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Abstract:

We present a Linear Search Algorithm which
decides the n-dimensional knapsack problem
in n4log(n) + O]ns) steps. This algorithm
works for inputs consisting of n numbers
for some arbitrary but fixed integer n.
This result solves an open problem posed
for example in [6] and [7] by Dobkin /
Lipton and A.C.C. Yao, resp.. It destroys
the hope of proving large lower bounds for
this NP-complete problem in the model of

Linear Search Algorithms.

Introduction: A Linear Search Algorithm

(LSA) is an abstraction of a Random Access

Machine (RAM) (see [1]). whereas the RAM's

we consider are assumed to work with inte-
ger inputs the LSA gets real ones. When
dealing with LSA's one doesn't take into
consideration the amount of time necessary
for arithmetic and storage allocation, but

only for branchings
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of Germany

"If £(x)>0 then goto o, else goto RB."

n . . .
Here f£:R R is a affine function, i.e.

n
f(x)=a*x-b:= X a.,x,-b, where

. 1 1
_ i=1_ n
a=(a1,...,an), x=(x1,...,xn) £ R , b € R.

Although it is not true that during a com-
putation of a RAM always affine functions
of the input are computed, LSA's are a
realistic model of computation in the
sense that several lower bounds for LSA's
can be extended to RAM's, for example the
2(n log(n)) lower bound for sorting ([2],
[3]) and the Q(nz) lower bound for the n-
dimensional knapsack problem, i.e. the

problem to decide

K :={x€r®, 3 1c{1,...,n} with % x,=1}
n + . 1
iCI
(see [4],[5]).
It is well known that K=\UJ K is NP-

n21
complete (see [1]). In this paper we shall

see that for every fixed n, Kn can be de-
cided in polynomial time, namely we pre-
sent a LSA which decides Kn in O(n4log(n))
steps.

This solves one of the central problems
of the theory of LSA's as stated for
example in [6] or [7], and destroys the

hope to prove large lower bounds for this

NP-complete problem in the computational
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model of LSA's.

The above result is a conclusion of the
construction of a LSA which decides a set
(C} H,) N C where the H,6's are hyperpla-

i=1 C * N
nes in R and C is a cube in R . The time
it needs is polynomial in n and log (%),
where a is the edge length.of C and r is

the "density" of {Hl""'Hk}' This wvalue
measures how close the hyperplanes lie in

n

R, that means how close any two affine

subspaces are, which are intersections of
some of the Hi's, and which do not inter-
sect each other.

This algorithm is presented in chapter
2 after having introduced basic definitions
from linear algebra in chapter 1. Here al-
so an exact definition of LSA's can be
found. In chapter 3 we relate the density
of {Hl""'Hk} to the coefficients of the

H,6's.

5 Here we extensively use ideas from

[8] where the volume of a polytope is re-
lated to the coefficients of its bounding
hyperplanes in order to estimate the run-
ning time of Khachiyan's algorithm for
linear programming.

In the last chapter the results of
chapter 1 and 2 are applied to achieve
the LSA for the n-dimensional knapsack
problem mentioned above.

Chapter 1: Definitions and Notations.

In this chapter we define LSA's and intro-
duce some notations from linear algebra.
We assume the reader to be familiar with

the basic concepts of this discipline as

. . n
affine, linear and convex subspaces of R,
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dimensions of such spaces, and determinants

of matrices etc. All definitions and lemmas
in the sequel are formulated relative to
Rn, but they can in a natural way be
transfered to statements relative to some
n-dimensional affine subspace of some Rm,
m2n. This will often be done without com-
ment.

A LSA consists of a finite set of label-

led instructions of the forms

1) o: If £(x)>0 then goto B, else goto ¥
2) o: accept
3) o: reject

where f:Rn + R is an affine function.

The language L decided by a LSA is the
set of inputs x € R", such that the LSA
started with x computes "accept". The num-
ber of steps the LSA requires is the maxi-
mum number of instructions executed during
some computation started with some input
from Rn.

A hyperplane H in Rn is a (n-1)-dimen-

. n ;
sional subspace of R, i.e.

