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ABSTRACT. We present new algorithms for efficient ray 
tracing of three procedurally defined objects: fractal sur-  
faces ,  prisms, and surfaces of revolution. The fractal sur- 
face algorithm performs recursive subdivision adaptively. 
Subsurfaces which cannot intersect a given ray are culled 
from further consideration. The prism algorithm trans- 
forms the three dimensional ray-surface intersection prob- 
lem into a two dimensional ray-curve intersection problem, 
which is solved by the method of strip trees. The surface of 
revolution algorithm transforms the three dimensional ray- 
surface intersection problem into a two dimensional curve- 
curve intersection problem, which again is solved by strip 
trees. 

K E Y W O R D S :  computer graphics, raster graphics, ray 
tracing, fractal surfaces, procedural modelling, strip 
trees, stochastic models, surfaces of revolution. 

CR CATEGORIES: 1.3.3, 1.3.5, 1.3.7 

§1 I n t r o d u c t i o n  

Of all synthetic images, those rendered by ray tracing 
stand above the rest in realism (Appe][1], Goldstein 
and Nagle[10], Whitted[16]). Many have disparaged 
its use because of its large appetite for floating point 
computation. However - -  even though ray tracing is 
conceded to be the slowest of all methods for render- 
ing computer imagery - -  no other technique has a 
performance envelope quite as large. In ray trac- 
ing the combined effects of hidden surfaces, shadows, 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© ACM 0-89791-109-1/83/007/0091 $00.75 

reflection, and refraction are handled with a simplicity 
and elegance unmatched by its competitors. 

This paper is about novel ways of performing the key 
computational step.in rendering procedural objects via 
ray tracing. We present new ways of computing the 
intersection between a ray and certain procedurally 
defined objects. The use of procedural objects is not 
new to ray tracing - -  Whitted[16] and Rubin and 
Whitted[15] have advocated their use. Indeed, one 
could make the claim that  the natural organization for 
ray tracing programs is one using procedural objects. 

In section two, we present a method which efficiently 
computes the intersection of a ray with a fractal sur- 
face. In the course of the development of this algo- 
ri thm a number of results useful to other rendering 
techniques of fractals. We also analyze the complexity 
of the new technqiue. 

In section three, we give an algorithm for intersecting a 
ray with a surface defined by translating a plane curve 
orthogonally. We call a surface of this type a prism. 

In section four, we t reat  surfaces of revolution. The 
algorithm works well even though the radius curve may 
be defined by thousands of points. 

Algorithms for efficient rendering the above two ob- 
jects are of immediate importance to CAD/CAM 
applications. Combined with well known methods 
for ray tracing Euler combinations of primitives 
(Goldstine and Nagel[10], Roth[14]), the above tech- 
niques facilitate rendering of models described by con- 
structive solid geometry (CSG). Indeed, most of the 
objects in CSG are combinations of prisms and surfaces 
of revolution (Braid[4], Requicha[13]), the so called 
swept volumes. 

In section five we present the results of our algorithms; 
and in section six, we discuss directions for further 
w o r k .  

It  is likely that  the locus of ideas exposed here will be 
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applicable to other types of objects exhibiting either a 
high degree of symmetry or a hierarchical organization 
or both. These ideas suggest a rich panoply of tech- 
niques applicable to many procedural objects which 
has heretofore gone unsuspected. 

§2 F r a c t a l  S u r f a c e s  

The so-called method of fractals (Fournier, Fussell and 
Carpenter[0], Mandelbrot[ll]) has generated models of 
startling realism. One would conjecture that  applying 
a ray tracing rendering algorithm to objects modelled 
by this technique would yield very interesting images 
indeed. Unfortuately, practical considerations prevent 
one from doing this directly. 

Though a simple algorithm, the fractal modelling tech- 
nique generates models of visual interest through their 
great geometric complexity. A typical fractal surface 
may consist of polygons whose numbers may reach 
easily into the six figure range. As we shall see below, 
naive ray tracing is simply too slow to feasibly render 
a complex fractal surface. 

The method we present here overcomes this problem. 
It does so by evolving the fractal surface in concert 
with the rendering of it. We generate only those parts 
of the surface which are likely to intersect the ray being 
traced. In this way, each ray need be compared with 
only a handful of polygons instead of the large collec- 
tion of polygons making up the entire fractal surface. 
We compute a certain polytope, viz. an e x t e n t ,  which 
completely encloses the surface ultimately evolved with 
a high degree of certainty. If a ray intersects this ex- 
tent we must inspect its contents more closely. If not, 
the extent is pruned from further consideration thus 
saving much computation. 

