Check for
Updates

PROPOSAL FOR A PROTOTYPING KIT

Jan Jdantzen

M.Sc.,
Skovgaardsvej 18 B st.tv.
DK-2920 Charlottenlund

Ph.D.

DENMARK

Reseafch supported by The Danish Council
for Scientific and Industrial Research and
Queen's University, Canada

Abstract

The three-levelled ANSI/SPARC architecture
for database systems forms a framework on
which software prototypes can be built.
The external level corresponds to screen
panels, the conceptual level to the data
model, and the internal level to the
stored files of the prototype. The paper
identifies prototype design tools and
building-blocks with respect to this ar-
chitecture. A screen design tool illus-
trates ideas using nested arrays. A novel
aspect is, that the paper takes a step
towards an operational formulation of the
prototyping approach by emphasizing the
computerized implementation.

Introduction

Design of engineering, managerial, and
economic information systems is intuitive
by nature, and it is often useful to build
an operational system model in much the
same way that an engineer builds a proto-
type.

Formally, software prototyping is a
stepwise and iterative design technique
characterized by practical experiments
with operational system models. Beyond
that, it is hard to define what prototy-
ping is.

It has, however, been widely and effec-
tively employed: one early report is by
Gomaa & Scott (1980), who built a proto-
type of a management and control system in
APL. APL is a useful language since prog-
ram development is fast, interactive, and
the programs are easy to change.

A prototyping approach, which combines a
technique and a tool, is described by
Mason & Carey (1983). The technique is
architecture-based, and the designer works
inward from the external appearance of the
system. The tool {ACT/1) includes a scena-
rio tool to specify input and output, it
contains screen drivers, and communication
between screen-defined variables and COBOL
or PL/1 defined variables is provided
using symbolic variable names.

An APL tool with similar capabilities
for screen communication is APE {(Arplica-
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the

© 1984 ACM 0-89791-137-7/84/006/0219 $00.75

219

tion Prototype Environment, see Sorensen &
Hagensen, 1979, for a description of an
early version). This tool {(which has in-
spired parts of this work) has facilities
for panel design, building-blocks for
using the panels, and facilities for file
handling. It thus aims at the end-user
interface as well as the stored database
interface, but it does not include facili-
ties for database modelling.

The database modelling tool CANTOR,
programmed in APL, fits into this gap (see
Schmidt & Theilgaard, 1980, for an over-
view presented at APL80; see Schmidt,
1980, for details). CANTOR rests on the
Relational Model. It has been further
developed into a nested array version,
which rests on the socalled Roster Model
-- essentially an array-theoretic relatio-
nal model, developed by Schmidt & Jenkins
(1982).

CANTOR and APE have been used to design
two prototypes, resulting in a proposal
for a prototyping approach consisting of
three elements: an iterative design proce-
dure; a set of tools; and an information
system for controlling project resources,
time, and costs (Jantzen, 1982).

The Roster Model is the foundation for
the RIPO tool (Rosters In, Prototype Out),
which automatically sets up a prototype
provided the test data are formatted in a
special way (described in these procee-
dings by Hendren (1984)).

With the appearance of powerful, high
level Tanguages for representing and mani-
pulating nested arrays (APL, NIAL), it now
seems feasible to formulate the prototy-
ping approach in a systematic and opera-
tional way. The purpose of the present
paper is to outliine a strategy for reach-
ing this goal.

Prototype architecture

The ANSI/SPARC architecture (ANSI/X3/SPARC
in IS0, 1982) for database systems is here
used as a framework for building proto-
types. The architecture is a hierarchy of
three levels: external, conceptual, and
internal level,.

publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F384283.801102&domain=pdf&date_stamp=1984-06-01

The external level is the screen panels
and hardcopy reports of the prototype.
This level concerns the end-user's view of
the system. A screen panel (report) is a
screenful (page) of data with a prede-
fined, fixed format. Each panel (or re-
port) is a particular end-user view; it
displays a subset of the entire informa-
tion contained in the prototype. Each
external view is described in an external
schema, i.e., a definition of data types,
geometry, and labels.

