
PROPOSAL FOR A PROTOTYPING KIT

Jan Jantzen
M.Sc., Ph.D.

Skovgaardsvej 18 B s t . t v .
DK-2920 Charlottenlund

DENMARK

Research supported by The Danish Council
for Sc ien t i f i c and Industr ia l Research and

Queen's Universi ty, Canada

Abstract

The three- level led ANSI/SPARC architecture
for database systems forms a framework on
which software prototypes can be b u i l t .
The external level corresponds to screen
panels, the conceptual level to the data
model, and the internal level to the
stored f i l e s of the prototype. The paper
i den t i f i es prototype design tools and
bui lding-blocks with respect to th is ar-
chi tecture. A screen design tool i l l u s -
trates ideas using nested arrays. A novel
aspect is , that the paper takes a step
towards an operational formulation of the
prototyping approach by emphasizing the
computerized implementation.

Introduction

Design of engineering, managerial, and
economic information systems is i n t u i t i v e
by nature, and i t is often useful to bui ld
an operational system model in much the
same way that an engineer builds a proto-
type.

Formally, software prototyping is a
stepwise and i t e ra t i ve design technique
characterized by pract ical experiments
with operational system models. Beyond
that, i t is hard to define what prototy-
ping is .

I t has, however, been widely and effec-
t i v e l y employed: one early report is by
Gomaa & Scott (1980), who b u i l t a proto-
type of a management and control system in
APL. APL is a useful language since prog-
ram development is fast , in te rac t ive , and
the programs are easy to change.

A prototyping approach, which combines a
technique and a too l , is described by
Mason & Carey (1983). The technique is
architecture-based, and the designer works
inward from the external appearance of the
system. The tool (ACT/I) includes a scena-
r io tool to specify input and output, i t
contains screen dr ivers, and communication
between screen-defined variables and COBOL
or PL/I defined variables is provided
using symbolic variable names.

An APL tool with s imi lar capab i l i t ies
for screen communication is APE (Applica-
Permission to copy without ~ e all or part of th~ ma~6al is grant~
provided t ~ t the copes a n not made or distributed ~ r direct
comme~ial advantage, the ACM copyright not i~ and t ~ tit~ of the

© 1984 ACM 0-89791-137-7/84/006/0219 $00.75

t ion Prototype Environment, see Sorensen &
Hagensen, 1979, for a descript ion of an
early version). This tool (which has in-
spired parts of th is work) has f a c i l i t i e s
for panel design, bui lding-blocks for
using the panels, and f a c i l i t i e s for f i l e
handling. I t thus aims at the end-user
interface as well as the stored database
inter face, but i t does not include f a c i l i -
t ies for database modelling.

The database modelling tool CANTOR,
programmed in APL, f i t s into th is gap (see
Schmidt & Theilgaard, 1980, for an over-
view presented at APL80; see Schmidt,
1980, for de ta i l s) . CANTOR rests on the
Relational Model. I t has been fur ther
developed into a nested array version,
which rests on the socalled Roster Model
-- essent ia l ly an array-theoret ic r e l a t i o -
nal model, developed by Schmidt & Jenkins
(1982).

CANTOR and APE have been used to design
two prototypes, resul t ing in a proposal
for a prototyping approach consisting of
three elements: an i t e ra t i ve design proce-
dure; a set of tools; and an information
system for cont ro l l ing project resources,
time, and costs (Jantzen, 1982).

The Roster Model is the foundation for
the RIPO tool (Rosters In, Prototype Out),
which automatically sets up a prototype
provided the test data are formatted in a
special way (described in these procee-
dings by Hendren (1984)).

With the appearance of powerful, high
level languages for representing and mani-
pulating nested arrays (APL, NIAL), i t now
seems feasible to formulate the prototy-
ping approach in a systematic and opera-
t ional way. The purpose of the present
paper is to out l ine a strategy for reach-
ing th is goal.