We mention that  this method is essentially the adaptive 
subdivision technique mentioned in (Fournier, Fussell, 
and Carpenter[0]) translated to the ray tracing context. 

2.1 The Recursive Subdivision Method 

We use the subdivision method for generating frac- 
tals (Carpenter[5], Fournier and Fussell[8], Fournier, 
Fussell, and Carpenter[9]). In what follows we give 
a brief review of the technique as presented in the 
references above. 

The recursive subdivision technique proceeds as fol- 
lows. 1 The surface is modelled as a large number of 
triangles. The x and y coordinates of the triangle ver- 
tices are set on an isometric grid (See figure 1), while 
their z-coordinates are generated recursively as follows: 

Once the displacements zi, i = 1,2,3 for 
a given level of  reeursion axe determined,  
generate three new independent  random vaxi- 
ables ~i, i = 1, 2 ,3  with  mean given by the  
equation 

z j + z k  
E ~  -~ - -  

2 

and variance 

where  li is the length of the side of  a triangle 
and H is the "fractai dimension".  That  is, z i  
is the height of the vertex i of a triangle and 
the ~i is the displacement over the bisector of  
its opposite edge. These axe su mmed  to make  

the vertices of triangles at the next level of 
reeursion. 

2.2 The Rendering Algorithm 

The rendering algorithm is very simple. Instead of 
instantiating the surface in its entirety, we evolve a 
piece at a time. There are several advantages to this. 

In the ray tracing method, the intersection computa- 
tion is the most t ime consuming step. If we were 
to fully evolve the fractal surface, we would need to 
determine the intersection point of the current ray 
with every polygon. 2 As a typical scene requires trac- 
ing on the order of a million rays and a fractal sur- 
face may contain the same order of magnitude of 
polygons, the intersection computation under the naive 
method would require a trillion ray-polygon intersec- 
tions. Clearly this is impractical. 

By evolving only a piece of the fractal surface at a time, 
we can cut down the number of intersections which 
must be computed. 

The computation must intersect a ray r with a recur- 
sively defined surface. Suppose tha t  we are able to 
enclose each part  of the surface with an e x t e n t ,  viz. a 
volume which is guaranteed to contain a segment of 

1We restrict ourselves to the case of  triangulaxized surfaces. See 
Carpenter[5] and Fournier and Fussell[8], for other methods .  

2One of the reviewers has pointed out  that  a fractal surface can 
never be ftdly evolved but  only approximated to a certain level 
of detail 
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the fully evolved surface. The fractal surface is repre- 
sented by a tree t of branching ratio four. At each node 
n of t we associate a pair (p, e) where p is a polygon, 
called a facet, representing the surface at the level of 
recursion indexed by the depth of n, and e is an ex- 
tent which encloses the surface given by the subtree at 
n. The leaf nodes of the tree correspond to the fully 
evolved fractal surface. The polygon corresponding to 
a leaf node shall be called a primitive facet. 

An an object A is said to shadow a node n(p, e) with 
respect to a ray r if the ray intersects A at a point 
closer to the ray origin than the intersection with e. A 
node n(p, e) is said to be active if its extent e intersects 
the ray and no primitive facet shadows it. 

Note that an inactive node can never contain the 
closest intersection of the ray with the fully evolved 
surface. 

The algorithm maintains a list of active nodes which 
are to be traced by the current ray r. With each node 
is associated a diatance d from the origin of the ray to 
the closest intersection with its extent. 

The algorithm proceeds as follows: 

C h o o s e  t he  c loses t  n o d e  • a n d  remove it from 
t he  a c t i v e  n o d e  l ist .  

In tersec t  w i t h  the  four  e x t e n t s  e l ,  i ~ 1 , . . . ,  4 
a s s o c i a t e d  w i t h  the  c h i l d r e n  n l ,  i ~ 1 , . . . ,  4 
of t he  n o d e  ~. 

If no e i  in tersec t s  r t h e n  t h e r e  are  no  new a c t i v e  
nodes .  S tar t  over .  

Else ,  add  the  n o d e s  w h o s e  e x t e n t s  e l  i n t e r s e c t  
t h e  r a y  to the  ac t ive  n o d e  list. 

If the  n e w  nodes  c o n t a i n  p r i m i t i v e  face t s  p~ a n d  
the  face t s  i n t e r s e c t  the  r a y  t h e n  cul l  f r o m  the  ac-  
t ive  n o d e  l ist  the  nodes  s h a d o w e d  b y  the  c loses t  
pi. (Simply c o m p a r e  the  d i s t a n c e  of each n o d e  
to the  d i s t a n c e  of  the  f a c e t  i n t e r s e c t i o n  point) .  