H:={x € R®, a.-x-b=0} for some a € R",b € R.
87 (87) is the left (right) halfspace of H,
g (87):={x € R®, 3+X-b<(>)0}. Two hyper-
planes B={x € Rn, a*x=b} and

i'={x € ", a'*Xx = b'} are parallel if

a = a' and b £ b'., The distance between H

and H' is min {d(x,y), x € H, y € H'},
o n 5 1/2
where d(x,y):=( X (x,~y.) )
i=1 t ot
Euclidian distance between x and ;.

is the

If we consider an instruction of type 1
for LSA's we say that the hyperplane
i={x € R®, £(x)=0} defines this instruc-

tion and often we represent an instruc-



tion by its defining hyperplane. This can

be done in several ways. For example, if
L is a (n-2)-dimensional space and y € L,
then the affine hull of ; and L,
AfE(y,L):={A\y+(1-2) %X, x € L, A € R} is
a hyperplane.
Now let S = {Hl,...,Hk} be a set of
hyperplanes in Rn. Then the connected com-
ponents of Rn\w C} Hi) are the components
i=1

of S.

Each of them is a (convex) polytope P,

i.e. the intersection of left and right’
halfspaces of the Hi's. Let P be the

closure of P, Then the Hi's for which

H, NP
1

is a (n-1)-dimensional convex set

are the bounding hyperplanes of P. If for

some I={1,...,k}, N Hi={;} and X € P,
. i€Ix
then X is a vertex of P, Let P be a boun-

ded polytope with vertices {;1,...,;p}.

It is well known (see for example [ﬂj
that

P= conv(;l,.

n
ve.,n, X
i=

— p _
x):={ T A, x_, Ay

L]

i=1,

The ball B in Rn with center ; € Rn and
radius r>0 is the set {x € rR", a(x,y)<r}.
The inner radius of a polytope p is the
maximum radius of some ball contained in
P.

Finally we introduce two special types

of polytopes. A cube C with edge-length

a>0 is the (unigue) bounded component of

{Ci""’c }, where for i=t,...,n,

2n

- n — n
= = = = +
c, {x € r Py di}, Cin {x € R rXy a, al

for some d .,4@ € R. In other words,
n

EE

n
c=conv ( X {a., a.+ah.
i=1 * 0 *
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Let H be a hyperplane and A € H a (n-1)-

dimensional polytope and ; € H. Then
P(y,A) :={Ay+(1-1)%,x € a,A81} is a pyramid

with top ; and base A. If A, ,,...,A

1 a
bounding hyper-

are
the ((n-2)-dimensional)
planes of A on H, then P(?,A) is a compo-
nent of {Aff(?,Al),...,Aff(?,Aq)}. Note
that P(;,A) is unbounded.

Chapter 2: A LSA for deciding a set of

hyperplanes.

Let C by a cube and S={H1,...,Hk} a set of

hyperplanes in Rn. In this chapter we con-
struct a LSA which decides S in C on Rn,

i.e. which decides a language L < R™ where
k

(VH,) NC.

. i

i=1

The idea of this LSA is to partition C

LNCc=

to small cubes, such that the hyperplanes

from S which intersect one of them have a

common, non-empty intersection. We shall

see that the problem to decide such a set
of hyperplanes can be reduced to an anolo-

gous problem in a (n-1)-dimensional space,

and thus can be solved recursively. How to

apply such LSA's for (n-1)-dimensional

problems to n-dimensional ones is shown in

the following lemma.

.,H } be a set of

Let s:={H1,.. X

Lemma 1:
n k
hyperplanes in R, L:= r\Hi#Q. Let A be a
i=1
polytope on a hyperplane H, L & H, y € LNH.

..,H N H} can be decided

1= n .
If s {H1 H, X

by a LSA in A on H in t steps, then S can
be decided by a LSA in P(§,A) on Rn in t

steps, too.



Proof:

Lemma 2:

Let a LSA be given which decides S'
in A on H. Now replace its instructions as
follows: if some of them is defined by the

(n-2)~-dimensional hyperplane H' on H, rep-
lace it by the instruction which is defined
by the hyperplane Aff(g,H') in Rn. Clearly

the new LSA decides S in P(?,A) on Rn. &

In order to apply this lemma we have to
partition the cube C to smaller cubes, such
that for each of them the hyperplanes which
intersect it have a non-empty intersection.
For this purpose we call a number r>0

a density of s:={H ,...,Hk}(on RnL if for

1
every ball B with radius r it holds that

if for some I < {1,...,k}, H. N B+ ¢ for

N, +9.
ier *
In the next chapter we shall see that

all i € I, then

such a density exists for every 3. We

assume this for a moment.

