
LOGIC PROGRAMMING IN APL

Rober t Jernigan
President

Decision Resource Systems
5595 Vantage Point Road

Columbia, MD, 21044, USA

ABSTRACT

The programming of an expert system
requires a language for specifying the
rules that an expert uses, a data base for
storing his knowledge, and a suitable
interactive system. Logic programming has
been described as a way of implementing
expert systems. With logic programming,
rules are expressed as assertions of what
is true when certain conditions are true.
To be true, the assertion has to be based
upon fact or upon an inference derived
from facts. This paper describes an
implementation of a PROLOG-Iike language
in APL. The intent is to achieve logic
programming capability while retaining the
full facility of APL. PROLOG is both an
extension of LISP, thereby satisfying the
needs of the Artificial Intelligence
community, and a language for relational
data bases. This implementation leans
toward the relational data base approach.

INTRODUCTION

The programming of an expert system
requires a language for speuifying the
rules that an expert uses, a data base for
storing his knowledge, and a suitable
interactive system. Logic programming has
been described as a way of implementing
expert systems [I]. With logic
programming, rules are expressed as
assertions of what is true when certain
conditions are true. To be true, the
assertion has to be based upon fact or
upon an inference derived from facts. The
following example demonstrates an
inference based on two facts. 2500 years
ago Aristotle used a similar example to
demonstrate human reasoning (logic) [2].
~rmiss ion to copy without ~e all or part of this material is granted
provided t ~ t the copies am not made or distributed ~ r di~et
commercial advant~e, t ~ ACM copyright not i~ and t ~ title of the

© 1984 A C M 0 - 8 9 7 9 1 - 1 3 7 - 7 / 8 4 / 0 0 6 / 0 2 2 5 $ 0 0 . 7 5

FACT: Dice are cubic objects.
FACT: I am holding some dice.
Inference: I am holding some cubic

objects.

This simple inference demonstrates the aim
of logic programming systems. Such
systems must be capable of maintaining
facts and the rules for making inferences.
The programming task associated with the
example above involves both the placement
of the two facts in the knowledge base and
the statement of the rule that specifies
how the inference (derived fact) is to be
made. A rule for the example could be "I
am holding B if it is true that I am
holding A and A is B." It must also be
capable of verifying assertions of the
form "I am holding some cubic objects." A
language for logic programming described
by Kowalski [3] is gaining popularity
today. That language, PROLOG, has been
selected as the language for the inference
engine in the Japanese supercomputer
project [7].

This paper describes an implementation of
a PROLOG-Iike language in APL. The intent
is to achieve logic programming capability
while retaining the full facility of APL.
PROLOG was selected as the model or base
from which to proceed. PROLOG is both an
extention of LISP, thereby satisfying the
needs of the Artificial Intelligence
community, and a language for relational
data bases. This implementation leans
toward the relational data base approach.
It has been built on top of a relational
data management and modeling system [4,5]
that has seen years of successful service.
Existing public and private libraries are
also readily incorporated into the
APL/PROLOG environment.
publi~tion aM i~ dam appear, and notice is given that copying ~ by
~rmission of the Association mr Compming Machinery. To c o n
otherwi~, or to republish, ~ q u i ~ s a ~e a M / o r spec i e permission.

225

http://crossmark.crossref.org/dialog/?doi=10.1145%2F384283.801103&domain=pdf&date_stamp=1984-06-01

APL

The discussion of APL herein is concerned
mainly with APL data structures and with
control of execution. APL has been used
to implement some sophisticated and
powerful systems. Most of these systems
rely upon the execution sequencing
mechanisms intrinsic in the APL system.
Order of execution of APL statements is

basically as follows:

o expressions are executed from right
to left;

o lines of functions are executed
from top to bottom;

o the branch operator may be used to
direct execution sequencing to
other than the next line;

o called functions are pushed on top
of the execution stack;

o statements may be stored in
strings and executed following some
selection process, perhaps a
Dykstra-like "guard" statement.

The principal APL data structure is the
array, which may have two types: numeric
or character. Using the capabilities
inherent in the language the user can
easily construct higher order structures
such as nested arrays, arrays with mixed
types, relations, and list structures.
Packages of APL functions that implement
these structures are used to provide the
user with specialized capabilities. One
such package, APLDOT, developed by the
author and Alan Eddy in 1976-77, provides
for a high-level language that was
originally used for financial and
strategic modelling during the
northeastern United States rail crisis of
the 1970's [4].

