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Abstract: In many applications, for exam- 

ple in representing data concerning his- 
torical "objects", alternatives are the 
rule; so we are led to a probabillstlc 

scheme in their representation. A deter- 
ministic approach, which underlies actual 
DBMS types, leads to very poor results, 
and, in certain cases, to misleading ones 
too. An extension of relational model is 
proposed to take into account these 
aspects, and the effects of a non-deter- 

ministic approach on operations concerning 
both relations and database are examined. 
A formal description of this extension is 
presented with reference to the internal 
representation of data. The effects on the 
queries are outlined. A representation as 
a general array is discussed which pre- 
serves the typical properties of the rela- 

tional model with deterministic data, and 
the form of the operations. 

1.0 INTRODUCTION. 

When data concerning historical "objects'" 
are represented, uncertainty and alterna- 
tives are the rule. If a deterministic 
approach is adopted, which underlies actu- 
al DBMS types, very poor, and, in some 
cases, misleading results are obtained. 

If we consider, for instance, the his- 
tory of fine arts, the attribution of a 
painting to a certain author and the peri- 
od of its execution are often discussed, 
and different solutions are proposed by 
various historians. When we force a det- 
erministic approach to data representation 
we impose a choice either of a single 
datum or of more but equiprobable data. 

In both cases we have two side-effects: 

- a loss of information which may occur 
either because possible information is 
not introduced in the database, or 
because the weight of the registered 
information is different from the 

expected one; 

- a distortion in the information con- 
tent because we force two information 
to be treated in the same way despite 
their different probabilities: so the 
basic principle does not hold which 
ensures that data retrieved according 
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to a certain characteristic are homo- 
geneous when retrieving characteristic 
is used as comparison criterion. 

As an example we can look at the following 
cases referring to Raffaello's works. 

The table "Lo sposalizio della Vergine" 
at Brera Pinacoteque in Milan is signed 
and dated 1503. The so called portrait of 
Elisabetta Gonzaga at the Uffizi Gallery 

in Florence was attributed to: Raffaello, 
Caroto, and Francia environment, and with 
different degrees of certainty. Further- 
more the identification as the portrait of 
Ellsahetta Gonzaga is discussed too. For 
the "Scuola di Atene" fresco in Vatican 
Stanze, there is a discussion about a pos- 
sible participation of Bramante in archi- 

tectures perspective (see "Came62" and 
"Brus70"). 

We remark that the last case, using a 
relational model of database, shows an 
alternative between simple and non-simple 
domains. Collaboration, in fact, has 
natural description as a particular 
relation. 

More complicated situations arise for 
the Loggia of Psiche or Vatican Logge 
decors. 

Apart from technical discussions among 
fine arts historians about the data exam- 
plifyed above, the introduction of a prob- 
ability information in database relational 
model opens the model itself in two main 
directions; they can be informally pointed 
out as follows. 

In a n-tuple of a relation R: 

I. more "ob jec t s "  can be connected to one 
through the same conceptual relation 
with different probabilities, because 
we can have a measure space as an ele- 
ment instead of a single item; 

2. two "objects" can be connected togeth- 
er through different conceptual 
relations with different probabili- 
ties; for example we could have the 
same person as the unique author of a 
painting with a certain probability 
value and, with another probability 
value, as the leader in a collab- 
oration with other painters. 
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Fig. i. Statement of the problem. 

We remark that the same structure can 
support other types of applications, for 
example when we catalogue books or papers 
by subject we can add to each classifica- 
tion item a number describing the degree 
of pertinence of the classified Object to 
the subject considered. 

Clearly the degree of pertinence does 
not have a probability structure but rath- 
er a fuzzy set one. Nevertheless t h e  
treatment of the two problems may become 
very similar, a lthogh different approaches 
were proposed (see for example "Salt8Y'). 

2.0 F I R S T  EXTENSION OF THE RELATIONAL 
MODEL 

As a first step in this work we shall dis- 
cuss a relational model extension consid- 
ering situation in which domains are all 
simple. So we shall consider a relational 
model in its first normal form: with 
relations domains all simple. We can sum- 
marize the problems in the table of 
Fig. i, which covers the first two sltu- 
ations discussed in the introduction. 