219

Prototype architecture

The ANSI/SPARC architecture (ANSI/X3/SPARC
in ISO, 1982) for database systems is here
used as a framework for bui lding proto-
types. The architecture is a hierarchy of
three levels: external, conceptual, and
internal level .
publi~tion a ~ i~ da~ ap~ar, and notice is given that copying is by
~rmission of the Assoc~tion ~ r Computing Machinery. To copy
other~se, or to republish, ~ q u i ~ s a ~ e and/or specific permission.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F384283.801102&domain=pdf&date_stamp=1984-06-01

The external level is the screen panels
and hardcopy reports of the prototype.
This level concerns the end-user's view of
the system. A screen panel (report) is a
screenful (page) of data with a prede-
fined, f ixed format. Each panel (or re-
port) is a part icular end-user view; i t
displays a subset of the entire informa-
tion contained in the prototype. Each
external view is described in an external
schema, i . e . , a def in i t ion of data types,
geometry, and labels.

The conceptual level is the data model,
for example a Relational Model, which is a
representation of the entire information
content of the prototype. A conceptual
schema defines the objects of the data
model, for example re lat ions, at t r ibutes,
and domains.

The internal level concerns the way data
are stored and concentrates on the physi-
cal representation of and access to the
data. An internal schema defines the le-
vel.

Two mappings, an external-conceptual and
a conceptual-internal mapping, transform
data representations into their counter-
parts when data flow from one level to
another. The purpose is to secure data and
device independence by protecting the
conceptual level from changes in panel
layouts, terminal hardware, or record
layouts; the changes are absorbed in the
mappings.

This architecture, which is in agreement
with the recommendations from the Interna-

prototype

t ional Organisation for Standardization
(ISO, 1983), forms the basis for ident i -
fying a set of prototype design tools.

PROTOKIT proposal

The future aim is to build a k i t of proto-
typing tools (a PROTOKIT), from which the
designer selects or designs components for
a prototype. A proper environment is a
"Systems Planning Laboratory" for pract i -
cal experiments, production of a l ternat ive
solutions, and quick development (Hansen &
Schmidt, 1981). A 'Prototyper's Handbook'
is to accompany the PROTOKIT with instruc-
tions on how to solve isolated, frequently
encountered subproblems.

Figure l shows a proposal for a PROTO-
KIT. The following paragraphs describe the
integration of tools into the architec-
ture.

The external level is designed by means
of a panel design tool. The tool sets up
formalised def in i t ions (an external sche-
ma) of panels, which are then used by
panel manipulation operations for the data
communication between panels and work-
space. The panel design tool and the panel
manipulation operations interface via the
external schema. Hardcopy reports are
defined using a report generator. The
report generator accesses arrays of the
data model and consults data def in i t ions in the conceptual schema. This requires a
well-defined interface between report ge-
nerator and the data modelling tool.

end-user

I I EXTERNAL
LEVEL

de/ l
ign t.ool J

MAPPING]panel manip-I
Lul ation ops.J

H R--F---------- CONCEPTUAL data modelling
LEVEL tool

MAPPI \
I analysis 1
I tool

~'Dat a Diction. I INTERNAL LEVEL ,s,s em I---L__ __
• I I stored data
l Projeot Man- I

agement Sys.

f i l e handling
tool

Figure I . Tools of PROTOKIT applied to the prototype.

Jantzen 220 Proposal for a Prototyping Kit

The conceptual level is defined by means
of a data modelling t oo l . Because of the
data independence, due to the mappings,
the data modelling tool can be regarded as
an independent t oo l , not integrated with
other too ls .

The in terna l l eve l , is defined by the
f i l e handling tool independently of other
too ls . The in terna l schema holds informa-
t'ion l i ke pos i t ion, type, and length of
f i e l d s in records. F i l e manipulation oper-
ations provide f a c i l i t i e s for reading and
wr i t ing records using the in terna l schema.

Al l three schemas are cont ro l led by a
data d ic t ionary system in the PROTOKIT.
The system communicates with the design
too ls . I t produces documentation in the
form of l i s t i n g s and cross-references
between schemas, program names, var iable
names, f i l e names, panel names, etc. An
important role of the system is to secure
that the prototype works with ex is t ing
data de f i n i t i ons from the company environ-
ment as far as possible -- rather than
just creating new data.