It may be conjectured that a node ought to be rendered 
inactive whenever it is shadowed by any facet (not 
necessarily primitive). Certainly this holds in the two 
dimensional case, see figure 2a. But figure 2b shows 
that this is false in the three dimensional case. The 
facet for node n shadows its neighboring extent but it 
contains no primitive facet doing so. 

2.3 Computing Extents 

The key to the performance of the above algorithm lies 
with the specification of extents. Beyond the necessary 
conditions for an extent-- that  they enclose the actual 
surface segment corresponding to a node--there are 

two additional desiderata which extents should satisfy. 
First, extents should be tight, that  is, they should 
enclose the actual surface snugly. Consider the case 
when extents do not, say when an extent is the whole 
of space. Then no pruning will ever take place: the al- 
gorithm degenerates to the naive method. As extents 
become more and more snug, opportunity to prune sur- 
faces arises. Thus tight extents improve the asymptotic 
complexity of the algorithm. The second desideratum 
for an extent is that  it be easily intersected with a 
ray. That is, one should not expend undue amounts of 
computation in determining whether a ray intersects 
an extent or not. This criterion determines the not 
insignificant multiplier in the complexity of the algo- 
rithm. 

By the second criterion, an ideal extent for ray tracing 
is the sphere. Among all bounding surfaces it is the 
easiest to intersect with a ray. However, it fails with 
respect to the first criterion. Spheres do not contain 
fractal surfaces very snugly. 

We have chosen an extent which is shown in figure 
3. This extent is formed by taking the convex hull of 
the facet translated in z by a distance +t/. Because 
of its shape we have called this object a cheesecake 
eztent. Given that t / is  of minimum value, this extent 
is relatively tight. Because it is formed from simple 
polygons, it is easy to determine ray intersections. 

How can we determine the value of ~t? A fractal surface 
is stochastically defined. Thus it is not possible to 
predict with complete certainty how it will vary. On 
the other hand, because the statistical properties of 
the surface are well known, we can choose t/ so that 
there is an overwhelming probability that a cheesecake 
encloses the fully evolved surface. 

There are two approaches we may take. The first uses 
the Chebyshev inequality (Chow and Teicher[6]): 

Let X be a random variable with EIX ] < oo and 
variance e~c. Then 

P { ] X -  E X  I > a} < aux _ _ a 2  , a > O  

Now, if S(z,y) is a generalized Levy surface, the 
variance of 

a s  = s ( = , ,  w) - 

is simply a function of the distance d between the 
points (xl, Yl) and (x2, Y2). Namely, 

var(z s) = a "vz 

93 

A revised version of this paper will appear in the July 1983 issue of acm Transactions on Graphics. 



where V~r is a constant depending on the fractal dimen- 
sion H ,  (see corollary 3.4 of Mandelbrot and van 
Ness[12]). 
The point of maximum distance from all the vertices of 
a triangle with sides of length I is the center. This dis- 

tance is ~ If we use the expression for unconditional 
variance, (it is clear that  conditioning can only make 
the variance go down) then the variance is given by: 

Choosing q to be 10a guarantees a .99 chance of the 
cheesecake enclosing the fully evolved surface. 

If, as is usual, we know the surface follows a Gaussian 
distribution then one can do much better than the 
Chebyshev inequality. The probability that  the cen- 
ter point extends beyond the cheesecake is then simply 
twice the tail of the distribution. For example, choos- 
ing q to be 3a gives P ~-- .9974. Carpenter has pointed 
out tha t  if the random numbers ~ are generated via 
table lookup, then extents may be calculated with total 
certainty (Whitted[17]). 

2.4 Analysis of the Algorithm 

To analyze this algorithm we note that  there are three 
cases of ray intersection: 1)the ray does not intersect 
the top level cheesecake; 2)the ray intersects the top 
level but not the surface; and 3)the ray intersects the 
surface. 

If the ray does not intersect the top level cheesecake 
then one intersection computation is sufficient to prune 
the fractat. The number of rays which do not satisfy 
this criterion is roughly the number of pixels in which 
the fractal is visible (assuming extensive self shadowing 
does not occur). 

The number of rays of the second kind is small if the 
extents are at all tight, to be conservative we treat  
these rays as if they were of the third kind. 

The algorithm choses active nodes to process on the 
basis of distance. In the best case, only those nodes 
contained in the path from the root to primitive facet 
are chosen. At each step, new nodes are spawned and 
added to the active node list. 

