
NEW TECHNIQUES FOR RAY TRACING
PROCEDURALLY DEFINED OBJECTS

James T. Kajiya
California Institute of Technology

Pasadena, Ca. 91125

ABSTRACT. We present new algorithms for efficient ray
tracing of three procedurally defined objects: fractal sur-
faces , prisms, and surfaces of revolution. The fractal sur-
face algorithm performs recursive subdivision adaptively.
Subsurfaces which cannot intersect a given ray are culled
from further consideration. The prism algorithm trans-
forms the three dimensional ray-surface intersection prob-
lem into a two dimensional ray-curve intersection problem,
which is solved by the method of strip trees. The surface of
revolution algorithm transforms the three dimensional ray-
surface intersection problem into a two dimensional curve-
curve intersection problem, which again is solved by strip
trees.

K E Y W O R D S : computer graphics, raster graphics, ray
tracing, fractal surfaces, procedural modelling, strip
trees, stochastic models, surfaces of revolution.

CR CATEGORIES: 1.3.3, 1.3.5, 1.3.7

§1 I n t r o d u c t i o n

Of all synthetic images, those rendered by ray tracing
stand above the rest in realism (Appe][1], Goldstein
and Nagle[10], Whitted[16]). Many have disparaged
its use because of its large appetite for floating point
computation. However - - even though ray tracing is
conceded to be the slowest of all methods for render-
ing computer imagery - - no other technique has a
performance envelope quite as large. In ray trac-
ing the combined effects of hidden surfaces, shadows,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© ACM 0-89791-109-1/83/007/0091 $00.75

reflection, and refraction are handled with a simplicity
and elegance unmatched by its competitors.

This paper is about novel ways of performing the key
computational step.in rendering procedural objects via
ray tracing. We present new ways of computing the
intersection between a ray and certain procedurally
defined objects. The use of procedural objects is not
new to ray tracing - - Whitted[16] and Rubin and
Whitted[15] have advocated their use. Indeed, one
could make the claim that the natural organization for
ray tracing programs is one using procedural objects.

In section two, we present a method which efficiently
computes the intersection of a ray with a fractal sur-
face. In the course of the development of this algo-
ri thm a number of results useful to other rendering
techniques of fractals. We also analyze the complexity
of the new technqiue.

In section three, we give an algorithm for intersecting a
ray with a surface defined by translating a plane curve
orthogonally. We call a surface of this type a prism.

In section four, we t reat surfaces of revolution. The
algorithm works well even though the radius curve may
be defined by thousands of points.

Algorithms for efficient rendering the above two ob-
jects are of immediate importance to CAD/CAM
applications. Combined with well known methods
for ray tracing Euler combinations of primitives
(Goldstine and Nagel[10], Roth[14]), the above tech-
niques facilitate rendering of models described by con-
structive solid geometry (CSG). Indeed, most of the
objects in CSG are combinations of prisms and surfaces
of revolution (Braid[4], Requicha[13]), the so called
swept volumes.

In section five we present the results of our algorithms;
and in section six, we discuss directions for further
w o r k .

It is likely that the locus of ideas exposed here will be

91

A revised version of this paper will appear in the July 1983 issue of acm Transactions on Graphics.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800059.801137&domain=pdf&date_stamp=1983-07-01

applicable to other types of objects exhibiting either a
high degree of symmetry or a hierarchical organization
or both. These ideas suggest a rich panoply of tech-
niques applicable to many procedural objects which
has heretofore gone unsuspected.

§2 F r a c t a l S u r f a c e s

The so-called method of fractals (Fournier, Fussell and
Carpenter[0], Mandelbrot[ll]) has generated models of
startling realism. One would conjecture that applying
a ray tracing rendering algorithm to objects modelled
by this technique would yield very interesting images
indeed. Unfortuately, practical considerations prevent
one from doing this directly.

Though a simple algorithm, the fractal modelling tech-
nique generates models of visual interest through their
great geometric complexity. A typical fractal surface
may consist of polygons whose numbers may reach
easily into the six figure range. As we shall see below,
naive ray tracing is simply too slow to feasibly render
a complex fractal surface.

The method we present here overcomes this problem.
It does so by evolving the fractal surface in concert
with the rendering of it. We generate only those parts
of the surface which are likely to intersect the ray being
traced. In this way, each ray need be compared with
only a handful of polygons instead of the large collec-
tion of polygons making up the entire fractal surface.
We compute a certain polytope, viz. an e x t e n t , which
completely encloses the surface ultimately evolved with
a high degree of certainty. If a ray intersects this ex-
tent we must inspect its contents more closely. If not,
the extent is pruned from further consideration thus
saving much computation.