Analysis of the prototype structure is
performed independently of the design
too ls . Representing the structure of the
conceptual level as a digraph (Jantzen,
1982) th is tool -- bas ica l l y a l i b r a r y of
digraph operations -- w i l l test the consi-
stency by examining predecessor (succes-
sor) re la t ionsh ips , reachab i l i t y proper-
t i es , cycles, and so on.

An independent project management system
is for planning and control of the proto-
typing project . The system supports the
designer in estimating costs and time of
the implementation of the prototype, as
well as the operation of the f i na l system.

The laboratory is used in an experimen-
ta l and i t e r a t i v e manner in which the
three levels are b u i l t in succession star-
t ing with the external l eve l .

External level design

This i n i t i a l prototype, which concerns the
external l eve l , is usual ly a dummy solu-
t i on . I t consists of screen panels and
f i c t i t i o u s data only. The terminal opera-
tor can jump from one panel to another,
but there need not be any f a c i l i t i e s for
data entry. Programs are pr imar i l y for
screen handling.

Figure 2 shows an example of a panel . A
panel consists of rectangular f i e l d s . Each
f i e l d has a wel l -def ined size and posi-
t i on . Information in a f i e l d is e i ther
var iab le or f i xed. In the f igure -- a
sample menu from a l i b r a r y system -- the
time stamp '83-07-19 12:38' is an example
of var iab le informat ion, whereas the tex t
'LIBRARY SYSTEM . . . ' is f i xed. A f i e l d is
e i ther an input f i e l d or an output f i e l d .
Input f i e l d s accept information from the
keyboard, output f i e l d s do not; they are
protected from updates.

A panel design technique must allow the
end-user to develop requirements gradual ly
as the design evolves. To achieve th i s , a
three step procedure may be adopted,

step l : paint a panel
step 2: format f i e l d s
step 3: define names and types

In step one, end-user and designer discuss
the appearance of a panel using the screen
as a sketch-pad. They f i l l in test data
(f i c t i t i o u s perhaps), experiment with the
layout, and produce a l t e rna t i ve solut ions.
They repeat the process un t i l sa t i s f i ed
with the layout.

In step two, they single out the variab-
le information in the panel and demarcate
the rectangular areas that hold th is in-
formation. To the end-user, th is is the
information that goes in and out of the
prototype.

In step three, they c lass i f y these
f i e l d s in to input and output f i e l d s . They
give each f i e l d a unique name for re fe r -
ence.

fLIBRARY SYSTEM MENU - :

Function: Find a book

Enter the l e t t e r that corresponds to what you want,
then press 'SEND'

T - Look for a book using a TITLE
A - Look for a book using an AUTHOR
C - Look for a book using a CALL NUMBER
S - Look for a book using a SUBJECT
X - Go back to main select ion menu

ENTER:m
J

Figure 2. L ibrary system menu.
The bottom l i ne is an input l i ne where the end-user
types a l e t t e r ind ica t ing his choice from the menu.
The shaded areas depict var iab le informat ion, the rest
is f ixed informat ion.

Jantzen 221 Proposal for a Prototyping Kit

~ , ~ - p a n e l name

L i b m e n u
+ . + + ÷

I F l i b m e n u 0 0 24 79 o u t l T i m e 0 63 1 16 o u t l C h o i c e 21 27 1 1 i n l
+ . + + +

I I I ~ f i e l d t y p e
h e i g h t
w i d t h
y - c o o r d i n a t e
x - c o o r d i n a t e
f i e l d name

Figure 3. External schema for the l i b r a r y system menu.

A design tool has been devised that
supports th is technique. I t captures ne-
cessary pieces of information during the
three design steps and sets up an external
schema.

