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Abstract: 

We present a Linear Search Algorithm which 

decides the n-dimensional knapsack problem 

in n4log(n) + 0.(n ~) steps. This algorithm 

works for inputs consisting of n numbers 

for some arbitrary but fixed integer n. 

This result solves an open problem posed 

for example in [6] and [7] by Dobkin / 

Lipton and A.C.C. Yao, resp.. It destroys 

the hope of proving large lower bounds for 

this NP-complete problem in the model of 

Linear Search Algorithms. 

Introduction: A Linear Search Algorithm 

(LSA) is an abstraction of a Random Access 

Machine (RAM) (see [I]) . Whereas the RAM's 

we consider are assumed to work with inte- 

ger inputs the LSA gets real ones. When 

dealing with LSA's one doesn't take into 

consideration the amount of time necessary 

for arithmetic and storage allocation, but 

only for branchings 
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"If f(~)>0 then goto ~, else goto ~." 

Here f:Rn÷R is a affine function, i.e. 
n 

f(x)=a.x-b:= [ a.x.-b, where 
ll i=l 

_ _ R n ' a (a 1 ..... an) , x=(x 1 ..... Xn) ~ b 6 R. 

Although it is not true that during a com- 

putation of a RAM always affine functions 

of the input are computed, LSA's are a 

realistic model of computation in the 

sense that several lower bounds for LSA's 

can be extended to RAM's, for example the 

~(n log(n)) lower bound for sorting ([2], 

[3]) and the ~(n 2) lower bound for the n- 

dimensional knapsack problem, i.e. the 

problem to decide 

--~n 
K :={x-.R+, ~ Ic{l ..... n} with [ x.=l} 
n iCI 1 
(see [4],[5]). 

It is well known that K=~ K is NP- 
n~1 n 

complete (see [i]) . In this paper we shall 

see that for every fixed n, K can be de- 
n 

cided in polynomial time, namely we pre- 

sent a LSA which decides K in 0(n41og(n)) 
n 

steps. 

This solves one of the central problems 

of the theory of LSA's as stated for 

example in [6] or [7], and destroys the 

hope to prove large lower bounds for this 

NP-complete problem in the computational 
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model of LSA's. 

The above result is a conclusion of the 

construction of a LSA which decides a set 
k 

( ~/ H. ) N C where the H. 's are hyperpla- 
l 1 

i=l 
n R n nes in R and C is a cube in . The time 

it needs is polynomial in n and log (a) 
e 

where a is the edge length of C and r is 

the "density" of {H I, . . . ,Hk}. This value 

measures how close the hyperplanes lie in 

R n, that means how close any two affine 

subspaces are, which are intersections of 

some of the H. ' s, and which do not inter- 
l 

sect each other. 

This algorithm is presented in chapter 

2 after having introduced basic definitions 

from linear algebra in chapter I. Here al- 

so an exact definition of LSA's can be 

found. In chapter 3 we relate the density 

of {HI,...,H k} to the coefficients of the 

H i' s. Here we extensively use ideas from 

[8] where the volume of a polytope is re- 

lated to the coefficients of its bounding 

hyperplanes in order to estimate the run- 

ning time of Khachiyan's algorithm for 

linear programming. 

In the last chapter the results of 

chapter i and 2 are applied to achieve 

the LSA for the n-dimensional knapsack 

problem mentioned above. 

Chapter 1: Definitions and Notations. 

In this chapter we define LSA's and intro- 

duce some notations from linear algebra. 

We assume the reader to be familiar with 

the basic concepts of this discipline as 

affine, linear and convex subspaces o~ R n, 

dimensions of such spaces, and determinants 

of matrices etc. All definitions and lemmas 

in the sequel are formulated relative to 

n 
R , but they can in a natural way be 

transfered to statements relative to some 

m 
n-dimensional affine subspace of some R , 

m~n. This will often be done without com- 

ment. 

A LSA consists of a finite set of label- 

led instructions of the forms 

I) e: If f (~) >0 then goto ~, else goto 

2) ~: accept 

3) ~: reject 

where f:R n + R is an affine function. 

The language L decided by a LSA is the 

1 

set of inputs x ~ R n, such that the LSA 

started with x computes "accept". The num- 

ber of steps the LSA requires is the maxi- 

mum number of instructions executed during 

some computation started with some input 

from R n . 

A hyperplane H in R n is a (n-l)-dimen- 

sional subspace of R n, i.e. 

H:={x 6 R n a.x-b=0} for some a E Rn,b E R. 
F 

+ 
H (H ) is the left (right) halfspace of H, 

+ n H (H-) :={x ~ R , a°x-b<(>)0}. Two hyper- 

planes H={x 6 R n, a-x=b} and 

H'={x ~ R n, a' °x = b'} are parallel if 

a = a' and b # b' . The distance between H 

and H' is rain {d(x,y) , x E H, y E H'}, 
n I/2 

where d(x,y) :=( Z (xi-Yi)2) is the 
i=l 

Euclidian distance between ~ and y. 

If we consider an instruction of type 1 

for LSA's we say that the hyperplane 

H={~ E R n, f(x) =0} defines this instruc- 

tion and often we represent an instruc- 
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tion by its defining hyperplane. This can 

be done in several ways. For example, if 

L is a (n-2)-dimensional space and y £ L, 

then the affine hull of y and L, 

Aff(~,n) :={~y+(1-~) x, x E L, ~ £ R} is 

a hyperplane. 

Now let S = {H I .... ,H k} be a set of 

h y p e r p l a n e s  i n  R n .  T h e n  t h e  c o n n e c t e d  c o m -  
k 

p o n e n t s  o f  Rn'~( U H . )  a r e  t h e  c o m p o n e n t s  
1 i = l  

of S. 