The conceptual level is the data model,
for example a Relational Model, which is a
representation of the entire information
content of the prototype. A conceptual
schema defines the objects of the data
model, for example relations, attributes,
and domains.,

The internal level concerns the way data
are stored and concentrates on the physi-
cal representation of and access to the
data. An internal schema defines the le-
vel. ‘

Two mappings, an external-conceptual and
a conceptual-internal mapping, transform
data representations into their counter-
parts when data flow from one level to
another. The purpose is to secure data and
device independence by protecting the
conceptual level from changes in panel
layouts, terminal hardware, or record
layouts; the changes are absorbed in the
mappings.

This architecture, which is in agreement
with the recommendations from the Interna-

prototype

tional Organisation fbr Standardization
(IS0, 1983}, forms the basis for identi-
fying a set of prototype design tools.

PROTOKIT proposal

The future aim is to build a kit of proto-
typing tools (a PROTOKIT), from which the
designer selects or designs components for
a prototype. A proper environment is a
"Systems Planning Laboratory" for practi-
cal experiments, production of alternative
solutions, and quick development (Hansen &
Schmidt, 1981). A 'Prototyper’'s Handbook'
is to accompany the PROTOKIT with instruc-
tions on how to solve isolated, frequently
encountered subproblems.

Figure 1 shows a proposal for a PROTO-
KIT. The following paragraphs describe the
integration of tools into the architec-
ture.

The external Tevel is designed by means
of a panel design tool. The tool sets up
formalised definitions (an external sche-
ma) of panels, which are then used by
panel manipulation operations for the data
communication between panels and work-
space. The panel design tool and the panel
manipulation operations interface via the

‘external schema. Hardcopy reports are

defined using a report generator. The
report generator accesses arrays of the
data model and consults data definitions
in the conceptual schema. This requires a
well-defined interface between report ge-
nerator and the data modelling tool.

2 end-user

LEVEL

report (> EXTERNAL
generator

‘*\ panel de-

sign tool

N

V, MAPPING
— 0

panel manip-
ulation ops.

utilities

CONCEPTUAL
LEVEL

data modelling
tool

MAPPI“E\L\\\
analysis

tool

/\

Data Diction.

INTERNAL
LEVEL

file handling
tool

L
-

System

J

Project Man-
agement Sys.

[ii] stored data

Figure 1. Tools of PROTOKIT applied to the prototype.

Jantzen

Proposal for a Prototyping Kit

The conceptual level is defined by means
of a data modelling tool. Because of the
data independence, due to the mappings,
the data modelling tool can be regarded as
an independent tool, not integrated with
other tools.

The internal level, is defined by the
file handling tool independently of other
tools. The internal schema holds informa-
tion like position, type, and length of
fields in records. File manipulation oper-
ations provide facilities for reading and
writing records using the internal schema.

A1l three schemas are controlled by a
data dictionary system in the PROTOKIT.
The system communicates with the design
tools. It produces documentation in the
form of listings and cross-references
between schemas, program names, variable
names, file names, panel names, etc. An
important role of the system is to secure
that the prototype works with existing
data definitions from the company environ-
ment as far as possible -- rather than
just creating new data.

Analysis of the prototype structure is
performed independently of the design
tools. Representing the structure of the
conceptual level as a digraph (Jantzen,
1982) this tool -- basically a library of
digraph operations -- will test the consi-
stency by examining predecessor {succes-
sor) relationships, reachability proper-
ties, cycles, and so on.

An independent project management system
is for planning and control of the proto-
typing project. The system supports the
designer in estimating costs and time of
the implementation of the prototype, as
well as the operation of the final system.

The Taboratory is used in an experimen-
tal and iterative manner in which the
three levels are built in succession star-
ting with the external level.