Figure 3 shows a schema represented as a
nested array, a l i s t of (three) l i s t s . The
box diagram is meant as an aid to under-
stand the data structure (presented at
APL82, see Schmidt & Jenkins, 1982). The
nested array representat ion (More, 1982)
is convenient, since most objects in data
processing are co l l ec t i ons , and the rec-
tangular arrangement is easy to analyze.
In the schema each l i s t defines a f i e l d in
the panel. The f i r s t l i s t defines the
f ixed informat ion, the two remaining l i s t s
in the f igure define the var iable f i e l d s .

The schema gets the f i e l d name from
design step three, posi t ion and size from
step two, and f i e l d type from step three.
Notice how th is information can be ga-
thered together in to one array, since the
array representat ion allows d iss im i la r
data types wi th in the same array, e .g. ,
characters, numbers, and i n d i v i s i b l e
phrases.

During design step one, f igure 4, the
tool displays a blank screen i n i t i a l l y .
The operator types in tex t and test data.
She is free to move the cursor around over
the whole screen by means of cursor con-
t ro l buttons using the terminal as an
e lec t ron ic sketch-pad. She works wi th in a
text ed i to r and uses the ed i to r to cor-
rect , move, inser t , etc.

During step two, the tool i n i t i a l l y
displays the panel defined in step one (a
character matrix at th is stage). The ope-
rator then types in de l im i te rs , f igure 5,
(' a ' and 'b' in the f igure , but any cha-
racter is v a l i d) ; in case of one-character
f i e l d s , only one de l im i te r is needed. She
only de l imi ts var iab le informat ion, the
computer handles the f ixed informat ion.
She can create, modify, and delete f i e l d s
by adding, moving, and delet ing de l imi -
ters. She again has the tex t ed i to r at
disposal for th is purpose.

During step three, the tool displays a
l i s t of the used de l im i te r symbols. The
operator then defines f i e l d names and
types (input or output) of each f i e l d ,
f igure 6. The defined names become variab-

les i n t e r n a l l y in the prototype. These
var iables carry the data that are communi-
cated to and from the panel.

I f t h e o p e r a t o r so w i s h e s , she can r e -
p e a t any o f t h e t h r e e s t e p s .

External level communication

Once the external schema is defined, com-
munication with a panel is by means of
predefined data manipulation operations.
These operations are bui ld ing-blocks for
wr i t ing data to and reading data from the
panel.

\ - J
Figure 4. Step one, paint a panel.

Figure 5. Step two, format f i e l d s .

l ,a me 1
Figure 6. Step three, define names
and types. Input is underl ined.

Jantzen 222 Proposal for a Prototyping Kit

. external level

D WRITE READ

s
P TRANSFORM TRANSFORM
L
A
Y READ WRITE

. conceptual level

E WRITE READ
T ~ S
R
I TRANSFORM TRANSFORM
E
v I
E READ WRITE

. in terna l level

Figure 7. Data manipulation operations
of the external-conceptual and the
conceptual- internal mapping.

Figure 7 displays a set of operations
defined according to the arch i tecture.
Notice the symmetry of the f igure . Concep-
t u a l l y at least , t rans fe r r ing data from
one level to another always involves the
three operations: READ, TRANSFORM, and
WRITE; no matter whether the purpose is
panel d isplay, data entry, stor ing data in
a f i l e , or r e t r i ev ing data.

The paragraphs below focus on the WRITE
and READ operations in connection with the
external l eve l . Operations programmed in
NIAL (Nested In te rac t i ve Array Language,
see Jenkins, 1983, for de ta i l s) w i l l i l l u -
st rate ideas.

Writing to a panel is expressed in the
statement

ITERATE writepanel Libmenu ;

where the var iab le Libmenu, the external
schema defined previously, is the argument
for the operation 'wr i tepanel ' ITERATE, a
socalled transformer, makes 'wr i tepanel '
apply to each item of Libmenu instead of
the array as a whole (equivalent to the
'each' operator in APL). To i l l u s t r a t e ,
consider the case of the time stamp. The
contents of the workspace resident va r i -
able named Time, i . e . , the str ing '83-07-
19 12:38', is placed in the proper loca-
t ion on the screen, i . e . , zero ' th row and
63'rd column cf. the schema (index o r ig in
is 0).