We mention that this method is essentially the adaptive
subdivision technique mentioned in (Fournier, Fussell,
and Carpenter[0]) translated to the ray tracing context.

2.1 The Recursive Subdivision Method

We use the subdivision method for generating frac-
tals (Carpenter[5], Fournier and Fussell[8], Fournier,
Fussell, and Carpenter[9]). In what follows we give
a brief review of the technique as presented in the
references above.

The recursive subdivision technique proceeds as fol-
lows. 1 The surface is modelled as a large number of
triangles. The x and y coordinates of the triangle ver-
tices are set on an isometric grid (See figure 1), while
their z-coordinates are generated recursively as follows:

Once the displacements zi, i = 1,2,3 for
a given level of reeursion axe determined,
generate three new independent random vaxi-
ables ~i, i = 1, 2 ,3 with mean given by the
equation

z j + z k
E ~ -~ - -

2

and variance

where li is the length of the side of a triangle
and H is the "fractai dimension". That is, z i
is the height of the vertex i of a triangle and
the ~i is the displacement over the bisector of
its opposite edge. These axe su mmed to make

the vertices of triangles at the next level of
reeursion.

2.2 The Rendering Algorithm

The rendering algorithm is very simple. Instead of
instantiating the surface in its entirety, we evolve a
piece at a time. There are several advantages to this.

In the ray tracing method, the intersection computa-
tion is the most t ime consuming step. If we were
to fully evolve the fractal surface, we would need to
determine the intersection point of the current ray
with every polygon. 2 As a typical scene requires trac-
ing on the order of a million rays and a fractal sur-
face may contain the same order of magnitude of
polygons, the intersection computation under the naive
method would require a trillion ray-polygon intersec-
tions. Clearly this is impractical.

By evolving only a piece of the fractal surface at a time,
we can cut down the number of intersections which
must be computed.

The computation must intersect a ray r with a recur-
sively defined surface. Suppose tha t we are able to
enclose each part of the surface with an e x t e n t , viz. a
volume which is guaranteed to contain a segment of

1We restrict ourselves to the case of triangulaxized surfaces. See
Carpenter[5] and Fournier and Fussell[8], for other methods .

2One of the reviewers has pointed out that a fractal surface can
never be ftdly evolved but only approximated to a certain level
of detail

92

A revised version of this paper will appear in the July 1983 issue of acre Transactions on Graphics.

the fully evolved surface. The fractal surface is repre-
sented by a tree t of branching ratio four. At each node
n of t we associate a pair (p, e) where p is a polygon,
called a facet, representing the surface at the level of
recursion indexed by the depth of n, and e is an ex-
tent which encloses the surface given by the subtree at
n. The leaf nodes of the tree correspond to the fully
evolved fractal surface. The polygon corresponding to
a leaf node shall be called a primitive facet.

An an object A is said to shadow a node n(p, e) with
respect to a ray r if the ray intersects A at a point
closer to the ray origin than the intersection with e. A
node n(p, e) is said to be active if its extent e intersects
the ray and no primitive facet shadows it.

Note that an inactive node can never contain the
closest intersection of the ray with the fully evolved
surface.

The algorithm maintains a list of active nodes which
are to be traced by the current ray r. With each node
is associated a diatance d from the origin of the ray to
the closest intersection with its extent.

The algorithm proceeds as follows:

C h o o s e t he c loses t n o d e • a n d remove it from
t he a c t i v e n o d e l ist .

In tersec t w i t h the four e x t e n t s e l , i ~ 1 , . . . , 4
a s s o c i a t e d w i t h the c h i l d r e n n l , i ~ 1 , . . . , 4
of t he n o d e ~.

If no e i in tersec t s r t h e n t h e r e are no new a c t i v e
nodes . S tar t over .

Else , add the n o d e s w h o s e e x t e n t s e l i n t e r s e c t
t h e r a y to the ac t ive n o d e list.

If the n e w nodes c o n t a i n p r i m i t i v e face t s p~ a n d
the face t s i n t e r s e c t the r a y t h e n cul l f r o m the ac-
t ive n o d e l ist the nodes s h a d o w e d b y the c loses t
pi. (Simply c o m p a r e the d i s t a n c e of each n o d e
to the d i s t a n c e of the f a c e t i n t e r s e c t i o n point) .

It may be conjectured that a node ought to be rendered
inactive whenever it is shadowed by any facet (not
necessarily primitive). Certainly this holds in the two
dimensional case, see figure 2a. But figure 2b shows
that this is false in the three dimensional case. The
facet for node n shadows its neighboring extent but it
contains no primitive facet doing so.