Each step computes intersections with 4 cheesecakes 
and may either discard or add the new nodes to the 
active node list. When the primitive facet is finally 

encountered the entire rest of the list is culled. Thus 
the number of intersection computations which must 
be done is: 

4 log 4 n. 

The number of node generation steps is the same. 
Generating each new node is relatively cheap compared 
to the intersection computation. 

Thus in the best case, the number of intersection cal- 
culations is 

(number of visible pixels) X 4 log  4 n 

In the worst case, the extents are able to do no pruning 
at all. Then we degenerate to the naive case: n m  where 
n is the number of primitive triangles and m is the 
number of rays for the scene. 

It  has been our experience that  the average case with 
real data  possesses the same asymptotic complexity as 
the best case. We present some preliminary computa- 
tions indicating why this should be so. In general, 
however, evaluating the average case complexity is 
problematical. 

We would like to calculate the probability tha t  a ray 
striking a triangular facet with a given set of angles will 
strike neighboring cheesecakes first, thus causing un- 
necessary intersection computations to be performed. 
In the following analysis we assume that  ray strike 
points are distributed uniformly across a facet. 

Let a ray strike a triangular facet with angle 0 to the 
facet normal. (See figure 4). Then it must be a distance 
less than l~ from the boundary to strike a neighboring 
cheesecake, where 

l ~ = h t a n #  

Now, projecting the ray onto the facet plane gives 
figure 5. 

The ratio of the area of the entire triangular facet to 
the area of the shaded region gives the probability that  
a random ray will strike a neighboring cheesecake first. 

This ratio may be computed by noting that  the follow- 
ing equations hold: 

c = Us in¢  
c c 

a - -  - -  

tan f 
b = / I c o s ~ b  
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The ratio of the areas is the ratio of a + b ~o I or 

Prob ----- T(cos ~b + -~- sin ~b) 

_ h t~n 0 (cos ¢ + -~- sm ¢) 

Where h is determined as the cheesecake height of 
the previous section, say 4a. So the probability of at 
least an extra intersection computation occuring given 
a certain set of angles for the incoming ray is: 

[ ~ 2H 

P(Extra Computation]0,~b}~---4~-~-J VHtan8  

V~ 2H ~b) / Ze~g hb°r 
× (COS ~ + --3- sin 

ltriangle 
H 

K/2neighbor 

The probability given a set of angles goes down ex- 
ponentially for each level of recursion of the neighbors. 
Now, each level of recursion halves /neighbor- We sum 
the geometric series to obtain the expected number of 
intersection computations required. 

Number of computations ~ g y ~  l.e o, 
n ~ 0  

or  < K ~ - ~  l~ 2H 

n ~ 0  

= K/neighbor (~1) 2Hn 
n ~ 0  

- -  K (2lnelghb°r)2H 
2 TM -- 1 

The key observation one should make about the above 
calculation is that  the number of expected superfluous 
computations for small incidence angles is very small 
- -  much less than for the worst case. In fact, the 
geometric series sums to a small constant making the 
asymptotic complexity the same as for the best case. 

To find the expected number of superfluous computa- 
tions we use the theorem of total probability. But 
here the evaluation of the  number of computations be- 
comes problematical. The distribution of angles is not 
a simple uniform distribution. Figure 6 shows tha t  a 
facet relatively far from the ray source sees a distribu- 
tion of angles which is highly peaked about the view- 
ing angle. When shadowing and reflection occur, the 
distribution is far from uniform. 

We have observed in practice an average performance 
whose general character is very good. For example, 
when the level of recursion was increased from 5 to 
6 - -  quadrupling the number of polygons from 1024 
to 409{} - -  the runtime of the algorithm increased by 
some 12%. 

No effort has been made to cache calculated subtrees. 
Each ray intersection must evolve the surface anew 
from the top node. Whirred has suggested that  cach- 
ing the subtree computations can be a very useful op- 
timization. (Whitted[17]). 

§3 Pr i sms  

A box is formed by moving a rectangle orthogonally in 
space, and a cylinder is formed by so moving a circle. 
In general, we define a prism to be a volume formed 
by translating a plane curve along a vector n for a 
distance d. The curve is defined in a plane P whose 
normal vector is n. 

Many objects can be defined as collections of prisms. 
Among them include: block letters, machine parts 
formed by extrusion, simple models of urban architec- 
ture, surfaces with "ridges"- small vertical perturba- 
tions of a plane which embellish the texture of a surface 
with sharp edges. 