External level design

This initial prototype, which concerns the
external level, is usually a dummy sclu-
tion. It consists of screen panels and
fictitious data only. The terminal opera-
tor can jump from one panel to another,
but there need not be any facilities for
data entry. Programs are primarily for
screen handling.

Figure 2 shows an example of a panel. A
panel consists of rectangular fields. Each
field has a well-defined size and posi-
tion. Information in a field is either
variable or fixed. In the figure -- a
sampie menu from a library system -- the
time stamp '83-07-19 12:38' is an example
of variable information, whereas the text
'LIBRARY SYSTEM ...' is fixed. A field is
either an input field or an output fieild.
Input fields accept information from the
keyboard, output fields do not; they are
protected from updates.

A panel design technique must allow the
end-user to develop requirements gradually
as the design evolves. To achieve this, a
three step procedure may be adopted,

step 1: paint a panel
step 2: format fields
step 3: define names and types

In step one, end-user and designer discuss
the appearance of a panel using the screen
as a sketch-pad. They fill in test data
(fictitious perhaps), experiment with the
layout, and produce alternative solutions.
They repeat the process until satisfied
with the layout.

In step two, they single out the variab-
le information in the panel and demarcate
the rectangular areas that hold this in-
formation. To the end-user, this is the
information that goes in and out of the
prototype.

In step three, they classify these
fields into input and output fields. They
give each field a unique name for refer-
ence.

ﬂIBRARY SYSTEM = = =

then press 'SEND'.

- Look for
- Look for

- Look for
- Go back t

\\» ENTER

XLVOI A
1]

Function: Find a book

Enter the letter that corresponds to what you want,

a book using a TITLE
a book using an AUTHOR
Look for a book using a CALL NUMBER
a book using a SUBJECT
o main selection menu

_J

Figure 2. Library system menu.

The bottom line is an input line where the end-user
types a letter indicating his choice from the menu.
The shaded areas depict variable information, the rest

is fixed information.

Jantzen

221 Proposal for a Prototyping Kit

'/——— panel name

Libmenu

Figure 3. External schema

A design tool has been devised that
supports this technique. It captures ne-
cessary pieces of information during the
three design steps and sets up an external
schema.

Figure 3 shows a schema represented as a
nested array, a list of (three) lists. The
box diagram is meant as an aid to under-
stand the data structure (presented at
APL82, see Schmidt & Jenkins, 1982). The
nested array representation (More, 1982)
is convenient, since most objects in data
processing are collections, and the rec-
tangular arrangement is easy to analyze.
In the schema each list defines a field in
the panel. The first list defines the
fixed information, the two remaining lists
in the figure define the varijable fields.

The schema gets the field name from
design step three, position and size from
step two, and field type from step three.
Notice how this information can be ga-
thered together into one array, since the
array representation allows dissimilar
data types within the same array, e.g.,
characters, numbers, and indivisible
phrases.

During design step one, figure 4, the
tool displays a blank screen initially.
The operator types in text and test data.
She is free to move the cursor around over
the whole screen by means of cursor con-
trol buttons using the terminal as an
electronic sketch-pad. She works within a
text editor and uses the editor to cor-
rect, move, insert, etc.

During step two, the tool initially
displays the panel defined in step one (a
character matrix at this stage). The ope-
rator then types in delimiters, figure 5,
(*a' and 'b' in the figure, but any cha-
racter is valid); in case of one-character
fields, only one delimiter is needed. She
only delimits variable information, the
computer handles the fixed information.
She can create, modify, and delete fields
by adding, moving, and deleting delimi-
ters. She again has the text editor at
disposal for this purpose.

During step three, the tool displays a
list of the used delimiter symbols. The
operator then defines field names and
types (input or output) of each field,
figure 6. The defined names become variab-

Jantzen

---------------- R e
---------------- Fomm ey
field type

height

width

y-coordinate
x-coordinate
field name

for the library system menu.

les internally in the prototype. These
variables carry the data that are communi-
cated to and from the panel.