2.3 Computing Extents

The key to the performance of the above algorithm lies
with the specification of extents. Beyond the necessary
conditions for an extent-- that they enclose the actual
surface segment corresponding to a node--there are

two additional desiderata which extents should satisfy.
First, extents should be tight, that is, they should
enclose the actual surface snugly. Consider the case
when extents do not, say when an extent is the whole
of space. Then no pruning will ever take place: the al-
gorithm degenerates to the naive method. As extents
become more and more snug, opportunity to prune sur-
faces arises. Thus tight extents improve the asymptotic
complexity of the algorithm. The second desideratum
for an extent is that it be easily intersected with a
ray. That is, one should not expend undue amounts of
computation in determining whether a ray intersects
an extent or not. This criterion determines the not
insignificant multiplier in the complexity of the algo-
rithm.

By the second criterion, an ideal extent for ray tracing
is the sphere. Among all bounding surfaces it is the
easiest to intersect with a ray. However, it fails with
respect to the first criterion. Spheres do not contain
fractal surfaces very snugly.

We have chosen an extent which is shown in figure
3. This extent is formed by taking the convex hull of
the facet translated in z by a distance +t/. Because
of its shape we have called this object a cheesecake
eztent. Given that t / is of minimum value, this extent
is relatively tight. Because it is formed from simple
polygons, it is easy to determine ray intersections.

How can we determine the value of ~t? A fractal surface
is stochastically defined. Thus it is not possible to
predict with complete certainty how it will vary. On
the other hand, because the statistical properties of
the surface are well known, we can choose t/ so that
there is an overwhelming probability that a cheesecake
encloses the fully evolved surface.

There are two approaches we may take. The first uses
the Chebyshev inequality (Chow and Teicher[6]):

Let X be a random variable with EIX] < oo and
variance e~c. Then

P {] X - E X I > a} < aux _ _ a 2 , a > O

Now, if S(z,y) is a generalized Levy surface, the
variance of

a s = s (= , , w) -

is simply a function of the distance d between the
points (xl, Yl) and (x2, Y2). Namely,

var(z s) = a "vz

93

A revised version of this paper will appear in the July 1983 issue of acm Transactions on Graphics.

where V~r is a constant depending on the fractal dimen-
sion H , (see corollary 3.4 of Mandelbrot and van
Ness[12]).
The point of maximum distance from all the vertices of
a triangle with sides of length I is the center. This dis-

tance is ~ If we use the expression for unconditional
variance, (it is clear that conditioning can only make
the variance go down) then the variance is given by:

Choosing q to be 10a guarantees a .99 chance of the
cheesecake enclosing the fully evolved surface.

If, as is usual, we know the surface follows a Gaussian
distribution then one can do much better than the
Chebyshev inequality. The probability that the cen-
ter point extends beyond the cheesecake is then simply
twice the tail of the distribution. For example, choos-
ing q to be 3a gives P ~-- .9974. Carpenter has pointed
out tha t if the random numbers ~ are generated via
table lookup, then extents may be calculated with total
certainty (Whitted[17]).

2.4 Analysis of the Algorithm

To analyze this algorithm we note that there are three
cases of ray intersection: 1)the ray does not intersect
the top level cheesecake; 2)the ray intersects the top
level but not the surface; and 3)the ray intersects the
surface.

If the ray does not intersect the top level cheesecake
then one intersection computation is sufficient to prune
the fractat. The number of rays which do not satisfy
this criterion is roughly the number of pixels in which
the fractal is visible (assuming extensive self shadowing
does not occur).

The number of rays of the second kind is small if the
extents are at all tight, to be conservative we treat
these rays as if they were of the third kind.

The algorithm choses active nodes to process on the
basis of distance. In the best case, only those nodes
contained in the path from the root to primitive facet
are chosen. At each step, new nodes are spawned and
added to the active node list.

Each step computes intersections with 4 cheesecakes
and may either discard or add the new nodes to the
active node list. When the primitive facet is finally

encountered the entire rest of the list is culled. Thus
the number of intersection computations which must
be done is:

4 log 4 n.

The number of node generation steps is the same.
Generating each new node is relatively cheap compared
to the intersection computation.

Thus in the best case, the number of intersection cal-
culations is

(number of visible pixels) X 4 log 4 n

In the worst case, the extents are able to do no pruning
at all. Then we degenerate to the naive case: n m where
n is the number of primitive triangles and m is the
number of rays for the scene.

It has been our experience that the average case with
real data possesses the same asymptotic complexity as
the best case. We present some preliminary computa-
tions indicating why this should be so. In general,
however, evaluating the average case complexity is
problematical.

We would like to calculate the probability tha t a ray
striking a triangular facet with a given set of angles will
strike neighboring cheesecakes first, thus causing un-
necessary intersection computations to be performed.
In the following analysis we assume that ray strike
points are distributed uniformly across a facet.