Let r>0 be a density of

S={H1,...,Hk} on R", then r is also a

density of '=1H e .
ensity { 2 n By JHEN Hl} on H,
Proof: Suppose that r is no density of S'
on Hl' Then there is a ball B' on H1 with
the radius r and center y € Hl’ say, such
that for some I <« {2,...,k}, B, N B' = ¢
for i € I and [\ (H, N H,)=0.

. i 1

i€I
But this would mean, that the ball B on Rn

with radius r and center ; fulfils:
B, N B # ¢ for i € T.U {1} ana

N u =N @ 0=

ieru{1} * jer 1 !

y = 8,

which contradicts the fact that r is a den-

73

sity of 8 on R, ®

Now we are able to describe a LSA which de-

cides S in C on R". Let C.,...,C. be the

1 2n
bounding hyperplanes and a>0 the edge-length

of C, and r>0 a density of S U {Cl""' }.

C2n
Furthermore let T(n,a,r) be the maximal num-
ber of steps which an optimal LSA needs in
order to decide some S in some cube C with
edge-length a, if r is a density for

3.

on Then a simple divide~

s u {C1""'C
and conquer algorithm quarantees that
T(1,a,r) S [log(% + 1))+ 3 (*)

the intervall of

Subdivide the cube (i.e.

length a) in [%] intervalls of length at
most r. Clearly there are only rlog(g + 1)]
steps necessary to decide to which of these
intervalls some input x belongs. As only

one of the hyperplanes (which are single

points) can intersect such an intervall, as

its length is the density of S U {cl’CZ}'
there are only three further instructions

k
necessary to decide whether x € \/ B,
two for asking whether x lies onl;ée hyper-
plane of S which belongs to this intervall,

the third to accept or to reject.

Now let n>1.

Let d:=[élfz]:

1 1 n n
Dz{Dl"'"Dd""'Dl""'Dd} a set of hyper-
planes, such that for i=1,...,n, J=1,...,4,

D% is parallel to C, and C, , the distance
J i i+n

i i
between D. and D.
3 i+

1 is —,
Vn
planes partition C in cubes with edge-length

and these hyper-

L (resp. somewhat smaller at the boundaries

n
(*)

All logarithms in this paper are to

the base 2.



of C). Note that these cubes are not open,
but contain some parts of their boundaries.
But this doesn't disturb what follows. The
LSA now begins as follows:

Part 1: Determine in which of the cubes

defined by D the input x lies.

Remark 1:

avn

r

This can be done in

n*[1log¢ + 1)] steps by using a divide-

and-conquer algorithm for each set

{Di,...,D;} of parallel hyperplanes,
i=1,...,n.

Remark 2: Suppose % is determined to lie
in the cube C' with edge-length at most
£.. As this cube is contained in a ball
Vn

with radius ¥, the set

1={i € {1,...,x}, H, Nc'# ¢} fulfils

that L:={\ H, # # or I = §.

i€1
Let y € L and Ci,i € 1' < {1,...,2n} be
those bounding hyperplanes of C with

; 4 Ci. Let F .,FS be the (n-2)-dimen-

10

sional intersections of twe of the C,'s,
i

i € 1', each. Then for j € {1,...,s},

F3}= Aff(?,Fj) is a hyperplane in rR".
Part 2: Determine in which component of
{Fi,...,Fé} % lies. (The components con-

tain parts of their boundaries.)

Remark 3: s £ 2n(n-1), because each
Ci,i=1,...,2n has a non-empty, i.e. (n-2)-
dimensional intersection with 2(n-1) many

other Cj's. As thus we have counted each

(n-2)-dimensional intersection twice,

1

s S 5" 2n ¢ 2{(n-1) = 2n(n-1). Thus part 2

can be executed in 2n{(n-1) steps.
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Part 3:

Remark 5:

Remark 4: Suppose that X lies in the com-

ponent Q

of {Fi,...,Fé}. Then Q is a pyra-
mid with top ;, a base of which is a subset
of some (n-1)-dimensional cube Ci N C with

edge-length a on Ci for some i & 1I°',

Determine whether x lies on some
of the hyperplanes from S, if Q N C % §.
Otherwise reject.

