
THE IBM PERSONAL COMPUTER APL SYSTEM

M. Tavera, M. Alfonseca and J. Rojas
IBM Madrid Scientific Center
P. Castellana, 4.
Madrid-l. SPAIN.

INTRODUCTION AND HISTORY

The Computer Science Department of the
IBM Scientific Center in Madrid has been
working for several years in the field of
APL-based compilers and APL interpreters.

In 1973, we decided to enhance the
software of our System/7 computer with one
interactive time sharing system, and chose
APL as the target language. System/7 is a
sixteen bit minicomputer embodying a disk
unit and multiple sensor based facilities,
including analog and digital input/output
as well as process interrupts. It was our
purpose to support all those facilities
within our system, in such a way that APL
could become the main program development
language for those projects in the Scien-
tific Center using this minicomputer.

At that time, System/7 had a maximum
storage of only 16k 16-bit words. There-
fore, the interpreter was divided into
relocatable, 128 word pages. Control
transfer between pages was done through a
'virtual storage' supervisor, which made
sure that the requested page was present
in main storage. The number of pages sim-
ultaneously active was a function of the
actual size of the System/7 storage.

THE MACHINE INDEPENDENT APL INTERPRETER

In 1976, after the APL/7 system was
completed, we received certain suggestions
concerning the possibility of starting a
similar project for a different minicom-
puter system. Since the new computer had
a completely different machine language,
the APL/7 system could not be directly
migrated. Furthermore, the problem could
recur in some years whenever new minicom-
puters were available.

In order to prevent this development,
at the same time providing a general sol-
ution to the problem of the construction
of an APL interpreter, we decided to fol-
low a systems programming approach along
the following lines:

i. An interpreter is written in an inter-
mediate machine independent language
(IL) .

~ r m i ~ i o n to copy without ~ e all or part of the ma~nal is ~ a n t ~
prov~ed t ~ t t ~ copes a ~ not made or distfibut~ ~ r di~ct
comme~ml advantage, t ~ ACM copyfi~t nofi~ aM t ~ title of the

© 1984 ACM 0-89791-137-7 /84 /006/0333 $00.75 333

2. A compiler is written translating IL
programs into the assembly language of
a given machine.

3. The IL interpreter is compiled. The
generated code is an APL interpreter
written in that assembly language and,
therefore, directly executable on that
machine.

To obtain an APL interpreter for a dif-
ferent machine, only the code generator of
the compiler in step 2 must be rewritten,
and step 3 must be repeated.

THE INTERMEDIATE LANGUAGE

Once the systems programming approach
was chosen for our implementation, we had
to select an appropriate intermediate lan-
guage. Several possibilities were consid-
ered, including Macro Languages, Systems
Programming Languages known at that time,
as well as high level languages. However,
none of these was fully adapted to our
purposes, and we finally decided to design
our own language, which was chosen on the
basis of the following criteria:

o .It must provide machine independence.

It should allow easy management of
different types of data, required for
the implementation of an APL inter-
preter.

Compilers for the intermediate lan-
guage should be easy to build. To
optimize performance, they should not
introduce an unreasonable overhead in
the code they generate.

A special systems programming language
(IL) was designed to meet all the require-
ments of our problem. It is endowed with

A high level syntax, thus making pro-
gramming, debugging, and readability
easier, at the same time providing
machine independence.

O A low level semantics, thus reducing
the programming effort required to
build compilers that produce highly
efficient code. In fact, IL can be
considered as a 'High Level Assembly
Language'.

p ~ i i ~ f i o n aM i~ ~ appear, aM notice is given that copying is by
~rrn~sion of the A~ociation ~ r Computing Machine~. To copy
o ~ e r ~ s e , or to republish, ~ q u i ~ s a f ~ aM/ or spec~c ~rmission.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F384283.801117&domain=pdf&date_stamp=1984-06-01

The primitive operations of the lan-
guage are those most commonly encountered
in current assembly languages. But they
have been given a high level syntax.

The only assumption about the target
machine is that its memory is considered
to be a vector of units of fixed size,
consecutively numbered. The number of bits
in a memory unit should be a power of two,
but is otherwise undefined. The language
supports several types of data objects:
numeric and literal constants, parameters,
integers of different sizes, floating
point objects, pointers, as well as inter-
nal and external label names. Some of
these objects may be vectors of numbers,
addresses or literals. Others (parameters
and labels) are only allowed to be sca-
lars.

An IL program consists of two different
parts: declarations and executable state-
ments. All variables and parameters
appearing in a program must be declared.
Their type is implicit in the first letter
of the name. Two different declaration
statements are supported.

Assignment of initial values to static
variables.

Assignment of synonyms to a previously
defined variable name. Different com-
binations of data types within this
instruction make it possible to define
pointer based variables; vector vari-
ables of variable length; and vari-
ables of different types sharing the
same address.