Let a ray strike a triangular facet with angle 0 to the
facet normal. (See figure 4). Then it must be a distance
less than l~ from the boundary to strike a neighboring
cheesecake, where

l ~ = h t a n #

Now, projecting the ray onto the facet plane gives
figure 5.

The ratio of the area of the entire triangular facet to
the area of the shaded region gives the probability that
a random ray will strike a neighboring cheesecake first.

This ratio may be computed by noting that the follow-
ing equations hold:

c = Us in¢
c c

a - - - -

tan f
b = / I c o s ~ b

94

A revised version of this paper will appear in the July 1983 issue of acm Transactions on Graphics.

The ratio of the areas is the ratio of a + b ~o I or

Prob ----- T(cos ~b + -~- sin ~b)

_ h t~n 0 (cos ¢ + -~- sm ¢)

Where h is determined as the cheesecake height of
the previous section, say 4a. So the probability of at
least an extra intersection computation occuring given
a certain set of angles for the incoming ray is:

[~ 2H

P(Extra Computation]0,~b}~---4~-~-J VHtan8

V~ 2H ~b) / Ze~g hb°r
× (COS ~ + --3- sin

ltriangle
H

K/2neighbor

The probability given a set of angles goes down ex-
ponentially for each level of recursion of the neighbors.
Now, each level of recursion halves /neighbor- We sum
the geometric series to obtain the expected number of
intersection computations required.

Number of computations ~ g y ~ l.e o,
n ~ 0

or < K ~ - ~ l~ 2H

n ~ 0

= K/neighbor (~1) 2Hn
n ~ 0

- - K (2lnelghb°r)2H
2 TM -- 1

The key observation one should make about the above
calculation is that the number of expected superfluous
computations for small incidence angles is very small
- - much less than for the worst case. In fact, the
geometric series sums to a small constant making the
asymptotic complexity the same as for the best case.

To find the expected number of superfluous computa-
tions we use the theorem of total probability. But
here the evaluation of the number of computations be-
comes problematical. The distribution of angles is not
a simple uniform distribution. Figure 6 shows tha t a
facet relatively far from the ray source sees a distribu-
tion of angles which is highly peaked about the view-
ing angle. When shadowing and reflection occur, the
distribution is far from uniform.

We have observed in practice an average performance
whose general character is very good. For example,
when the level of recursion was increased from 5 to
6 - - quadrupling the number of polygons from 1024
to 409{} - - the runtime of the algorithm increased by
some 12%.

No effort has been made to cache calculated subtrees.
Each ray intersection must evolve the surface anew
from the top node. Whirred has suggested that cach-
ing the subtree computations can be a very useful op-
timization. (Whitted[17]).

§3 Pr i sms

A box is formed by moving a rectangle orthogonally in
space, and a cylinder is formed by so moving a circle.
In general, we define a prism to be a volume formed
by translating a plane curve along a vector n for a
distance d. The curve is defined in a plane P whose
normal vector is n.

Many objects can be defined as collections of prisms.
Among them include: block letters, machine parts
formed by extrusion, simple models of urban architec-
ture, surfaces with "ridges"- small vertical perturba-
tions of a plane which embellish the texture of a surface
with sharp edges.

All these objects can always be modelled as collections
of polygons. We consider the case where the plane
curves defining these surfaces are complex, e.g. having
thousands of vertices. Ray tracing such prisms defined
as collections of polygons would be extremely expen-
sive.

The technique we describe here illustrates a general
technique which will be used again later. We take
advantage of the essential symmetries characterizing
these surfaces to reduce the intersection problem from
three to two dimensions. We then solve this two dimen-
sional ray tracing problem by using a representation
for plane curves known strip trees which is popular in
computational geometry (Ballard[2 D.

A prism is defined as the union of three parts. The first
part is the set of sides of the prism given by the locus
of points tn + -y(s). Where ~/(s) is a curve embedded
in a plane P known as the baseplane, n is the unit
normal of P, and 0 < t < h where h is the height
of the prism. The second and third parts of the prism
are known as the base and cap. The base B is set of
points interior to the curve if(s) in P, the cap is simply
the set B -4- hn.

95

A revised version of this paper will appear in the July 1983 issue of acm Transac t ions on Graphics.

We now give the algorithm for intersecting a ray with a
prism. First find the intersection point of the ray with
base and cap planes and project these points down onto
the base plane. The ray itself is then projected onto
the base plane. We have now reduced the problem to
a two dimensional one because of the following fact.
(See figure 7.)