By Lemma 1, part 3 can be execu;
ted as fast as deciding S'={Hj nc,,iceE 1}
(I is defined in remark 2, i in remark 4)
in A on Ci. A is contained in a cube on Ci

with edge-length a, and by Lemma 2, r is a
density for S' U {Cj n Ci' 4=1,...,2n}.

Thus part 3 needs at most T(n-1,a,r) steps.
Clearly the above algorithm is correct and

we obtain

q
T(i,a,r) £ I.10(3(% + 1)I + 3, and for n > 1
T(n,a,xr) & n{log(—a«éE + 1)-l + Zn{n-1)

+ T(n-1,a,xr).

a;{H) + 2n3.

Therefore, T(n,a,r) £ n  log(

Theorem 1: Let S={Hl""’Hk} be a set of
hyperplanes and C a cube in R” with edge-
length a > 0 and bounding hyperplanes

1.

] feeny
s {c1 c

{Cl,...,C Let r > 0 be a density of

2n
-}. Then S can be decided by

2n
avn 3

2
a LSA in C on R in n 1og(~;—)+2n steps.,

Chapter 3:

Determining a Density of a Set

of Hyperplanes.

In order to apply Theorem 1 to concrete

problems we have to determine the density

of a set S={H1,...,Hk} of hyperplanes in R"

The first step in this direction is to re-



late the density of S to the inner radii
of its components.

Lemma 3: The minimum inner radius of the
components of § is a density of S.
Proof: First we prove the lemma for the
case that k=n+l1 and S has a bounded compo-
nent. In this case, S has exactly one boun-
ded component P, which is a simplex, i.e.
which has n+1 vertices. Thus each intersec-
tion of n of the hyperplanes of S inter-
sects in exactly one point. Now suppose
that B, a ball with radius r and center

y € Rn, is intersected by a set of hyﬁer—
planes which has an empty intersection. As
mentioned above this set must be 5. If no
hyperplane from S separates ; from P, then
; € P and as B intersects all bounding hy-
perplanes of P, its radius r is larger than
the inner radius of P. If there is a hyper-
plane, say Hi' from S which separates ;
from P, let Q be the pyramid with bounding
hyperplanes Hj' j=1,...,n+1,j # i, which
contains ;. Let X be the top of Q. Then

% and ; are separated by Hi' because x is

a vertex of P. Now let y' be a point on the
straight line between ; and y, such that

;' and ; are separated by Hi and d(;',Hi)<r.
Let B' be the ball with radius r and cen-
ter ;' then Hi intersects B' as d(;',Hi)<r
and all other Hj's intersect B', too,
because they intersect B and Q tapers to

X. But ;' is neither separated from P by

Hi nor by any Hj from which B is not sepa-

rated. Repeating this process until we
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have found a ball with radius r whose cen-
ter belongs to P, we have proved that r is
larger then the inner radius of P.

Now let k be arbitrary and let S=
{Hl""’Hk}be any set of hyperplanes in R".
Let B be a ball with center ; and radius r,
for which the hyperplanes from S which in-
tersect B have an empty intersection. Let
I < {1,...,k} have minimum cardinality such
that B, N B * § for i € I and Nu =p. Let

i€1
R:= /\ L(Hi) (*), then L is a linear sub-

i€l

n . . .
space of R with dimensional p, say.

We claim that #I=n-p+1.
As I is chosen minimally, it holds for
every i € I that R, := r)H,¢¢. Let j € I
i€1 *
i%j
be fixed. As Rj n Hj =  we obtain that

L(R.,) < L(Hj). This implies that

J
L(R.) = L(R,) N L(E,) = L({YH,) N L(H,)
J J J i€T 1 J
i%3

= f\ L(Hi) N L(H,) = R.

i€I J

i#j
Thus Rj has dimension p and therefore
#(I1~{3}) 2 n-p which implies #I 2 n-p+1.
Now suppose that #I > n-p+l.
For some j € I let J ¢ I be chosen minimal-
ly such that Rj= (\Hi. Then #J=n-p and

ig€Jd
j £ 3. Let I'=JU{j} then #I'=n-p+1 and

N\ H. = R, N H, =N H,) N H. = #. Thus
iexe *t J J i€1 J
i#3

we obtain a contradiction to the minimalli-

(*) For some affine subspace A in Rn, L(Ra)
denotes the linear subspace parallel to A,

L(a):={x-y | x © A} for some y € A.



ty of TI.