All these objects can always be modelled as collections 
of polygons. We consider the case where the plane 
curves defining these surfaces are complex, e.g. having 
thousands of vertices. Ray tracing such prisms defined 
as collections of polygons would be extremely expen- 
sive. 

The technique we describe here illustrates a general 
technique which will be used again later. We take 
advantage of the essential symmetries characterizing 
these surfaces to reduce the intersection problem from 
three to two dimensions. We then solve this two dimen- 
sional ray tracing problem by using a representation 
for plane curves known strip trees which is popular in 
computational geometry (Ballard[2 D. 

A prism is defined as the union of three parts. The first 
part  is the set of sides of the prism given by the locus 
of points tn + -y(s). Where ~/(s) is a curve embedded 
in a plane P known as the baseplane, n is the unit 
normal of P, and 0 < t < h where h is the height 
of the prism. The second and third parts of the prism 
are known as the base and cap. The base B is set of 
points interior to the curve if(s) in P, the cap is simply 
the set B -4- hn. 

95 

A revised version of this paper will appear in the July 1983 issue of acm Transac t ions  on  Graphics. 



We now give the algorithm for intersecting a ray with a 
prism. First find the intersection point of the ray  with 
base and cap planes and project these points down onto 
the base plane. The ray itself is then projected onto 
the base plane. We have now reduced the problem to 
a two dimensional one because of the following fact. 
(See figure 7.) 

P r o p o s i t i o n .  To intersect a ray r(t) ~ o + tv with a 
prism (B, h, ~,(,)), let the ray-base plane strike point be 
at t ----- to. Let the base plane projection of the ray-cap 
plane strike point be ~ = t l .  Then r strikes the prism 
iff 1) the base plane projection r'(t) of r(~) intersects 
the curve ~/(a) at a point ~ = t I and 

0 < I ¢ - t 0 1  v . n  < h 

where n is the unit  normal  of the baseplane B, or 2) 
rr(to) or rr(fz) is in the interior of ~/(s). 

This proposit ion then  suggests the following algorithm: 

Find the ray strike points t ~-~ to and t ~ tz 
with the base plane B and with the cap plane 
B -F hr~, respectively. 

Project the ray r down into the base plane to 
give the two dimensional  ray r I. 

Find all the intersections of the ray r I with As). 
(We discuss how this will be done later.) 

Sort the intersections by distance t from the ray 
origin o. 

Scan the sorted list and perform the actions con- 
ditioned by the following cases: 1) Cap plane 
strike point: if inside "lr(s) then stop else proceed. 
2) Base plane strike point: if inside "y(s) then 
stop else proceed. 3) A "y(s) intersection: If 
the intersection point t ~ ¢ is such that 0 < 
It p -- tolv • n(B) < h then stop else proceed. 

How is the intersection of the two dimensional ray r t 
with an arbi t rary plane curve ,)'(s) to  be done? We use 
the method of strip trees. Strip trees are presented in 
(Ballard[2]) as generalizations of s tructures computed  
in a curve digitization algorithm invented by Duda  and 
Hart[7]. A strip tree is a hierarchical s tructure which 
represents the curve at varying resolutions. 

The strip tree associated with a curve 3(s) is a tree t 
with nodes n(e, c), where c is a port ion of ~/(a) and e is 
an extent which completely encloses e. An  extent e is 
shown in figure 8, it is a triple e = (b, wl,  w2) consisting 
a baseline b, two widths Wl, w2. The baseline is a line 
segment of arbi t rary orientation. Geometrically, the 
extent is a rectangle whose edges are determined by the 
baseline and widths. The extent rectangle is chosen in 
such a way as to enclose the minimum area containing 
the curve segment c. Thus each edge of e touches at 

least one point of e. See figure 9. The subtrees of node 
n subdivide c on a point which touches the edge. 

We now give an algorithm for generat- 
ing a strip tree associated with any plane 
curve ~/(s). 

Choose as a baseline the line segment connecting 
the first and last point of the curve. Now scan 
the curve for the maximum and minimum signed 
distance away from the baseline. These  set  the 
widths of the root triangle. Divide the curve 
at one of these points and compute  the subtrees 
recur sively. 

It is evident t ha t  this is an n log n computat ion.  A 
linear t ime algorithm is also available (Ballard[2]). 

It is now a simple mat te r  to efficiently intersect a two 
dimensional ray with a plane curve defined by a strip 
tree. First intersect the ray with the root  extent. If 
there is an intersection then intersect with each of the 
subtrees, if not, there is no intersection with the ray. 
Continue recursively. 