P r o p o s i t i o n . To intersect a ray r(t) ~ o + tv with a
prism (B, h, ~,(,)), let the ray-base plane strike point be
at t ----- to. Let the base plane projection of the ray-cap
plane strike point be ~ = t l . Then r strikes the prism
iff 1) the base plane projection r'(t) of r(~) intersects
the curve ~/(a) at a point ~ = t I and

0 < I ¢ - t 0 1 v . n < h

where n is the unit normal of the baseplane B, or 2)
rr(to) or rr(fz) is in the interior of ~/(s).

This proposit ion then suggests the following algorithm:

Find the ray strike points t ~-~ to and t ~ tz
with the base plane B and with the cap plane
B -F hr~, respectively.

Project the ray r down into the base plane to
give the two dimensional ray r I.

Find all the intersections of the ray r I with As).
(We discuss how this will be done later.)

Sort the intersections by distance t from the ray
origin o.

Scan the sorted list and perform the actions con-
ditioned by the following cases: 1) Cap plane
strike point: if inside "lr(s) then stop else proceed.
2) Base plane strike point: if inside "y(s) then
stop else proceed. 3) A "y(s) intersection: If
the intersection point t ~ ¢ is such that 0 <
It p -- tolv • n(B) < h then stop else proceed.

How is the intersection of the two dimensional ray r t
with an arbi t rary plane curve ,)'(s) to be done? We use
the method of strip trees. Strip trees are presented in
(Ballard[2]) as generalizations of s tructures computed
in a curve digitization algorithm invented by Duda and
Hart[7]. A strip tree is a hierarchical s tructure which
represents the curve at varying resolutions.

The strip tree associated with a curve 3(s) is a tree t
with nodes n(e, c), where c is a port ion of ~/(a) and e is
an extent which completely encloses e. An extent e is
shown in figure 8, it is a triple e = (b, wl, w2) consisting
a baseline b, two widths Wl, w2. The baseline is a line
segment of arbi t rary orientation. Geometrically, the
extent is a rectangle whose edges are determined by the
baseline and widths. The extent rectangle is chosen in
such a way as to enclose the minimum area containing
the curve segment c. Thus each edge of e touches at

least one point of e. See figure 9. The subtrees of node
n subdivide c on a point which touches the edge.

We now give an algorithm for generat-
ing a strip tree associated with any plane
curve ~/(s).

Choose as a baseline the line segment connecting
the first and last point of the curve. Now scan
the curve for the maximum and minimum signed
distance away from the baseline. These set the
widths of the root triangle. Divide the curve
at one of these points and compute the subtrees
recur sively.

It is evident t ha t this is an n log n computat ion. A
linear t ime algorithm is also available (Ballard[2]).

It is now a simple mat te r to efficiently intersect a two
dimensional ray with a plane curve defined by a strip
tree. First intersect the ray with the root extent. If
there is an intersection then intersect with each of the
subtrees, if not, there is no intersection with the ray.
Continue recursively.

Given the above algorithms we are now able to calcu-
late the intersection point of the ray with the prism.
Calculating the normal of the surface at the intersec-
t ion point is simple. If the ray strikes either the base
or cap planes then the normal is the plane normal.
Otherwise, it strikes the sides. The three space nor-
mal is then a simple linear t ransformat ion of the two
space normal which is given by the strip tree baseline
equation. This linear t ransformat ion is determined by
the base plane normal.

§4 S u r f a c e s o f R e v o l u t i o n

Polygon or patch methods may serve as approximations
to the surfaces of revolution described in this section.
However, this technique can model complex surfaces
which would require dozens of patches or hundreds of
polygons. The t racing time of such patches or polygon
collections would be high. The method described here
takes advantange of the high degree of symmet ry avail-
able in the model. As ray tracing algorithms go, it is
relatively fast.

A surface of revolution is defined via a 3-tuple
(b, a, p(s)), where b is a point called the bane point, a
is the azi8 uector, and p(s) is the radius]unction. See
figure 10.

Figure 11 shows the geometrical interpretations of the
following definitions. We define the cut plane as the
plane containing the current ray which is parallel to
the axis of revolution. Let the ray be given as an origin

96

A revised version of this paper will appear in the July 1983 issue of acm Transactions on Graphics.

and direction vector:

r(O = o + ~v.

Then the cut plane normal c is given by

c ~ , X o .

The plane contains the ray origin o. Define d to be the
perpendicular distance of the base point b to the cut
plane.

The algorithm first reduces the problem of intersecting
a ray r with a surface of revolution to the problem of
intersecting a two dimensional ray d with two plane
curves ~ , ~2 formed by intersecting the cut plane with
the surface of revolution.

Define a coordinate system in the cut plane as follows.
The origin of the plane is the projection b t of the base
point. The y axis vector is the projection of the axis of
revolution a, the z axis unit vector is given by a X c.