Let A be the (n-p)-dimensional affine sub-
space of R” which contains ; and is ortho-
gonal to R. Then B'=B N A is a ball on A
with radius r which is intersected by every
HS':=Hj' N A, j' € I. This is true because
the shortest connection between ; and some
Hi' i € I is orthogonal to Hi and there-
fore is éontained in A, because A is ortho-
gonal to a subspace of Hi. Thus Hi N8B+ ¢
implies Hi NANB+ . As clearly

{Hi N A, i € 1} has a bounded component P
on A we know from the beginning of this
proof that r is larger then the inner ra-
dius of P. But then it is also larger than
the inner radius of the component P' of
{Hi' i € I} in Rn, which contains P, and
therefore it is larger than the inner ra-

dius of any of the components of S which

are subsets of P'. ®

Now we have restricted our problem of de-
termining a density of S to bounding the
inner radii of its components.

This will be done by relating them to
the coefficients of the hyperplanes of S.
Let for i=1,...,k,H, :={x € r", Ei-§ =, },
n

i
yees,a, ) € 27, b, € Z.

a,=(a X
in i

. (Z is the
i il

set of integers). Then we say that S has
integer coefficients and define
m(S):=max{]aij|,i=1,...,k, j=1,...,n} and
M(S):fmax({\bil, i=1,...,k} ¢ {m(s)}),
The following two lemmas 4 and 5 and the

corollary 1 are almost identical to the

lemmas 1 and 2 and the corollary ! from [8].
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Lemma 4: Every vertex of some component
P

of S can be represented as (— n

,---,7;)
in

n
with p re-esP 0 d € Z,lql < m(S) n '

1
1
lPl‘:---:an‘ S M(S)n nzn.

Proof: A vertex ;=(x1,...,xn) of some com-

ponent of S is the intersection of n hyper-

planes from S, wlog. of Hl""'Hn' By

Cramer's Rule we know that for

. det (Dj) .
i=1,...4n, x;= _EEET%T , where D consists

of the colums (a,,,...,a. ) for i=1,...,n

il in

and Di arises from D by replacing its i'th

column by (bl""’bn)'

As det (D) # 0 and \det (D)l is the volume
of the hyperparallelepiped spanned by its

column vectors, we may conclude:
n

lget (py]s 1 d(0,a,)S(n*m(s)
i=1

1
2 En En n
)  =n

Analogously we obtain
1

5n

laet (0 )] = 22w ®

Corollary 1: Let C be the cube with boun-

ding hyperplane Ci={; € Rn, xi=C},
C, ={x ¢ Rn, x,=-c}
i+n i

1
[ 3n

c=n

for i=1,...,n, where

. M(S)n +1. Then

a) each component of S has a non-empty in-
tersection with C, and

b) each vertex of S U

{Cl,...,C n} can be

2

represented as a vector of rational num-

bers with common denominator at most

1
30
n + M(S)® in absolute value.
_ n ]
Proof: Let Ei={x € R, xi=0} for i=1,...,n

and let S8'=S U {El""'En}' Then each com-

ponent of S' has at least one vertex. Thus



by lemma 4 it has a non-empty intersection

with C, because M(S')=M(S). To verify b)

we again.apply lemma 4 and notice that

m(S)=m(S U {01""'C h. &

2n

Lemma 5: The volume ?f each component of
2" -1

S is at least (n! « n . m(S)n )

Proof: By corollary 1 a) it suffices to

prove the assertion above for the bounded
1
components of S U {cl""’c2n}'

these components has at least n+1 vertices,

As each of

its volume is at least the volume of

P=Conv (vo,...,vn), where v ,...,vn are n+1

0

of the above vertices which do not lie on
one hyperplane. As P is a simplex, its vo-

lume v(P) fulfils

1

1
n! I

1
| det(_ .. )
0 Vn
vi's are column vectors.

v(P) = > 0, where the

For each
i=1,...