APLDOT

APZ ~ata ~rganization Zechnique (APLDOT)
implements structures such as simplified
nested arrays, mixed data types, and
relations. APLDOT is a high-level
language extension of APL that facilitates
implementation of mathematical models.
Formulas describing a problem are stored
in relational data sets, which can be
accessed by the report writers and
editors. The relational organization,
automatic control of execution, and lack
of assignment statements provide a natural
base for implementing a language like
PROLOG. Order of execution in APLDOT is
controlled entirely by a reference

function, which f o r c e s evaluation of a
formula only when its result is needed by
another formula or a report generator.

APLDOT includes:

functions implementing a
relational organization of APL
variables and functions;

o a simple but powerful relational
calculus;

a direct-effect retrieval function,
called the reference function,
that has as its value the value
of the referent objects;

context control and switching
calculus within the relational
calculus;

0 a dynamic and accessible data
dependency tree;

incorporation of formulas within
the data base in a form similar
to Iverson's direct-definition
notation;

automatic control of execution
sequence of the formulas of a
model;

o r e p o r t g e n e r a t o r s ;

a powerful function and data editor.
(This document was produced
using the editor).

APL/PROLOG

PROLOG statements, also known as rules or
Horn clauses, contain a HEAD and a TAIL
separated by the "~" symbol. For example,

HEADmTAIL (i)

is a PROLOG statement that may be read
"HEAD is true if TAIL is true." The
statement may also contain constants and
variables, which are enclosed in
parentheses. Variables are distinguished
by the use of the "_" symbol as the first
character of the name.

H o r n c l a u s e s c o n t a i n b a s i c u n i t s t h a t a r e
e v a l u a t e d a n d a r e e i t h e r t r u e o r f a l s e .
T h e s e u n i t s , c a l l e d GOALs, h a v e a n a m e , o r
p r e d i c a t e , a n d a p a r a m e t e r l i s t , w h i c h may

Jernigan 226 Logic Programming in APL

be null. The head goal contains the
assertion; the tail contains the
conditions that must be met for the
assertion in the head to be true. Goals
in the tail are connected by logical AND
(A) and OR (V) operators. Execution of
the tail proceeds from left to right and
parentheses may be used to establish
subclauses, which act as a single goal in
the clause. Any variables that occur
within a clause are bound to the clause
itself and are not available outside the
clause. Variables and constants within
the parameter list are separated by the
semicolon, ";"

FATHER(JOHN;JOE)=
SON(JOE;MARY)^SPOUSE(JOHN;MARY) (2)

is an assertion that may be read as
follows, "John is the father of Joe if Joe
is the son of Mary and John is Mary's
spouse. All of the names in the above
clause are constants. "SON", which
predicates the relation Job has to Mary,
must be true if the clause is to be true.

If the rule were stated in a general form
it would appear as

FATHER(_A;_B)~
SON(_B;_C)ASPOUSE(_A;_C). (3)

Execution of this clause would find all
cases in the knowledge base that satisfy
the rule. There are two variables
associated with the HEAD, "_A" and "_B".
During execution these variables would
have to be set to some value if the
statement were to be ~rue. Failure to do
so would cause execution to be false,
which it would be if the knowledge base
could not satisfy the conditions specified
in the TALL. Notice also that "_C" is a
variable that is local to the TAlL and
will be discarded, after execution of the
TALL.

The above clause may be read as "A" is the
father of "B" if there is a "C" such that
"B" is the son of "C" and "A" is the
spouse of "C". Of course, it may be the
case that the knowledge base contains the

fact that "B" is the son of "A". The
following restatement of the clause would
attempt to make that determination first.

FATHER(_A;_B)
~MALE(_A) ^ (SON(_B;_A)
VSON(_B;_C)
^(SPOUSE(A;_C)vSPOUSE(_C;_A))
^(ASSERT(SON(_B;A))vTRUE)).

(4)

The rule now not only searches the SON
relation first but will add (ASSERT) the
fact discovered by the subclause
containing the SPOUSE reference to the SON
relation if that subclause was used to
resolve the clause. The use of the AND
and OR symbols is consistent with their
use in APL. Note that if two subclauses
or goals are connected by an OR symbol,
the second clause is not executed if the
first is true.

Every PROLOG goal or clause returns a
boolean scalar result, i.e., it is either
true or false. In the example, the use of
the TRUE subgoal, which is always true, is
used to force the statement to be true if
the assert command should fail in its
attempt to add a discovered fact to the
knowledge base. In this context, that
addition is not a necessary action and
does not change any discovered facts.

During execution of the TAlL a relational
data base is built using the variables in
the tail as fields. This relation is
temporary and will be discarded when
execution of the clause has completed.
Before control is returned to the calling
goal, any fields mentioned in the HEAD
that are fields of the temporary relation
will be returned as values for the
corresponding variables in the calling
goal. It is important to note that this
can cause a change in values in the
variables of the calling goal. The values
of variables in any goal are totally
dependent upon any actions taken during
execution of the goal.