The executable section of an IL program
consists of a number of executable IL
statements. These are analyzed from right
to left. There are no precedence rules,
and parentheses are not allowed. The fol-
lowing primitive operations are supported:

Assignment, increment, decrement, and
point to.

Arithmetic operations: Addition, sub-
straction, multiplication, division,
and residue.

Bit shift to the right, or to the
left.

Bit to bit logical operations: OR,
AND, NOT, exclusive OR.

The only control statements are the
following:

o Unconditional branch.

o Conditional branch.

o Computed go to.

o 'On overflow' condition.

o Subroutine call and return.

THE APL/IL INTERPRETER

A complete APL system cannot be made
fully machine independent. There remain
several operating system dependent func-
tions, too close to the machine level,
which must be left outside our procedure.
We call the set of all these functions an
APL supervisor. They include

o System initialization.

o Time sharing control, if needed.

o Sign on/off procedures.

o Terminal input/output.

o Support of workspace libraries.

o Timer routines.

The APL supervisor amounts to 5% to 10%
of the total programming effort. The
remaining functions in the APL system,
equivalent to 90% to 95% of the program-
ming effort, make up what we call the
Interpreter. This has been programmed in
IL, and debugged on a System/370 computer.

THE LANGUAGE

Our machine independent APL interpreter
follows the APL standard, with the follow-
ing specifications, differences and
enhancements:

o Implementation dependent limits

I. The maximum number of characters
in the name of an APL object is
12.

2. The maximum rank of an APL vari-
able is 63.

3. The maximum number of lines in a
function is 1000.

o Restrictions.

i. The value of Quad HT has no action
on terminal input/output.

2. Quad TT always gives a result of
zero.

3. The following system commands are
not supported:

)COPY and)PCOPY. They are
replaced by)IN and)OUT.

-)GROUP,)GRP and)CRPS

-)CONTINUE and)CONTINUE IIOLD

4.)FNS and)VARS list the corre-
sponding names in Quad NL order.
A first letter cannot be men-
tioned.

Tavera, Alfonseca, Rojas 334 The IBM Personal Computer APL System

o Enhancements.

I. Multiple llne deleting is sup-
ported in function definition.

2. Ambivalent defined functions
(dyadic-deflned functions that can
be used monadically). The function
itself may discover the valence of
the call by applying system func-
tion Quad NC to its left argument.

3. New APL primitives:

Dyadic grade-up and
grade-down.

Picture format, a powerful
output generating facility.

4. New APL system functions:

Execute alternative (Quad EA),
the error trapping system
function.

Peek and Poke of memory con-
tents, plus the execution of
machine-code subroutines,
through a new ambivalent sys-
tem function (Quad PK).

5.

- Standard data transfer form
(Quad TF), which provides con-
version between the internal
form and the transfer form of
APL objects.

New APL system commands:

)RESET clears the state indi-
cator and is equivalent to as
many right arrows as asterisks
are there in the indicator.

)OUT produces a file of APL
objects in transfer form.

)IN copies into the active
workspace some or all of the
APL objects included in a
transfer file.

6. Four data types are supported:
boolean (packed one bit per ele-
ment), integer (two bytes per ele-
ment), real (in floating point
format, eight bytes per element),
and literal (one byte per ele-
ment). The system automatically
performs conversions of numeric
data-types to minimize storage
space.

THE ELASTIC WORKSPACE EXTENSION

Since the machine independent APL
interpreter can be applied to many differ-
ent computers, including those with an
address space limited to only sixteen
bits, something had to be done to increase
the size of the active workspaces in such
machines. Therefore, we devised the con-
cept of an elastic workspace.

The APL active workspace is considered
to be divided into two parts: one (the
main workspace, MWS) where normal computa-
tions take place. The other (the elastic
extension EWS) where APL objects not cur-
rently in use may bestored. This exten-
sion may be located'either in main storage
or in a fast direct access device, depend-
ing on the actual implementation.

Under normal circumstances, the system
forgets about the existence of the elastic
extension, and works only on the main sec-
tion. Whenever a workspace full condition
arises, the following procedure is fol-
lowed:

A garbage collection is performed.

If the workspace full condition has
subsided, the operation is reat-
tempted, and the system goes on as
before.

o Otherwise, the user defined APL
objects (functions or variables) in
the MWS not currently needed, are
copied into the elastic extension, and
erased from the MWS. The location of
the APL object in the elastic exten-
sion is stored in the symbol table of
the main workspace. A new garbage
Collection is then performed and the
operatio n is again reattempted.

o If one of the objects in the EWS is
again needed, it is copied into the
main workspace.

o Finally, whenever one of these objects
is changed, redefined or erased, the
new value, if any, is generated in the
MWS, and any old copy in the EWS is
deleted.

The elastic workspace is managed dynam-
ically, with automatic reusability of any
free space it may contain. When an object
is deleted there, the space it occupied
becomes available for other purposes.

APPLICATION TO REAL ENVIRONMENTS

Our interpreter writing system has been
applied to generate APL interpreters in
three different environments:

i. IBM System/370, which has been used as
a test case.