These assumptions are Justified by a 
discussion of extensions oriented to the 
internal representation of a d a t a b a s e  
rather than to the conceptual schema. For 
the same reason we do not consider here 
the effects of a probahillstlc a p p r o a c h  on 
the static and dynamic constraints repre- 
sentatlon~ on rules, and on other related 
t o p i c s .  

2.1 FORMAL DESCRIPTION 

To describe a relation having elements to 
which a probability value is added, we 
introduce in the relational model the fol- 
low lug definitions which are sllgthly dif- 
ferent from the classical ones: 

i .  we start from a certain number M of 
d o m a i n s  of b a s i c  t y p e  Bi distinct but 
not necessarily disjoint; the elements 
of these domains are the domain values 
of the usual relatlonal model; we call 
these elements o b j e c t s ;  

2. for each domain of basic type Bi we 
define a space of probabilities 
AI(Bi,Bi), whore El is a sigma-rlng 
of subsets of Bi. Each space Ai is a 
space of positive measures defined on 
(Bi,Bi), such that either fi(Bi)-I or 
fi(Bi)=O for every fi belonging to Ai. 
Clearly if fi(Bi)=O fl is identically 
null; 

3. a slmple domain SJ is defined by a 
space AJ; 

4 .  a value belonging to a simple domain 
SJ is defined by a function fl belong- 
lug to AJ, where AJ is the space of 
probability defining S J .  

The definitions of the universe U as 
the Cartesian product SlxS2x ..... xSn of n 
domains, of relation as subset of U i n  
which we shall refer to SJ as the Jth 
domain of R, and of relationship as an 
equivalence class of those relations which 
are equivalent under permutation of 
domains (see "CoddTO"), remain unchanged. 

We remark that a simple domain in the 
extended model is quite different from a 
non simple domain in the deterministic 
one, because a measure space has a field 
structure. 

We remark too that the new definition 
of simple domain value allows to treat 
with the same formalism null values and 
nonnull ones. 

2.2 RELATIONAL ALGEBRA EXTENSIONS. 

The new definitions affect in a different 
way basic operations of relational algebra 
introduced for non-lnferentlal data sys- 
tems. For these basic operation we refer 
to U l l m a n ' s  definitions given in chapter 4 
of "Ullm79." 

Permutation: Permutation is unaffected by 
the newdefinltlons because it requires 
only a permutation of components in the 
t u p l e s  t h a t  r e p r e s e n t  r e l a t i o n .  

P r o j e c t i o n :  P r o j e c t i o n  i s  a f f e c t e d  b y  n e w  
d e f i n i t i o n s  w h e n  we r e m o v e  a n y  d u p l i c a t i o n  
i n  t u p l e s  r e s u l t i n g  f r o m  s e l e c t i o n  o f  c e r -  
t a i n  domains in a relation. Hence we must 
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+ ................ + .................... + .................. + 

I object I probability I result I 
+ ................ + ....... . ............ + .................. + 

I I l I 
I different I equal or different I false I 
I equal I equal I true I 

equal ~ different I false I 

Fig. 2. Comparison table of values 

redefine equality between values belonging 
to the same domain, but in different 
tuples, taking into account their proba- 
bilities. 

In projection equality is rather an 
identity, or, if we prefer, a sort of 
someness. Then the table of values of 
Fig. 2 holds. 

We must consider not equal two tuples 
having the same object in a certain 
domain, but different probability values 
associated to it, and so we will maintain 
both. They can be processed later in dif- 
ferent ways depending on differences in 
the queries. We will discuss this aspect 
of the extension in "2.3.2 Query." 

In every case equality between proba- 
bility values is an event of low probabil- 
ity, and we must introduce a comparison 

t o l e r a n c e .  

normally, let fl and fJ be two values 
of the same domain, because fi and fj are 
two functions, equality holds iff the dis- 
tance between the two functions is smaller 
than or equal to a real number ct which 
acts as a comparison tolerance, and this 
number must be supplied when projection is 
performed. One of the ways to define the 
equality is to assume as a distance 
between the two functions fl and fj the 
sup Ifi(E)-fj(E)l, where the supremum is 
computed over the sets E belonging to Bi; 
but other definitions can be used depend- 
ing on the particular applications. 

As we shall see in discussing queries 
processing (see "2.3.2 Query"), the com- 
parison tolerance can become a very crit- 
ical parameter. 