In the example above "_A" and "_B" would
be set to fields from the "SON" relation.
"_B" would then serve as a selection
qualified for the '~POUSE" relation. A
relational JOIN operation is then

performed on the two relations. The TAlL
may have numerous goals, each with its
associated variables, and automatically
causes a JOIN operation over the variables
returned from goal execution. Goals
mentioned in the TAIL are not restricted
to relations defined in the knowledge

base, but may be references to other

Jernigan 227 Logic Programming in APL

clauses, APL statements, commands, or
APLDOT formulas.

INTERACTIONS

PROLOG mode is entered by invoking the
"PROLOG" function. This can be done by
typing "PROLOG" once the APL/PROLOG
workspace is loaded. A vertical bar,
"l",is issued as the prompt character,

indicating it is ready for the user to
enter a statement. There are five types
of PROLOG statements:

o commands;
o assertions;
o questions;
o APL statements;

o rules or "Horn clauses".

Fact and rule assertions are terminated by
a period, and commands and questions are
terminated with a question mark. A
statement that has degenerated to garbage
due to typing errors may be terminated by
a right arrow, "÷", which discards current
input and issues a fresh prompt. When an
input line has been entered without a
terminator, it can be continued on the
next line so that several lines may be
used for a single entry. If any typing
errors are made during input, the editor
may be entered by typing "EDIT." as the
last five characters of a line.

Rules of Syntax.

The following example of a Horn clause is
referred to by the rules below:

[HEAD(_A;_B)
[GOALi(_A)AGOAL2(_A;_B)
} VGOAL3(_B;_A). (5)

I. The name of a goal precedes
its arguments.

2. Arguments are enclosed within

parentheses •
3. Arguments are separated by

semi-colons, "'"
4. Range specifications with goal

names are separated with
the APL jot character, "o"

5. Horn clauses use the APL right
shoe, "~", to separate
the head from the tail.

6. Horn clauses are terminated
with periods.

7. The APL logical-and symbol, "A",
is used to link two goals when the
second is to be executed only if

the first succeeds.
8. The APL logical-or symbol, "V",

is used to link two goals when the
second is to be executed only if
the first fails.

9. Variables use the APL underbar,
,l %l
_ , as the first character.

Commands •

With the exception of the "QUIT" command,
all commands are implemented as APL
functions. There are only three
restrictions placed on the user in writing
command functions:

o the command must parse the PROLOG
argument list;

o the command must be asserted as
fact; Example:

COMMAND(NEWCMD;THIS IS THE DESCRIPTION).
o the command must return a boolean

scalar.

The SHOW command will produce a list of
the defined commands:

I SHOW(COM~ND)?
APL/PROLOG COMMAND TABLE
NAMES LINE DESC

(6)

ASSERT [I]
DENY [2]
TRUE [3]
FALSE [4]
SWITCH [5]
QUIT [6]

STANDARD PROLOG ASSERT COMMAND
INVERSE OF ASSERT-DELETES FACTS
COMMAND THAT IS ALWAYS TRUE
COMMAND THAT IS ALWAYS FALSE
TOGGLE A SWITCH
EXIT PROLOG MONITOR TO APL

PEDIT [7] EDIT PROLOG HORN CLAUSES
SHOW [8] DISPLAY FUNCTION

Assertions.

Either a fact or a rule may be asserted.
Fact assertions are the PROLOG way of
building a knowledge base. For example:
l FATHER(SAM;JOHN).
asserts that Sam is the father of John.
The choice of the word "FATHER" is
arbitrary, but makes the statement easier
to understand. "FO0" could have been used
to assert the same fact, but leads to
difficulties in understanding what the
assertion means. Since it is not always
possible to choose words that convey the
meaning of the fact in a single name, a
description or title to a set can be
given. When a new set of facts is being
asserted, PROLOG will ask for a title to
further clarify the meaning of a set of
facts. In the above example of the SHOW
command, the titles are displayed under
the DESC heading.

(7)

Jernigan 228 Logic Programming in APL

Each set of facts is kept in a relational
data base. Associated with the data base
are its name, its title or description,
and the names of the fields. Field names
may be specified along with the data base
name. For example,

[KINSHIPoFATHERoSON(SAM;JOHN). (8)

would assert a fact for a data base named
"KINSHIP" that has two fields, "FATHER"
and "SON". If no field name is used,
PROLOG will default to the use of numbers
as field names. Specifying the names in a
goal, question, or an assertion
establishes the RANGE of fields within the
data base over which that goal or
assertion will operate.

Questions.

A question contains the name of a goal, a
set of parameters, and is terminated by a
question mark, "?". For example,

I FATHER(_A;JOHN)? (9)

is a question asking "who is the father of
John?". "_A" is a variable and "JOHN" is

a constant.