Given the above algorithms we are now able to calcu- 
late the intersection point of the ray with the prism. 
Calculating the normal of the surface at the intersec- 
t ion point is simple. If the ray strikes either the base 
or cap planes then the normal is the plane normal. 
Otherwise, it strikes the sides. The three space nor- 
mal is then a simple linear t ransformat ion of the two 
space normal which is given by the strip tree baseline 
equation. This linear t ransformat ion is determined by 
the base plane normal.  

§4 S u r f a c e s  o f  R e v o l u t i o n  

Polygon or patch methods may serve as approximations 
to the surfaces of revolution described in this section. 
However, this technique can model complex surfaces 
which would require dozens of patches or hundreds of 
polygons. The t racing time of such patches or polygon 
collections would be high. The method described here 
takes advantange of the high degree of symmet ry  avail- 
able in the model. As ray tracing algorithms go, it is 
relatively fast. 

A surface of revolution is defined via a 3-tuple 
(b, a, p(s)), where b is a point called the bane point, a 
is the azi8 uector, and p(s) is the radius ]unction. See 
figure 10. 

Figure 11 shows the geometrical interpretations of the 
following definitions. We define the cut plane as the 
plane containing the current  ray  which is parallel to  
the axis of revolution. Let the ray be given as an origin 
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and direction vector: 

r(O = o + ~v. 

Then the cut plane normal c is given by 

c ~ , X o .  

The plane contains the ray origin o. Define d to be the 
perpendicular distance of the base point b to the cut 
plane. 

The algorithm first reduces the problem of intersecting 
a ray r with a surface of revolution to the problem of 
intersecting a two dimensional ray d with two plane 
curves ~ ,  ~2 formed by intersecting the cut plane with 
the surface of revolution. 

Define a coordinate system in the cut plane as follows. 
The origin of the plane is the projection b t of the base 
point. The y axis vector is the projection of the axis of 
revolution a, the z axis unit vector is given by a X c. 

The algorithm now at tempts to intersect the two 
dimensional ray with the two curves ./1, if2 representing 
the surface meeting the cut plane: But how are these 
two plane curves to be determined? Figure 12 shows 
how the curves depend on the radius function p(8) and 
the distance d, namely: 

= 

i 
fly = P~" 

ff the quantitiy under the root is negative then the 
curve disappears altogether. 

Now, the radius curve p ( s )  may contain thousands of 
points: it would be extremely expensive to calculate 
the plane curves ~i for every ray using the above rela- 
tion. Even if we do, the question of which specific al- 
gorithm to intersect the curves with the ray remains 
unanswered. Of course, we intend to use strip trees. 
But if we do so directly then we would be forced to 
recalculate the bounding extents at each intersection 
computation. This is because the plane curves change 
radically for each different ray. Such a scheme would 
be impractically slow. Strip trees only yield advantages 
if their extents can be precalculated and reused for 
each ray trace. 

The solution to this problem is to trace in a different 
space. Specifically, we trace not in (z, y)-space but in 
(z ~, y)-space. In this space the equation defining the 
two plane curves appears as: 

'7= ~--- P= - -  d 2 

The original radius curve p is defined as the square of 
the actual radius curve. The plane curve ,y is simply 
translated by the square of d the distance of the cut 
plane from the base point. 

Figures 13a,b show examples of this transformation. 
As the distance of the cut plane from the axis grows, 
more of the curve lies below the axis. Note that  we 
are now tracing curved rays that  bounce off the origin. 
Thus the parts of curves below the axis are inaccessible 
to the ray. To trace curved rays we use a slightly 
different ray equation. Instead of tracing rays defined 
a s  

r --~ o + t v  

we now trace rays defined as 

r= = (o= + 2 

rzt ----- ou + tvu 

We are now charged with intersecting a curved ray 
defined as above with an arbitrary plane curve. 
Fortunately, this plane curve is translated by d so 
that  now it is a simple matter  to use strip trees. We 
recursively intersect the curved ray with an extent 
box. Each extent intersection is easily acomplished by 
straightforward solution of a polynomial with at most 
quadratic degree in t. Solving for t gives the distance 
from the ray origin. Substituting into the original vec- 
tor form for the ray gives the exact intersection point. 

The above algorithm then determines intersection 
point of a ray with a surface of revolution. To com- 
plete the ray tracing process we need to compute the 
surface normal. This is done in two steps. 