Union: We can consider only two 
relations, which must have tile same arity, 
because the union has a semigroup struc- 
ture. Union is affected by new defi- 
nitions llke projection when we remove any 
duplication in tuples which result from 
the catenatlon of the tuples of the two 
relations involved in union. 

Difference: We can consider only two 
relations, which must have the same arity, 
because the difference has a semlgroup 
structure. Difference is affected by new 
definitions llke projection when we eom- 

pare two tuples to choose the tuples that 
are present in the first relation but not 
in the second one. 

Cartesian product: We can consider only 
two relations, because the cartesian prod- 
uct has a semlgroup structure. Cartesian 
product is affected by new definitions 
llke projection when we remove any dupli- 
cation in tuples which result from the 
catenation of the domains of the tuples of 
the two relations involved in cartesian 
product. 

Selection: Selection gives the set of 
tuples in a relation R such that a given 
relation holds among the values of stated 
domains (see "Ullm79" at p. 106). So we 
have to redefine relational operations on 
objects belonging to different domains and 
in different tuples taking into account 
their probabilities. 

We consider the simplest form of 
selection - involving two domains or a 
domain and a value as constant - because 
selection has a semigroup structure. 

Let fi belonging to Ai and gJ belonging 
to AJ be the two components of tuples 
involved as operand in relational opera- 
tion required by selection, and (fl x gj) 
their product measure. We are interested 
in (fl x gJ) measure of £he set (E x E') 
of pairs (s,s'), with s belonging to Bi 
and s" belonging to Bj, for which the con- 
sidered relation - equal, less, greater, 
etc. - holds; this measure gives the prob- 
ability that the relation holds. E 
belongs to Bi and E" belongs to BJ, so 
(fi x gj)(E x E') = fi(E)gj(E'). 

For each relational operation involved 
in selection a probability value cl - con- 
fidence level - must be supplied, and the 
result will be true if the product measure 
is greater than or equal to the supplied 
value; that is if fi(E) gj(E') >= cl 
holds. 

We remark that a "constant" involved as 
operand in selection implies either 
fi(E)=l or gJ(E')=l. Furthermore in many 
cases we have E={s} and/or E'={s'}, that 
is they can contain only one point. 

Join: Join, in its general form too (see 
"Ullm79" at pp. 108-9), has a semlgroup 
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structure, and so we can consider its sim- 
plest form: the Join of two relations R 
and S is given by those tuples in Carte- 
sian product RxS s u c h  that a given 
relation holds between the i-th component 
of R and the J-th component of S. We must 
so redefine relational operations on val- 
ues belonging to different domains and in 
different tuples taking into account their 
probabilities; but the problem is the same 
we considered in selection; cartesian pro- 
duct also does not need any extension dif- 
ferent from those considered above. So no 
new extension is required. 

Other operations on relations can be 
expressed as sequences of the operations 
described above. 

2.3 OPERATIONS ON DATABASE 

We consider here the effects of this 
extension on the operations performed on 
database such as query, insertion, 
deletion, and update of information. 

2 . 3 . 1  I n s e r t i o n ,  d e l e t i o n ,  and updat ing .  

If we insert or delete a tuple we have no 
difference. When insertion, deletion, or 
update concern the components of a tuple 
they are strongly affected by the new 
definitions introduced, because every com- 
ponent of a tuple is now a set function, 
and so we are led to typical problems of 
representing and updating set functions 
preserving normalization properties 
required by the probability concept. 

Any maintenance operation requires in 
fact insertion, deletion, or sub~tltutlon 
of an element belonging to a space of mea- 
sure (see "2.1 Formal description") with 
another belonging to the same space. And 
at this point we have various possibil- 
ities. 

In the following we will p/,pose an 
approach based on general arrays whic~is 
the natural extension of the determinist~b~ 
one (see "3.0 A representation as general 
array"); it is psrtlcularly suitable when 
the basic domains Bi are finite, discrete 
sets. 

When the basic domains are one or more 
bounded intervals of RI, other approaches 
may be more suitable. 

Furthermore they may be more a t t r a c -  
t i v e ,  even formally, in describing con- 
straints. Consider, in fact, that in 
manipulating generalized functions instead 
of presences or absences of "objects", we 
are led t o  the domain of mathematical 

analysis rather than that of the logic. 

2 ° 3 . 2  query 

T:he query philosophy of an information 
system in which a certain probability val- 
ue is added to every atom of information 
is quite different from that of a deter- 
ministic one. 