The algorithm now at tempts to intersect the two
dimensional ray with the two curves ./1, if2 representing
the surface meeting the cut plane: But how are these
two plane curves to be determined? Figure 12 shows
how the curves depend on the radius function p(8) and
the distance d, namely:

=

i
fly = P~"

ff the quantitiy under the root is negative then the
curve disappears altogether.

Now, the radius curve p (s) may contain thousands of
points: it would be extremely expensive to calculate
the plane curves ~i for every ray using the above rela-
tion. Even if we do, the question of which specific al-
gorithm to intersect the curves with the ray remains
unanswered. Of course, we intend to use strip trees.
But if we do so directly then we would be forced to
recalculate the bounding extents at each intersection
computation. This is because the plane curves change
radically for each different ray. Such a scheme would
be impractically slow. Strip trees only yield advantages
if their extents can be precalculated and reused for
each ray trace.

The solution to this problem is to trace in a different
space. Specifically, we trace not in (z, y)-space but in
(z ~, y)-space. In this space the equation defining the
two plane curves appears as:

'7= ~--- P= - - d 2

The original radius curve p is defined as the square of
the actual radius curve. The plane curve ,y is simply
translated by the square of d the distance of the cut
plane from the base point.

Figures 13a,b show examples of this transformation.
As the distance of the cut plane from the axis grows,
more of the curve lies below the axis. Note that we
are now tracing curved rays that bounce off the origin.
Thus the parts of curves below the axis are inaccessible
to the ray. To trace curved rays we use a slightly
different ray equation. Instead of tracing rays defined
a s

r --~ o + t v

we now trace rays defined as

r= = (o= + 2

rzt ----- ou + tvu

We are now charged with intersecting a curved ray
defined as above with an arbitrary plane curve.
Fortunately, this plane curve is translated by d so
that now it is a simple matter to use strip trees. We
recursively intersect the curved ray with an extent
box. Each extent intersection is easily acomplished by
straightforward solution of a polynomial with at most
quadratic degree in t. Solving for t gives the distance
from the ray origin. Substituting into the original vec-
tor form for the ray gives the exact intersection point.

The above algorithm then determines intersection
point of a ray with a surface of revolution. To com-
plete the ray tracing process we need to compute the
surface normal. This is done in two steps.

The first step is to translate the slope of the plane curve
in bent (x 2, l/)-space back into a plane normal in fiat
(z, V)-space. This we do by using the following equa-
tions. Let i= be the x-coordinate of the intersection (in
fiat two space), and /=, l~ the components of the nor-
mal vector in bent two space given by the baseline line
equation in the strip tree defintion, then the normal
vector (n=, n~) expressed in fiat two space coordinates
is:

2/= i=

+

ly
n t/

97

A revised version of this paper will appear in the July 1983 issue of acm Transactions on Graphics.

The second step is to translate the plane normal into
space normal using the geometry shown in figure 14.
The space normal is given by:

n = n= i=c X a + n = (- d) c + [=Inca.

We have now calculated the intersection point and the
normal to the surface at that intersection point for a
surface of revolution. This is all that is required for
rendering the surface.

§5 R e s u l t s

The above algorithms were coded in FORTRAN on a
DECSYSTEM-2060. The actual fractal algorithm per-
formed differs from the presented one in that no selec-
tion of closest extents occurs. The facets are expanded
and pruned in a strict depth first manner with fixed
ordering for the four subnodes. Evidently, the pro-
grammed algorithm is slightly simpler at the cost of
increased computation time.

Figure 15 shows a sample output of the al-
gorithm. A scene composed of a reflecting
sphere placed above a fractal =valley" evolved
from a single initial triangle with vertices

(-1 , - ~ s , .5), (1, - 3 ~ , .5), (0, ~ , 0). Note tha t in the
reflection of the sphere the back side of the mountain
can be seen to shadow itself.

This image, computed at a resolution of 25{} × 256
pixels, consumed 190 minutes of CPU time.

Figure 16 shows an example of the prism algorithm. In
this scene, an =E" shaped curve is translated along the
z-axis. Two reflecting spheres are placed in proximity
with the prism.

An example of the surface of revolution algorithm is
shown in figure 17. This scene shows a wine glass
resting on a single triangle. The wine glass is defined
as a base point b on the surface of the triangle, an axis
of revolution coincident with the z-axis, and a radius
curve of only 9 points. This points out an interesting
feature of the algorithm. Because the radius curve
is defined in bent two space, straight lines translate
into parabolas. Thus the curvature of the glass is
due entirely to the curvature of the coordinate system.
This image consumed 20'minutes of CPU time.

§6 F u r t h e r W o r k

There are several obvious extensions of the above al-
gorithms which allow for other primitives.