The first step is to translate the slope of the plane curve 
in bent (x 2, l/)-space back into a plane normal in fiat 
(z, V)-space. This we do by using the following equa- 
tions. Let i= be the x-coordinate of the intersection (in 
fiat two space), and /=, l~ the components of the nor- 
mal vector in bent two space given by the baseline line 
equation in the strip tree defintion, then the normal 
vector (n=, n~) expressed in fiat two space coordinates 
is: 

2/= i= 

+ 

ly 
n t/ 
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The second step is to translate the plane normal into 
space normal using the geometry shown in figure 14. 
The space normal is given by: 

n = n= i=c  X a + n = ( - d ) c  + [=Inca. 

We have now calculated the intersection point and the 
normal to the surface at that  intersection point for a 
surface of revolution. This is all that  is required for 
rendering the surface. 

§5 R e s u l t s  

The above algorithms were coded in FORTRAN on a 
DECSYSTEM-2060. The actual fractal algorithm per- 
formed differs from the presented one in that  no selec- 
tion of closest extents occurs. The facets are expanded 
and pruned in a strict depth first manner with fixed 
ordering for the four subnodes. Evidently, the pro- 
grammed algorithm is slightly simpler at the cost of 
increased computation time. 

Figure 15 shows a sample output of the al- 
gorithm. A scene composed of a reflecting 
sphere placed above a fractal =valley" evolved 
from a single initial triangle with vertices 

( -1 ,  - ~ s ,  .5), (1, - 3  ~ ,  .5), (0, ~ ,  0). Note tha t  in the 
reflection of the sphere the back side of the mountain 
can be seen to shadow itself. 

This image, computed at a resolution of 25{} × 256 
pixels, consumed 190 minutes of CPU time. 

Figure 16 shows an example of the prism algorithm. In 
this scene, an =E" shaped curve is translated along the 
z-axis. Two reflecting spheres are placed in proximity 
with the prism. 

An example of the surface of revolution algorithm is 
shown in figure 17. This scene shows a wine glass 
resting on a single triangle. The wine glass is defined 
as a base point b on the surface of the triangle, an axis 
of revolution coincident with the z-axis, and a radius 
curve of only 9 points. This points out an interesting 
feature of the algorithm. Because the radius curve 
is defined in bent two space, straight lines translate 
into parabolas. Thus the curvature of the glass is 
due entirely to the curvature of the coordinate system. 
This image consumed 20'minutes of CPU time. 

§6 F u r t h e r  W o r k  

There are several obvious extensions of the above al- 
gorithms which allow for other primitives. 

A modification of the fractal rendering algorithm 
will work for arbitrary determiniatic height fields 
defined on triangular grids. Many objects in computer 
graphics may be so defined: human faces, digitized ter- 
rain, planar polygons with detailed surface features, 
injection molded objects, etc. In fact, this algorithm 
is applicable to scan-line rendering methods as well as 
ray tracing. 

A 8ubdiviMon tree is constructed by recursively sub- 
dividing the height field. Each node of the tree stores 
an extent enclosing a section of the field. Once such a 
tree has been constructed, we use the fractal rendering 
algorithm. The algorithm operates in exactly the same 
manner as above except that  the tree is fully instan- 
t iated before rendering. Generating the subdivision 
tree is similar to the strip tree algorithm. 

Recursively execute the following step: 

Scan the surface defined by the domain triangle, 
searching for the point of maximum and mini- 
mum distance 91, 92 to the triangle containing 
the vertices. Store the extent cheesecake with 
distances Yl,92. Subdivide the domain triangle 
into four subtriangles. 

Note that  the complexity of constructing this tree 
is n log 4 n where n is the number of points in the 
height field. A linear time algorithm which computes 
somewhat larger cheesecake extents is also possible by 
constructing the tree in a bot tom up fashion. Both 
these algorithms construct bivariate analogs of strip 
trees and essentially mimic the strip tree algorithms 
(Ballard[2]). 

A further modification of the height field algorithm 
follows from the observation that  objects other than 
polygons can serve as leaf nodes in the tree. Such 
a tree, with extents given by procedural definitions, 
is easily seen to be an elaboration of the well known 
method of Rubin and Whitted[15]. 

It  may well be that  extents other than cheesecakes 
would be more effective for the fractal rendering algo- 
rithm. For example, it is easy to argue that  ellipsoids 
would be tighter extents than cheesecakes. The condi- 
tional variance of a fractal segment is maximum in the 
center of the fractal and diminishes as it approaches 
the vertex of a facet. Ellipsoids also exhibit this be- 
havior but cheesecakes do not. 