If the operator so wishes, she can re-
peat any of the three steps.

External level communication

Once the external schema is defined, com-
munication with a panel is by means of
predefined data manipulation operations.
These operations are building-blocks for
writing data to and reading data from the
panel.

—

Field Name Type
a Time out
b Choice in

Figure 6. Step three, define names
and types. Input is underlined.

222 Proposal for a Prototyping Kit

% Comments:

""" T Time := '83-07-04 12:38' ; % Assign data
[1 Choice := ' ' ; % Assign data
WRITE READ clearscreen ; % Blank out screen
? ‘ E ITERATE writepanel Libmenu ; % Write data to screen
s N ITERATE readpanel Libmenu ; % Read end-user input
P TRANSFORM TRANSFORM Y T IF first Choice = 'T' THEN % Take action according
L E e % to condition
R
e READ WRITE Figure 8. NIAL code illustrating how to combine
L] panel manipulating operations.
- - - - - - conceptual level - - - - - - -
N Libmenu, and passes it on as an argument
R 1 to 'writepanel'. Comparison of the two
E WRITE READ statements illustrates how data can be
T ‘) processed in parallel using ITERATE.
R T
Iﬁ TRANSFORM TRANSFORM 0 Reading data from a panel is expressed
E R in the dual statement
v E
E READ WRITE ITERATE readpanel Libmenu ;

g) b)

internal level

Figure 7. Data manipulation operations
of the external-conceptual and the
conceptual-internal mapping.

Figure 7 displays a set of operations
defined according to the architecture.
Notice the symmetry of the figure. Concep-
tually at least, transferring data from
one level to another always involves the
three operations: READ, TRANSFORM, and
WRITE; no matter whether the purpose is .
panel display, data entry, storing data in
a file, or retrieving data.

The paragraphs below focus on the WRITE
and READ operations in connection with the
external level. Operations programmed in
NIAL (Nested Interactive Array Language,
see Jenkins, 1983, for detaiis) will illu-
strate ideas.

Writing to a panel is expressed in the
statement

ITERATE writepanel Libmenu ;

where the variable Libmenu, the external
schema defined previously, is the argument
for the operation 'writepanel'. ITERATE, a
socalled transformer, makes 'writepanel’
apply to each item of Libmenu instead of
the array as a whole (equivalent to the
'each' operator in APL). To illustrate,
consider the case of the time stamp. The
contents of the workspace resident vari-
able named Time, i.e., the string '83-07-
19 12:38', is placed in the proper loca-
tion on the screen, i.e., zero'th row and
63'r? column cf. the schema (index origin
is 0).

In that statement a whole panel was
handled in one go. The statement

writepanel first Libmenu ;
writes only the first field of Libmenu to

the screen. The operation 'first' (']
take' in APL) picks the first item from

Jantzen

223

where the operation 'readpanel’ is applied
to each field of the panel. After checking
whether a field is defined as an input
field, it positions the cursor, reads what
the end-user types, and assigns the data
to a variable in the workspace.

Table I summarizes a sufficient set of
building-blocks for reading from and
writing to a panel.

These building-blocks can be put to-
gether in a manner that complies to the
previously mentioned mappings. Consider
the piece of code in figure 8. The first
four lines constitute TRANSFORM and WRITE
of the DISPLAY operation, and the Tast two
lines constitute READ and TRANSFORM of the
ENTER operation.

Conclusion

The strategy for formulating a systematic
and operational prototyping approach rests
on three aspects

- a suitable prototype architecture
- suitable tools and techniques
- a suitable host language

The three-levellied ANSI/SPARC architecture
applies to prototypes and provides a
framework on which prototypes can be de-
scribed and built. This architecture is in
agreement with the IS0 recommendations.
The architecture has inherent symmetries,
and it is believed that these symmetries
can aid the designer in structuring the
programs of the prototype. The architec-
ture also aids in identifying suitable
PROTOKIT building-blocks.