APL statements.

The APL statement, "APL", is reserved as a
special goal type. It is the primary
interface to the APL language from PROLOG.
A single parameter is required, which must
be an APL expression. The expression must
conform to APL rules of syntax with one
exception - PROLOG variables may be used.
If any results of execution of the APL
expression are to, be returned, they must
be assigned to a PROLOG variable within
the expression. If any PROLOG variables
are to be referenced within the
expression, they must have been assigned
values by PROLOG before execution of the
expression.

Examples:

APL(_A+i + 8 I0 i0 12 ÷i00). (I0)
• ..APL(_C÷ASK'ENTER NAMES TO APPEAR

ON REPORT')A...
APL(0+HOWEDIT).
APL(0PW+i32).

The first statement assigns the vector
1.08 i. I0 I.i0 1.12 to the variable "_A".
The second form, which would be imbedded
within a Horn clause, is useful for

setting variables to be used by subsequent
goals within the clause. The third form
is a way of viewing the content of a
variable. These three forms are only
representative of what may be done. The
result of an APL statement is FALSE if the
statement fails during execution, if a
boolean scalar ZERO (0) obtains, or if the
result is null.

Horn clauses.

Horn clauses, which were discussed in
detail in the previous section, are used
to assert the rules that constitute PROLOG
programs. They are executed either as the
result of a question or as a referenced
goal in another Horn clause. The goal
that does the referencing, whether in a
question or a clause, is known as the
parent goal. If the parameters of the
parent goal have values and the values
correspond to variables in the head of the

clause, the variables are set to the
corresponding values in the parent goal.
When no values are passed from the parent
goal to the head goal of a clause, it is
expected that the subsequent execution of
the clause tail will result in the setting
of the variables of the head. Those
values are then passed back to the parent
setting corresponding variables in the
parent.

When a goal is being processed, a search
is made of the knowledge base to find the
appropriate data base or Horn clause to
use for its evaluation. The search is
based both on the name, if specified, of
the parent goal and on the number and
values of the parameters. It is possible
for the search to find several clauses
that could be used for evaluation of the
parent goal. when this happens, the user
has the option of having the first goal
automatically selected or of reviewing the
goals and manually selecting which is to
be used first. Currently, clauses are
executed in turn until a result is found
that can be passed back to the parent
goal.

As clauses are executed, the variables are
passed from goal to goal within the
clause. Keeping in mind that variables
may represent an array of values, goal
evaluation may result in the elimination
of some of the values. In example 3
above, execution of the goal SON may
obtain a set of values for the variable _C
that are not in the SPOUSE relation. When

Jernigan 229 Logic Programming in APL

this happens, a null result obtains for
the clause and the head goal fails.
Successful execution results in all values
satisfying the rule being returned to the
parent.

APLLOGIC

APLLOGIC is the version of PROLOG
implemented in APL by the Applied Physics
Laboratory. At this writing it is running
on an IBM 3033 under APL/MVS. Shortly it
will be installed on The APL Machine,
which the Laboratory is acquiring from the
Analogic Corporation, Wakefield,
Massachusetts. With that implementation
several changes are planned in the way
execution control is managed. The most
important of these is concurrent execution
of all clauses that are selected during
the search process. The array-based
relational data base logic of this PROLOG,
the reliance upon APL for data structuring
functions, and the array processing of the
APL Machine should yield a prototype
PROLOG machine well suited for
implementing expert systems [6].

REFERENCES

i.

.

Clark, K. L. and McCabe, F. G.,
"PROLOG: a language for implementing
expert systems," M ~ H I N E ~ ,
Edinburgh University Press.

Aristotle, LOGIC, from~_~6Z/I_~.~_~f
O1~./_~/!__/j~, The New American
Library, New York, 1963.

3. Kowalski, R., $OGIC ~ PEOBLEM
SOIVING, New York: Elsevier -
North-Holland Publishing Co., 1979.

4. Kruba, Stephan B., "APLDOT: an APL
programmer's modeling language,"
APL83 CONFERENCE PROCEEDINGS, Wash,
D.C., 1983.

5. Eisner, A., Jernigan, R., Yionoulis,
S. M., Platt, J. A., "Satellite Relia-
bility Information Management System,"
paper submitted to APL84.

6. Warren, David, "A view of the Fifth
Generation and its impact",
T~E ~ ff~_~_/~, Vol. 3, No. 4, pp.
34-35, Fall 1982.

. Moto-oka, T., Editor, FIFT~
COMPUTER SYSTEMS, New York:
North-Holland Publishing Co., 1982.

Jernigan 230 Logic Programming in APL