A modification of the fractal rendering algorithm
will work for arbitrary determiniatic height fields
defined on triangular grids. Many objects in computer
graphics may be so defined: human faces, digitized ter-
rain, planar polygons with detailed surface features,
injection molded objects, etc. In fact, this algorithm
is applicable to scan-line rendering methods as well as
ray tracing.

A 8ubdiviMon tree is constructed by recursively sub-
dividing the height field. Each node of the tree stores
an extent enclosing a section of the field. Once such a
tree has been constructed, we use the fractal rendering
algorithm. The algorithm operates in exactly the same
manner as above except that the tree is fully instan-
t iated before rendering. Generating the subdivision
tree is similar to the strip tree algorithm.

Recursively execute the following step:

Scan the surface defined by the domain triangle,
searching for the point of maximum and mini-
mum distance 91, 92 to the triangle containing
the vertices. Store the extent cheesecake with
distances Yl,92. Subdivide the domain triangle
into four subtriangles.

Note that the complexity of constructing this tree
is n log 4 n where n is the number of points in the
height field. A linear time algorithm which computes
somewhat larger cheesecake extents is also possible by
constructing the tree in a bot tom up fashion. Both
these algorithms construct bivariate analogs of strip
trees and essentially mimic the strip tree algorithms
(Ballard[2]).

A further modification of the height field algorithm
follows from the observation that objects other than
polygons can serve as leaf nodes in the tree. Such
a tree, with extents given by procedural definitions,
is easily seen to be an elaboration of the well known
method of Rubin and Whitted[15].

It may well be that extents other than cheesecakes
would be more effective for the fractal rendering algo-
rithm. For example, it is easy to argue that ellipsoids
would be tighter extents than cheesecakes. The condi-
tional variance of a fractal segment is maximum in the
center of the fractal and diminishes as it approaches
the vertex of a facet. Ellipsoids also exhibit this be-
havior but cheesecakes do not.

To construct an ellipsoid extent, one would choose two
of the three ellipsoid principal axes to be in the plane
of the triangle. The principal lengths would be set to
cover the vertices. The third principal axis should be
vertical with principal length sufficient to cover ± y in
the center of the ellipsoid.

98

A revised version of this paper will appear in the July 1983 issue of acre Transactions on Graphics.

It should be easy to calculate intersection points be-
tween a ray and an extent. And, certainly, intersecting
a ray with an ellipsoid is almost as easy as intersecting
one with a sphere. Let the matrix A be formed using
the principal axes as rows. Intersecting s ray r with an
ellipsoid is equivalent to intersecting a ray A - l r with
a sphere.

The prism and surface ~f revolution algorithms may
be extended in a number of ways. One extension is
to allow curves other than simple line segments to
reside in the leaves of the strip tree. There are two
requirements that such new leaf curves should satisfy.
First, they should be completely enclosed by s suitable
rectangular extent. Second, it should be relatively easy
to intersect a ray with these primitive curves. Useful
primitives are: circular arcs, parabolas, and algebraic
curves.

Both algorithms may also be generalized by linearly
transforming the incoming ray. In this way surfaces of
revolution may have elliptical instead of circular cross
sections. In addition, this technique can model skewed
surfaces of revolution and skewed prisms.

Note also that the methods presented here may be
applied in a mutually recursive manner to efficiently
render objects of potentially high complexity. We can
best explain what we mean by an example. Suppose
the task is to model an office building. One way to
do this would be to model it as a prism where each
face of the prism is the base plane of a collection of
smaller prisms each of whose faces is, say, a determinis-
tic height field. The rendering of this building would
recursively invoke the algorithms presented above.

Of course, the normal computation of the surface
is subject to the now standard techniques of Phong
smoothing, and Blinn perturbation mapping. The
prism and surface of revolution algorithms also allow
a cheaper version of these techniques to be applied to
the two dimensional normsls as well. Thus, it is pos-
sible to generate, say, smoothly reflecting and refract-
ing prisms even though the boundary curves may be
coarsly polygonal.

ACKNOWLEDGMENTS. I would like to thank
Howard Derby for many discussions and much help
during the course of this investigation. I also thank the
SIGGRAPH and TOGS reviewers for suggesting many
useful changes.

2. BALLARD, D.I-L Strip trees: a hierarchical repre-
sentation for curves. Comm. ACM, 24 (May 1981)
310-321.

3. BLINN, J.F. Simulation of wrinkled surfaces. Computer
Graphite 12 (August 1978) 286-292.

4. BRAID, I.C. Designing with Volumes, Ph.D.
Dissertation. Univ. Cambridge, England (1973).

5. CARPENTER, L.C. Computer rendering of fractal
curves and surfaces. SIGGRAPHSO Conference
Proceedings Supplement (August 1980).