We have two kinds of differences. The 
first concerns relational algebraic oper- 
ations that the query involves. The sec- 
ond concerns the type of result we plan to 
obtain from the query. 

As discussed above (see "2.2 Relational 
algebra extensions.") selections and joins 
require that a confidence level must be 
added; the comparison tolerance to be used 
in identity check between tuples can be 
supplied either as a database character- 
istic, or as a query one, the choice 
depending on the particular application. 

The second kind of differences leads to 
more subtle and spread-out consequences, 
because of the large spectrum of possibil- 
ities offered by a probabilistlc approach. 

We give here two examples to outline 
the type of problems that can arise. As we 

will see, post-processlng of results 
obtained by relational algebraic oper- 
ations is required, and this post-process- 
ing is strictly related to probability 
calculus. So the two aspects will be 
treated separately in processing a query. 

Let us suppose we will obtain from our 
database the names of the authors who pro- 
duced a certain type of works, for example 
a certain type of objects, in a certain 
place, let's say Florence, and in a pre- 
fixed period in the past. 

A confidence level must be supplied for 
each condition. It states the minimum lev- 
el of probability at which we will accept 
the condition as true (see "2.2 Relational 
~Igebra extensions."), Clearly these val- 
Ues depend strongly on the problem that 
originated the query. 

Fig. 3. 

Intermediate result 

of the 

query 

obj type period place author 

0 ol P pl F fl Ai al 
A2 a2 
A3 a3 

0 o2 P p2 F f2 A2 bl 
A4 b2 

. . . .  . . . .  e , . .  . . . . .  
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I author probability 

Ai olplflal 
A2 max(olplfla2,o2p2f2bl,..) 

A3 olplfla3 
A4 o2p2f262 

• . . e  . s e e  

Fig. 4. Final answer to the first 
query. 

Applying the relational algebraic oper- 
ations involved by the query, selections 
and projection, we will obtain a table as 
that of Fig, 3. 

In this table ol is the probability 
that the first object in the llst was of 
the required type; pl the probability to 
be produced in the required period of 
time; fl the probability to be produced in 
Florence; AI,A2,A3, the attributions with 
the related probabilities al,a2,a3; and so 
on for the other items of the llst. 

A post-processlng of the table of 
Fig. 3 would give a result as that illus- 
trated in Fig. 4, which can be considered 
a good way to answer the query, because it 
gives, for each author, the maximum value 
o f  t h e  p r o b a b i l i t y  t h a t  t h e  q u e r y  c o n d i -  
t i o n s  were all fulfilled. 

Let us now suppose we would obtain a 
comparative evaluation of the quantity of 
work the various authors made, instead of 
their name only, all the other conditions 
being unchanged. 

Let us perform the same relational 
algebraic operations and we will obtain a 
table ilk, that illustrated in Fig. 3. As 
the first post-processing step, we calcu- 
late the probabilities that a certain num- 
ber of the stated objects were produced. 

Then we compute in each case the mean val- 
ue of the number of objects that can be 
attributed to the different authors. 

The final answer could assume the form 
given in Fig. 5; where pn,...,pO are the 
probabilities to have respectively 
Nmax,...,O objects which fulfill the 
required conditions, and ml,...,m4 are the 
mean number of the objects that can be 
attributed to each author. Clearly this 
latter set of values is different in the 
various cases. 

A distribution could be better than a 
mean value as the final result of authors 
work, depending on the application that 
originated the query. 

It is beyond the scope of this paper to 
examine in detail the problems that an 
extension like that discussed above poses 
to the query philosophy. The fact we 
pointed out is the possibility to separate 
the query manipulation in two steps: the 
first strictly related to the extended 
relational algebraic operations, the sec- 
ond to the probability calculus. 

objects number authors work 

Nmax pn AI ml 
A2 m2 
A3 m3 
A4 m4 

s e e .  o . . .  

i pl AI ml 
A2 m2 
A3 m3 
A4 m4 

0 p0 

Fig. 5. Final answer to the second 
query. 

Beltrame 21 An Extension of Relational Database M o d e l . . .  



3.0 A REPRESENTATION AS GENERAL ARRAY 

In many applications either Bi are finite 
countable sets, or they can be defined in 
this way without loss of information. 