In that statement a whole panel was
handled in one go. The statement

writepanel f i r s t Libmenu ;

writes only the f i r s t f i e l d of Libmenu to
the screen. The operation ' f i r s t ' (' l
take' in APL) picks the f i r s t item from

.. % Comments:
time := '83-07-04 12:38' ; % Assign data
Choice := ' ' ; % Assign data
clearscreen ; % Blank out screen
ITERATE writepanel Libmenu ; % Write data to screen
ITERATE readpanel Libmenu ; % Read end-user input
IF f i r s t Choice = 'T' THEN % Take action according
. . . % to condit ion

Figure 8. NIAL code i l l u s t r a t i n g how to combine
panel manipulating operations.

Libmenu, and passes i t on as an argument
to 'w r i t epane l ' . Comparison of the two
statements i l l u s t r a t e s how data can be
processed in pa ra l l e l using ITERATE.

Reading data from a panel is expressed
in the dual statement

ITERATE readpanel Libmenu ;

where the operation 'readpanel' is applied
to each f i e l d of the panel. Af ter checking
whether a f i e l d is defined as an input
f i e l d , i t posi t ions the cursor, reads what
the end-user types, and assigns the data
to a var iab le in the workspace.

Table I summarizes a s u f f i c i e n t set of
bui ld ing-blocks for reading from and
wr i t i ng to a panel.

These bui ld ing-blocks can be put to-
gether in a manner that complies to the
previously mentioned mappings. Consider
the piece of code in f igure 8. The f i r s t
four l ines const i tu te TRANSFORM and WRITE
of the DISPLAY operat ion, and the last two
l ines const i tu te READ and TRANSFORM of the
ENTER operat ion.

Conclusion

The strategy for formulat ing a systematic
and operat ional prototyping approach rests
on three aspects

- a sui table prototype archi tecture
- sui tab le tools and techniques
- a sui tab le host language

The th ree - leve l l ed ANSI/SPARC archi tecture
applies to prototypes and provides a
framework on which prototypes can be de-
scribed and b u i l t . This archi tecture is in
agreement with the ISO recommendations.
The archi tecture has inherent symmetries,
and i t is believed that these symmetries
can aid the designer in st ructur ing the
programs of the prototype. The archi tec-
ture also aids in i den t i f y i ng sui table
PROTOKIT bui ld ing-b locks.

The object ive of the PROTOKIT is to
bui ld modular, transparent prototypes in a
stepwise, consistent, and economic way.
Suitable tools and techniques should evol-
ve from ex is t ing tools and techniques. The
tools must be modular and easy to compre-
hend, enabling simple and expedient design
of prototypes.

I t is recommended to choose an in terac-

Jantzen 223 Proposal for a Prototyping Kit

Tab le I . Panel m a n i p u l a t i o n o p e r a t i o n s i n NIAL.
i

Class Example E x p l a n a t i o n

WRITE

READ

Legend: *)

w r i t e p a n e l F i e l d d e f
ITERATE w r i t e p a n e l Panel
s e t c u r s o r X Y *)
c l e a r s c r e e n *)
w r i t e S *)
w r i t e s c r e e n S *)
w r i t e c h a r s S *)

readpane l F i e l d d e f
ITERATE readpane l Panel
readscreen P *)
read P *)

w r i t e a f i e l d to a panel
w r i t e whole panel
p o s i t i o n c u r s o r i n X,Y
b lank out screen
w r i t e s t r i n g S to screen
same, S must be c h a r . s t r i n g
same, no l i n e f e e d

read a s i n g l e f i e l d
read a whole panel
reads s t r i n g ; P i s prompt
e v a l u a t e d readsc reen

p r i m i t i v e NIAL o p e r a t i o n s

t i v e , nested a r r ay language as a host
l anguage , s ince most o b j e c t s in data p ro -
cess i ng are c o l l e c t i o n s . From a d e s i g n e r ' s
v i e w p o i n t , the nested a r r ay r e p r e s e n t a t i o n
i s c o n v e n i e n t s i nce

i t hand les v a r i a b l e l e n g t h data
d i s s i m i l a r data t ypes can be mixed
data can be processed in p a r a l l e l
t a b l e f o r m a t t i n g i s easy

I t i s c o n c l u d e d , t h a t APL and NIAL are
p r o t o t y p i n g languages .

