolev, D., M. Klawe and M. Rodeh, An O(n logn) uni-
directional distributed algorithm for extremafinding in a cir-
cle, Journal of Algorithms 3 (1982) 245 - 260.

Fr Franklin, R., On an improved algorithm for decentralized
extrema finding in circular configurations of processors,
Communications of the Ass. Corap. Mach. 25 (1982) 336 -
337.

Ga Garcia-Molina, H., Elections in a distributed computing sys-
tem, IEEE Transactions on Computers, vol. C-31, (1982) 48 -
59.

HS Hirschberg, D.S., & J.B. Sinclair, Decentralized extrema-
finding in circular configurations of processors, Communica-
tions of the Ass. Comp. Mach. 23 (1980) 627 - 628.

IR Itai, A., and M. Rodeh, Symmetry breaking in a distributed
environment. Proceedings 22nd Ann. IEEE Symp. on
Foundations of Computer Science, 1981, 150 - 158.

Le Le Larm, G., Distributed systems - Towards a formal
approach. In: 1977 IFIP Congress Proceedings, Information
Processing 77, B. Gilchrist Ed., , North Holland, Amster-
darn, 1977, 155- 160.

La Lamport, L., Time, clocks, and the ordering of events in a
distributed system, Communications of the Ass. Comp. Mach.
21 (1978) 558 - 565.

PKR Pachl, J., E. Korach and D. Rotem, A technique for proving
lower bounds for distributed maximum-finding algorithms.
Proceedings 14th Ann. ACM Symposium on Theory of
Computing, 1982, 378 - 382.

SPC Saltzer, J.H., K.T.Pogran and D.D. Clark, Why a ring?
Computer Networks 7 (1983) 223 - 231.

St Strole, N.C., A local communications network based on
interconnected token-access tings: a tutorial, IBM J. Res.
Develop. 27 (1983) 481 - 496.

Stu Stuck, B.W., Calculating the maximum mean data rate in
Local Area Networks, Computer 16 (1983) 5:72 - 76.

Ta Tanenbaum, A.S., Computer Networks. Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

547