6. CHOW Y.S., TEICHER, H. Probability Theory:
Independence, Interch~ngeability, Martingales.
Springer Verlag, Heidelberg (1978).

7. DUDA, R.O. AND HART,P.E. Pattern Classification
and Scene Analysis. Wiley-Interscience, New York
(1973).

8. FOURNIER, A., FUSSELL, D. Stochastic modelling
in computer graphics. SIGGRAPHSO Conference
Proceeding# Supplement (August 1980).

9. FOURNIER, A., FUSSELL, D. AND CARPENTER, L.
Computer rendering of stochastic models. Comm.
ACM, 25 (June 1982) 371-384.

10. GOLDSTEIN, E. AND NAGLE, It. 3D visual simulation
Simulation 16 (Jan 1971) 25-31.

11. I~NDELBROT, B. ~tale: Form, Chance, and
Dimension. W.H. Freeman, San Francisco(1977).

12. MANDELBROT, B. Fractional brownian motions, frac-
tional noises and applications. SIAM Review 10,4
(October 1968) 422-437.

18. ItEQUIOHA, A.A.G. Representations for rigid solids:
theory, methods, and systems. ACM Computin#
Surveys 12 (December 1980) 437-464.

14. ItOTH, S.D. Ray casting for modeling solids. Computer
Graphic# and Image Processing 18 (1982) 10g-144.

15. ItUBIN, S. AND WHITTED, T. A three-dimensional
representation for fast rendering of complex
scenes. Computer Graphics 14 (1980) 110-116.

16. WHITTED, T. An improved illumination model for
shaded display. Comm. ACM, 23 (June 1980) 343-
349.

17. WHITTED, T. private communication (1983).

§7 References

1. APPEL, A. Some Techniques for Shading Machine Ren-
derings of Solids. SJCC (1968) 37-45.

99

A revised version of this paper will appear in the July 1983 issue of acm Transactions on Graphics.

Computer Graphics Volume 17, Number 3 July 1983

Vs

~ Y

Figure i . F r s e t a l subdh , bdon. The midpoint of e~ch edge
~" the trLsmg]e is ~spbLced in z by s rsndom v~rL~ble.

FACET

Figure ~L E s t l m a t l n g w s s t e d e o m p u t a t l o n s . If xn in-
coming ray strikeJ a fscet xt a smxl] enough ~ngle O, i t will
mi~ the sldeL

L

• . . . " . , : " ' * ° . .

[~mre 5. E s t l m a t i n g was t ed e o m p u t s t | o n s . This figure
shows a top view of figure 4. We use i t to c~culate the &re~
of the shxded region.

Figure $. A cheesecake ex ten t . This extent is formed by
the volume Bwept out by trans|~ted a facet in z by l q .

100

A revised version of this paper will appear in the July 1983 issue of acm Transact ions on Graphics.

Figure 7. A p r i sm . The ray is shown striking the side of n
prism of height h with b u e plane normal g.

Figore 8. A s t r i p t r e e ex ten t .

Figure 0. A s t r i p t r e e . Rectanguinr e~tents completely
enclose the bold curve.

l~.gure 6. E s t h n a t i n E weusted c o m p u t a t i o n s . Under typi-
cal viewing conditions, the angle ol e ray-facet intersections is
hardly uniformly distributed.

Figure 10. A surTaee of r evo lu t i on . The surface is defined
by a base point b, an axis vector a, and a rsdins function pie).

Figure 11. C o m p u t i n g the i n t e r s ec t | on . The cut pinne
cont,.ins the ray and is par&llel to the axis of revolution. It
cuts the surface in two curves.

Figure 12. In t e r sec t ion curves . The cut plane intersection
curves vary drarastlcsIly in shape with the cut plane to base
point distance.

d--1

101

A revised version of this paper will appear in the July 1983 issue of acm Transactions on Graphics.

d-.~-

Figure 13 I n t e r ~ e t l n s a ~sy In b e n t spsee . (s) The
bent sp~ce ray is now curved. The two intersection points
represent intersections with the di~erent "J~. (b) Chsnglng
the cut pinne to base point distance simply tr&nslstes the

rsdius curve.

Figure 14. C a l e u l s t i n g t h e t h r e e spsee n o r m a l . This is
n top view looking down the ~ vector.

Figure 15. A i~ae t a l su r face . The surface is shadowed
by ~nd reflected in s mirrored sphere. Note th&t in the
reflection, the surface c~n be seen to be shadowing itself.

Figure I0. A p r i s m . The prism is surrounded by two
mirrored spheres.

Figure 17. A su r f s ee of r evo lu t i on . This glass is defined
by only IS re~l numbers.

102

A revised version of this paper will appear in the July 1983 issue of acm Transact ions on Graphics.