References

I . Gomaa,H. & S c o t t , D . "An APL P r o t o t y p e
of a Management and Con t ro l System f o r a
Semiconduc to r F a b r i c a t i o n F a c i l i t y " . I :
l . P . S h a r p A s s o c i a t e s (E d s .) , PROC APL
Use r ' s Mee t i ng . T o r o n t o : l . P . S h a r p , 1980,
73-83.

2. Hansen,P.R. & Schm id t ,F . "A Systems
P l a n n i n g L a b o r a t o r y : Computer ized Too ls
and Procedures . I : O .B jo rke & O . l . F r a n k s e n
(E d s .) , S t r u c t u r e s and O p e r a t i o n s i n Eng i -
n e e r i n g and Management Systems. Trondheim:
T a p i r , 1981, 267-284.

3. Hendren ,L . "RIPO: An Automated Tool
f o r P roduc ing P r o t o t y p e s from Ros te rs . I :
PROC APL84, APL Quote Quad, 1984 (these
p r o c e e d i n g s) .

4. ISO, I n t e r n a t i o n a l O r g a n i s a t i o n f o r
S t a n d a r d i z a t i o n . Concepts and T e r m i n o l o g y
f o r the Conceptua l Schema and the I n f o rma -
t i o n Base (P u b l . n o . ISO/TC97/SC5 - N 695) .
New York: American N a t i o n a l S tandards
I n s t i t u t e , 1982.

5. J a n t z e n , J . P r o t o t y p i n g f o r the End-
User: An E x p e r i m e n t a l Approach Using APL.
T e c h n i c a l U n i v e r s i t y o f Denmark: E lec .
Power E n g i n e e r i n g Dep t . , 1982, Ph.D. t h e -
s i s .

6. J e n k i n s , M . A . The Q ' N i a l Reference
Manual . Queen's U n i v e r s i t y , Canada: Dept .
Computing and I n f o r m a t i o n Sc ience , 1983.

7. Mason,R.E.A. & C a r e y , T . T . " P r o t o t y p i n g
I n t e r a c t i v e I n f o r m a t i o n Systems" COM ACM,
1983, 2 6 (5) , 347-354.

8. More ,T . " R e c t a n g u l a r l y Ar ranged Co l -
l e c t i o n s of C o l l e c t i o n s " . I : W.H. Janko &
W. Stucky (E d s .) , PROC APL82, APL Quote
Quad, 1982, 1 3 (I) , 219-228.

9. Schm id t ,F . B a s e o p e r a t i o n s i n F a c t o r y
Management Systems: I n t e r a c t i v e P r o t o t y -
p ing Using APL. T e c h n i c a l U n i v e r s i t y of
Denmark: E lec . Power E n g i n e e r i n g Dep t . ,
1982, Ph.D. t h e s i s .

I 0 . Schm id t ,F . & J e n k i n s , M . A . " A r r a y D ia-
grams and the N ia l Approach" . I : W.H.Janko
& W.Stucky (E d s .) , PROC APL82, APL Quote
Quad, 1982, 1 3 (I) , 315-319

I I . Schm id t ,F . & J e n k i n s , M . A . Data Systems
Des ign : The N ia l Approach. Queen's U n i v e r -
s i t y , Canada: Dept. Comput ing and I n f o rma -
t i o n Sc ience , 1982.

12. Schm id t ,F . & T h e i l g a a r d , N . B . "Baseop-
e r a t i o n s w i t h i n R e l a t i o n a l Data Models"
I : PROC APL80. Amsterdam: Nor th H o l l a n d ,
1980.

13. Sorensen,U. & Hagensen,R. VS APL Pro-
t o t y p i n g . Copenhagen: IBM, 1979. General
d o c u m e n t a t i o n : IBM o rde r number GB21-3078.

Jantzen 224 Proposal for a Prototyping Kit