The objective of the PROTOKIT is to
build modular, transparent prototypes in a
stepwise, consistent, and economic way.
Suitable tools and techniques should evol-
ve from existing tools and techniques. The
tools must be modular and easy to compre-
hend, enabling simple and expedient design
of prototypes.

It is recommended to choose an interac-

Proposal for a Prototyping Kit

Table I. Panel manipulation

operations in NIAL.

Class Example Explanation

WRITE writepanel Fielddef write a field to a panel
ITERATE writepanel Panel jwrite whole panel
setcursor X Y *) |position cursor in X,Y
clearscreen *) |blank out screen
write S *) |write string S to screen
writescreen S *) | same, S must be char.string
writechars S *) | same, no linefeed

READ readpanel]l Fielddef read a single field
ITERATE readpanel Panel read a whole panel
readscreen P *) |reads string; P is prompt
read P *) |evaluated readscreen

Legend: *) - primitive NIAL operations

tive, nested array language as a host
language, since most objects in data pro-
cessing are collections. From a designer's
viewpoint, the nested array representation
is convenient since

- it handles variable length data

- dissimilar data types can be mixed
- data can be processed in parallel
- table formatting is easy

It is concluded, that APL and NIAL are
prototyping languages.

References

1. Gomaa,H. & Scott,D. "An APL Prototype
of a Management and Control System for a
Semiconductor Fabrication Facility". I:
1.P.Sharp Associates (Eds.), PROC APL
User's Meeting. Toronto: I.P.Sharp, 1980,
73-83.

2. Hansen,P.R. & Schmidt,F. "A Systems
Planning Laboratory: Computerized Tools
and Procedures. I: 0.Bjorke & O0.I.Franksen
(Eds.), Structures and Operations in Engi-
neering and Management Systems. Trondheim:
Tapir, 1981, 267-284.

3. Hendren,L. "RIPO: An Automated Tool
for Producing Prototypes from Rosters. I:
PROC APL84, APL Quote Quad, 1984 (these
proceedings).

4. 1S0, International Organisation for
Standardization. Concepts and Terminology
for the Conceptual Schema and the Informa-
tion Base (Publ.no. ISO/TC97/SC5 - N 695).
New York: American National Standards
Institute, 1982.

5. Jantzen,J. Prototyping for the End-
User: An Experimental Approach Using APL.
Technical University of Denmark: Elec.
Power Engineering Dept., 1982, Ph.D. the-
sis.

6. Jenkins,M.A.
Manual. Queen's University, Canada:
Computing and Information Science,

The Q'Nial Reference
Dept.
1983.

7. Mason,R.E.A. & Carey,T.T. "Prototyping

Interactive Information Systems". COM ACM,
1983, 26(5), 347-354.

Jantzen

224

8. More,T. "“Rectangularly Arranged Col-
lections of Collections". I: W.H. Janko &
W. Stucky (Eds.), PROC APL82, APL Quote
Quad, 1982, 13(1), 219-228.

9. Schmidt,F. Baseoperations in Factory
Management Systems: Interactive Prototy-
ping Using APL. Technical University of
Denmark: Elec. Power Engineering Dept.,
1982, Ph.D. thesis.

10. Schmidt,F. & Jenkins,M,A. “"Array Dia-
grams and the Nial Approach". I: W.H.Janko
& W.Stucky (Eds.), PROC APL82, APL Quote
Quad, 1982, 13(1), 315-319

11. Schmidt,F. & Jenkins,M.A. Data Systems
Design: The Nial Approach. Queen's Univer-
sity, Canada: Dept. Computing and Informa-
tion Science, 1982.

12. Schmidt,F. & Theilgaard,N.B. "Baseop-
erations within Relational Data Models".
I: PROC APL80. Amsterdam: North Holland,
1980.

13. Sorensen,U. & Hagensen,R. VS APL Pro-
totyping. Copenhagen: IBM, 1979. General
documentation: IBM order number GB21-3078.

Proposal for a Prototyping Kit