To construct an ellipsoid extent, one would choose two 
of the three ellipsoid principal axes to be in the plane 
of the triangle. The principal lengths would be set to 
cover the vertices. The third principal axis should be 
vertical with principal length sufficient to cover ± y  in 
the center of the ellipsoid. 
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It should be easy to calculate intersection points be- 
tween a ray and an extent. And, certainly, intersecting 
a ray with an ellipsoid is almost as easy as intersecting 
one with a sphere. Let the matrix A be formed using 
the principal axes as rows. Intersecting s ray r with an 
ellipsoid is equivalent to intersecting a ray A - l r  with 
a sphere. 

The prism and surface ~f revolution algorithms may 
be extended in a number of ways. One extension is 
to allow curves other than simple line segments to 
reside in the leaves of the strip tree. There are two 
requirements that  such new leaf curves should satisfy. 
First, they should be completely enclosed by s suitable 
rectangular extent. Second, it should be relatively easy 
to intersect a ray with these primitive curves. Useful 
primitives are: circular arcs, parabolas, and algebraic 
curves. 

Both algorithms may also be generalized by linearly 
transforming the incoming ray. In this way surfaces of 
revolution may have elliptical instead of circular cross 
sections. In addition, this technique can model skewed 
surfaces of revolution and skewed prisms. 

Note also that  the methods presented here may be 
applied in a mutually recursive manner to efficiently 
render objects of potentially high complexity. We can 
best explain what we mean by an example. Suppose 
the task is to model an office building. One way to 
do this would be to model it as a prism where each 
face of the prism is the base plane of a collection of 
smaller prisms each of whose faces is, say, a determinis- 
tic height field. The rendering of this building would 
recursively invoke the algorithms presented above. 

Of course, the normal computation of the surface 
is subject to the now standard techniques of Phong 
smoothing, and Blinn perturbation mapping. The 
prism and surface of revolution algorithms also allow 
a cheaper version of these techniques to be applied to 
the two dimensional normsls as well. Thus, it is pos- 
sible to generate, say, smoothly reflecting and refract- 
ing prisms even though the boundary curves may be 
coarsly polygonal. 
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Figure i .  F r s e t a l  subdh ,  bdon. The midpoint of e~ch edge 
~" the trLsmg]e is ~spbLced in z by s rsndom v~rL~ble. 

FACET 

Figure ~L E s t l m a t l n g  w s s t e d  e o m p u t a t l o n s .  If xn in- 
coming ray strikeJ a fscet xt a smxl] enough ~ngle O, i t  will 
mi~ the sldeL 

L 

• . . . " . , : " ' *  ° . . 

[~mre 5. E s t l m a t i n g  was t ed  e o m p u t s t | o n s .  This figure 
shows a top view of figure 4. We use i t  to c~culate the &re~ 
of the shxded region. 

Figure $. A cheesecake  ex ten t .  This extent is formed by 
the volume Bwept out by trans|~ted a facet in z by l q .  
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Figure 7. A p r i sm .  The ray is shown striking the side of n 
prism of height h with b u e  plane normal g. 

Figore 8. A s t r i p  t r e e  ex ten t .  

Figure 0. A s t r i p  t r e e .  Rectanguinr e~tents completely 
enclose the bold curve. 

l~.gure 6. E s t h n a t i n  E weusted c o m p u t a t i o n s .  Under typi- 
cal viewing conditions, the angle ol e ray-facet intersections is 
hardly uniformly distributed. 

Figure 10. A surTaee of r evo lu t i on .  The surface is defined 
by a base point b, an axis vector a, and a rsdins function pie). 

Figure 11. C o m p u t i n g  the  i n t e r s ec t | on .  The cut pinne 
cont,.ins the ray and is par&llel to the axis of revolution. It 
cuts the surface in two curves. 

Figure 12. In t e r sec t ion  curves .  The cut plane intersection 
curves vary drarastlcsIly in shape with the cut plane to base 
point distance. 

d--1 
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d-.~- 

Figure 13 I n t e r ~ e t l n s  a ~sy In b e n t  spsee .  (s) The 
bent sp~ce ray is now curved. The two intersection points 
represent intersections with the di~erent "J~. (b) Chsnglng 
the cut pinne to base point distance simply tr&nslstes the 

rsdius curve. 

Figure 14. C a l e u l s t i n g  t h e  t h r e e  spsee  n o r m a l .  This is 
n top view looking down the ~ vector. 

Figure 15. A i~ae t a l  su r face .  The surface is shadowed 
by ~nd reflected in s mirrored sphere. Note th&t in the 
reflection, the surface c~n be seen to be shadowing itself. 

Figure I0. A p r i s m .  The prism is surrounded by two 
mirrored spheres. 

Figure 17. A su r f s ee  of  r evo lu t i on .  This glass is defined 
by only IS re~l numbers. 
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