2. IBM Series/l.

3. IBM Personal Computer.

THE IBM PERSONAL COMPUTER APL SYSTEM

'Conversations with Entry Systems Boca
Raton towards the application of our pro-
cedure to the IBM Personal Computer began
in September 1981. The authors began

Tavera, Alfonseca, Rojas 3 3 5 The IBM Personal Computer APL System

working in the interpreter in December
1981, when we received the first Personal
Computer at the Madrid Scientific Center.

Since the IBM Personal Computer is
based on the INTEL 8088 microprocessor, we
wrote a compiler to translate IL code into
8088 assembly language. However, we had
to take a decision concerning the possi-
bility of supporting the mathematical
coprocessor (the 8087 chip) to enhance the
performance of floating point operations.
Although the chip was not fully available
at that time, we decided to run the risk.
Therefore, we wrote the compiler to trans-
late IL code into both 8088 and 8087
instructions. Ne wrote the compiler in
APL and executed it under VSAPL at an
IBM/370 computer. The total cost of this
step in the translation process was about
one person-month.

Once the compiler was available, we
translated all modules of the APL inter-
preter into assembly code for the Personal
Computer and sent them to our Personal
Computers via a communication link. Then
we assembled and link-edited all those
modules, together with four assembly writ-
ten routines making up the machine inde-
pendent supervisor.

We finished the first version of the
product in May 1982. It was then that we
decided to include several enhancements,
such as picture format, dyadic grades, and
several auxiliary processors. During the
remainder of 1982 and the first quarter of
1983, we implemented the additions, per-
formed a large testing and debugging
cycle, and documented the system, all of
this in Madrid. The final version of the
IBM Personal Computer APL book was com-
pleted by February 1983 in Boca Raton.

SYSTEM FEATURES

The IBM Personal Computer APL system
works on both the IBM Personal Computer
and the IBM Personal Computer XT and sup-
ports the APL keyboard, the US keyboard
and all the European National keyboards.

Personal Computer APL workspaces can
have variable size according to the actual
size of the available memory in the
machine. The addressing capability of the
8088 microprocessor is 20 bits, but only
64 K bytes are directly accessible at a
given time. The use of the elastic work-
space concept has been applied to overcome
this drawback thus providing access to
workspaces over half a megabyte of size.

The APL system has been designed in
such a way that the APL interpreter, the
auxiliary processors and the interface
between the former and the latter (the
shared variable processor), are completely
separated. This feature presents two
advantages. First, the auxiliary process-
ors can be individually loaded, and sec-

ond, the users can design new auxiliary
processors to answer needs that may not be
currently supported by the system.

At load time APL can be invoked with a
list of auxiliary processors to be used
during the session. The shared variable
processor is automatically loaded only if
at least one auxiliary processor has been
requested.

An application can also be started by
specifying an APL system command at load
time.

A number of auxiliary processors have
been provided with the system:

o AP80 supports the IBM Graphics Printer
to produce APL characters, and can be
used either as a system log to provide
a record of the work session, or to
selectively print a desired APL object
or result.

o API00 manages DOS and BIOS interrupts.

o AP205 gives full-screen input and out-
put capability, and supports a
full-screen, defined function editor.

AP210 supports DOS file management
from APL functions.

AP232 permits asyncronous communi-
cation with VM/370, and supports the
upload and download of files.

o AP440 can be used to generate music.

It is possible to work with both graph-
ics and monochrome monitors, (although the
APL characters can only be displayed in
the former), and switch automatically
between them.

The IBM Personal Computer APL works
either on the IBM Personal Computer or on
the IBM Personal Computer XT, under the
DOS i.i or 2.0 operating systems, and
needs a minimum of 128K of random access
memory, one diskette drive, the IBM Per-
sonal Computer Math Co-Processor, and the
color/graphics monitor.

Optionally, it supports also the IBM 80
CPS Graphics printer, the monochrome moni-
tor, the IBM Personal Computer Expansion
Unit, and the IBM Asynchronous Communi-
cation Adapter.

CONCLUSIONS

The efficiency of the systems program-
ming approach has been tested and found
acceptable. The procedure makes it possi-
ble to develop full APL interpreters at a
cost of a few person-months, as compared
to the several years required to build
them from scratch.

Tavera, Alfonseca, Rojas 336 The IBM Personal Computer APL System

REFERENCES

(i) M. Alfonseca, M. Tavera, R. Casa-
juana, 'An APL Interpreter and System for
a Small Computer', IBM Syst. J., 16, 18
(1977).

(2) M. Alfonseca, M. Tavera, 'A Machine
Independent APL Interpreter', IBM J. Res.
Develop., 22, 413 (1978).

(3) M. Tavera, M. Alfonseca, 'IL. An
Intermediate Systems Programming Lan-
guage', SCR.01.78, Centro de Inv. UAM-IBM,
Madrid (1978).

Tavera, Alfonseca, Rojas 337 The IBM Personal Computer APL System