Our probabilities, in these cases, are 
defined on fields of subsets, rather than 
on slgma-field, and so we can continue to 
use an array ,representation of relations, 
respecting also usual implementation con- 
straints about finiteness of indices. 

Arrays become general arrays when we 
introduce extensions discussed above (see 
"2.0 First extension of the relational 
model"), but the structural properties 
remain unchanged. 

We recall that a general array is an 
ordered collection of elements, which can 
be arrays themselves. The number of 
dimensions, or axes, of an array is called 
its rank, or valence. Each index axis has 
a length, which is the number of indices 
on the axis. An array containing one ele- 
ment is called a single. The collection of 
the lengths of all the dimensions of an 
array is called its shape. Lengths and 
indices may be any countable ordinal num- 
ber; restriction to finite ordinal numbers 
is an implementation constraint. The ele- 
ments of a general array can belong to the 
basic types and/or can be general arrays 
themselves. An array whose elements are 
all of the basic type is called a simple 
a r r a y  (see "More73"). 

In the following we shall consider that 
both probability values and objects in the 
domains Bi were of basic type in general 
arrays representation. This assumption 
simplifies the discussion avoiding partic- 
ulars which depend on the implementation 
of a programming language based on general 

arrays. 

A general matrix which represents an 
n-ary relation R having probabilized data 
can be graphically indicated as in Fig. 6. 
It maintains the usual properties of this 
representation where only deterministic 
data are involved (see, for historical 
reasons, "Codd70"). In fact at the outer- 
most level: 

- each row represents an n-tuple of R; 
- the ordering of the rows is immateri- 

al; 
- all rows are distinct; 
- the ordering of columns is significant 

- it corresponds to the ordering of 
the domains on which R is defined; 

- the significance of each column could 
be partially conveyed by labelling it 
with the name of the corresponding 
domain. 

Considering a probabilistic information 
involving only discrete sets, if we look 
at the internal structure of each element 
of the general matrix, we can find: 

either a vector whose first element is 
a traditional value of a basic domain, 

and the second one its probability; in 
this case always i; 
or a matrix of several rows where each 
row is a vector of two elements; this 
matrix describes the function fj that 
represents the value of the J-th com- 
ponent. 

The elements will be simple or not 
depending on the representation of all the 
components as elements of the basic type 
in the implementation of the programming 
language that supports generalized arrays. 

The solution here outlined records only 
the objects - the traditional domain val- 
ues - to which nonzero probability is 
associated, and the related probability 
value. That is we restrict the represen- 
tation to the support of fj. This sol- 
ution corresponds, formally, to one of the 
simplest form to obtain a measure: start- 
ing from a real valued, non negative func- 
tion of the points of the finite set Bi. 

Any maintenance operation concerns both 
kinds of information: so, whenever we 
insert, delete, or update a value, the 
following operations must be done: 

the elements of the general matrix 
representing the n-ary relation must 
be retrieved; 
rows of each element, that is the bas- 
ic domain value and its probability, 

must be inserted, deleted, or updated 
in the retrieved matrix; 
the measure values must be renormal- 
ized, that is an update is required of 
all the measure values in the 
retrieved matrix. 

When we process the elements of the 
general matrix, operations on relations 
require an extension of the usual rela- 
tional algebraic operations to take into 
account probability values in the form 
described above. But, in botb cases at 
the outermost level, the usual approach of 
relational model with deterministic data 
is preserved, and the form of DBMS proce- 
dures too. 

In particular, the result of applying 
the relational algebraic operations 
involved by the queries discussed above 
(see Fig. 3) will give a general matrix of 
the form presented in Fig. 7. 

I n  this paper we limit ourselves to a 
graphical representation of general arrays 
which result from the approach discussed 
above, and we avoid presenting the form of 
the functions which process the elements 
of the general matrix that represents an 
n-ary relation. 

There are a certain number of implemen- 
tations of general arrays as extensions of 
the APL language, but they differ deeply 
in philosophy and require very different 
paths to obtain the same result. The 
choice of a standard set of operators and 
functions to manipulate general arrays is 
in fact a matter of study and debate in 
the APL community. For these reasons we 
have preferred to give only a graphical 
presentation. 
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Figure 6. 

n-ary relation represented 
as general matr/x 
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+ . . . .  + + - - - +  + . . . .  + + - - - + [  + - - + + - - - +  I I 
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