,n we know from corollary 1 that its

components hav?

the same denominator qi
=n

where [qi| s a2 o ns)™.
Thus v(P) = = "E_—_i'_TE—' .
! {OI...lnl
qO qn
det(V e )
0 q0 Vn qn

As the matrix above only has integer
coefficients and as its determinant is un-
equal to zero, its absolute value is at

least one. Therefore we obtain

1 1 1
v(P) 2 — 2 T Z -N
! . o o
o9 9] nr 2" as)"
Now we are able to relate the inner radii

of the components of S to M(S).
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Lemma 6: The inner radigs of each component

of § is at least

2
m(s) ™ . a3,

Proof: Again it suffices to prove the lemma

for a bounded polytope P= Conv (vo,...,v )

n

as in the proof of lemma 5. We first bound

v(P) from above in terms of M(S), n and

the so-called thickness d of P, i.e. the

minimum distance of two parallel hyper-

planes, between which P lies. Let Hl'H

2

be these hyperplanes. As P <« C, we know

that P € Conv (Hi'HZ) n c.

1
[ 2" n
Let ¢ = 2('n M(S) +1) be the edge-

length of C then we obtain:

v(P) £ v(Conv (Hl'H2) ney s (/H'c)n_1°d,

Applying lemma 5 it follows:
Tal n? n-1 n-1_-1
* m(S) o vn * ) .

Now we apply a theorem due to Blaschke [10]

da 2 (n!te*n

which says that the inner radius of a poly-

tope with thickness 4 is a least

n+1

This theorem and a ruff estimation prove

the lemma. ®

Now we can bound the complexity of the LSA

from chapter 2.

Theorem 2: Let 8 = {H ...,Hk} be a set of

1!

hyperplanes with integer coefficients, and

C a cube with edge-length a € 2z, a > 0 and

bounding hyperplanes

CyrevnsCy #b = M(S U {C1""'c2n})'

n
Then S can be decided in C on R in

3n4 log(n) + n2 log(a) + 2n4 log(b) + 0(n3)



steps.
Proof: By lemma 3, each density of S is
bounded by the minimum inner radius of the
components of S. Inserting the bound for
it from lemma 6 in theorem 1 yields theo-
rem 2. & |

Chapter 4: A LSA for the n-Dimensional

Knapsack Problem.

We now apply theorem 2 to the n-dimensional
knapsack problem, i.e. we want to decide

K :={x€rR®, Z1c{1,...,n} with £ x_ = t}.
n + . 1
i€I

Theorem 3: Kn can be decided by a LSA in
X 4 3

Ri in n log(n) + 0{n") steps.

Proof: Let

C,:={;€Rn,x,=0}, C :={;€Rn,x,=1} for
i i i

i+n

i=1,...,n be the bounding hyperplanes of

the cube C with edge~length 1. As

M(k U {c,,...,c. }) = 1, we know from
n 1 n

2

theorem 2 that Kn can be decided in C on Rn

in n4 log(n) + O(n3) steps. But for each

component of {c,,...,C

1 2n} except C, each

element x of it has a component xi > 1.

Thus in such components we have to decide
: n'

K , in R

n +

for some n' < n, where we only

have to consider those n' components of x

with X, £ 1. This holds as it is impossible

that I X = 1 if an i € I exists with
i€I *

x, > 1, because x, 2 0 for i=1,...,n.
i

Therefore, the following LSA decides Kn on

n

R .
+

If n=1 then ﬁn consists of one point and
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can be decided in 3 steps.
Let n > 1. Then we apply the following al-

gorithm.

Part 1: Determine in which component of
{Cl,...,czn} X lies and accept if it lies
on C

n+1’ " Copne
Part 2: If x lies in C, then use the algo-
rithm from the first chapter for it. If x
lies in an other component, use this algo-
v

rithm recursively to decide Kn, in RZ for
the appropiate n' < n as described above.
Let T(n) be the time this algorithm needs.
Then T(1)=3 and for n>1

3
log{(n) + O(n")}.

T(n)<2n + max {T(n-1), n4

log(n) + 0(n3)}.
&

4
This implies that T(n)Sn
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