Each of them is a (convex) polytope P, 

i.e. the intersection of left and right 

halfspaces of the H. 's. Let P be the 
l 

closure of P. Then the H 's for which 
i 

H i n P is a (n-1)-dimensional convex set 

are the bounding hyperplanes of P. If for 

some I~{I ..... k}, ~ H.={~} and ~ 6 ~, 
iql i 

then x is a vertex of P. Let P be a boun- 

{~I d e d  polytope with vertices ,...,x }. 
P 

It is well known (see for example [~ ) 

that 
P 1 _ _ 

P= conv(xl, . . . ,Xp):={ ~ ~i xi' ~ i>0' 
i=l n 

i=l,...,n, Z ~i=l}. 
i=l 

The ball B in R n with center ~ E R n and 

radius r>0 is the set {~ £ R n, d(x,y)<r}. 

The inner radius of a polytope p is the 

maximum radius of some ball contained in 

P. 

Finally we introduce two special types 

of polytopes. A cube C with edge-length 

a>0 is the (unique) bounded component of 

{Cl,...,C2n} , where for i=l,...,n, 

C.={xl 6 Rn,xi=di }, Ci+n={X C Rn,xi=di +a} 

for some d l , . . . , d  £ R. I n  o t h e r  w o r d s ,  
n 

C = c o n v  ( X { d . ,  d . + a } )  . 
1 1 i = l  

Let H be a hyperplane and A c H a (n-1)- 

dimensional polytope and y ~ H. Then 

P(y,A) :={~y+(1-~)x,x 6 A,~I} is a pyramid 

with top y and base A. If A1,...,A q are 

the ((n-2)-dimensional) bounding hyper- 

planes of A on H, then P(~,A) is a compo- 

nent of {Aff (~,A I) ..... Aff (~,Aq) }. Note 

that P(y,A) is unbounded. 

Chapter 2: A LSA for deciding a set of 

hyperplanes. 

Let C by a cube and S={HI,... ,H k} a set of 

hyperplanes in R n. In this chapter we con- 

n struct a LSA which decides S in C on R , 

i.e. which decides a language L c R n where 
k 

T. n c = (UH) n c .  
i=1 i 

The idea of this LSA is to partition C 

to small cubes, such that the hyperplanes 

from S which intersect one of them have a 

common, non-empty intersection. We shall 

see that the problem to decide such a set 

of hyperplanes can be reduced to an anolo- 

gous problem in a (n-l)-dimensional space, 

and thus can be solved recursively. How to 

apply such LSA's for (n-1)-dimensional 

problems to n-dimensional ones is shown in 

the following lemma. 

Lemma i: Let S:={HI,.._,H k} be a set of 
K 

hyperplanes in R n, L:= ~ H.#@. Let A be a 
1 i=l 

p o l y t o p e  o n  a h y p e r p l a n e  H, L ~ H, y f. L~-H. 

If S' :={H I D H,...,H k N H} can be decided 

by a LSA in A on H in t steps, then S can 

be decided by a LSA in P(~,A) on R n in t 

steps, too. 
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Proof: Let a LSA be given which decides S' 

in A on H. Now replace its instructions as 

follows: if some of them is defined by the 

(n-2)-dimensional hyperplane H' on H, rep- 

lace it by the instruction which is defined 

by the hyperplane Aff (y,H') in R n. Clearly 

the new LSA decides S in P(y,A) on R n. 

In order to apply this lemma we have to 

partition the cube C to smaller cubes, such 

that for each of them the hyperplanes which 

intersect it have a non-empty intersection. 

For this purpose we call a number r>0 

a density of S:={H 1 ..... Hk} (on Rn~, if for 

every ball B with radius r it holds that 

if for some I c {I ..... k}, H i n B # ~ for 

all i 6 I, then n H. % ~. 
i61 

In the next chapter we shall see that 

such a density exists for every S. We 

assume this for a moment. 

Lemma 2: Let r>0 be a density of 

S={HI,...,H k} on R n, then r is also a 

density of S'={H 2 N H1,...,H k n H 1 } on H 1. 

Proof: Suppose that r is no density of S' 

on H I. Then there is a ball B' on H 1 with 

the radius r and center y ~ HI, say, such 

• that for some I c {2, ... ,k}, H n B' # 
i 

for i 6 I and ~ (H i n HI)=@. 
i6I 

But this would mean, that the ball B on R n 

with radius r and center y fulfils: 

:U H. n B # @ for i E I • {I} and 
i 

f A  H ~ IH n ~, 
-i~IU{ 1} i i~I i H1) = 

which contradicts the fact that r is a den- 

sity of S on R n. 

Now we are able to describe a LSA which de- 

cides S in C on R n . . . .  Let C I , , C2n be the 

bounding hyperplanes and a>0 the edge-length 

of C, and r>0 a density of S U {CI,...,C2n}. 

Furthermore let T(n,a,r) be the maximal num- 

ber of steps which an optimal LSA needs in 

order to decide some S in some cube C with 

edge-length a, if r is a density for 

S U {CI,...,C2n}. Then a simple divide~ 

and conquer algorithm quarantees that 

T(l,a,r) =< [log( -a + i) ] + 3 (*) : 
r 

Subdivide the cube (i.e. the intervall of 

length a) in [~1 intervalls of length at 

most r. Clearly there are only [log( a + I) ] 
r 

steps necessary to decide to which of these 

intervalls some input x belongs. As only 

one of the hyperplanes (which are single 

points) can intersect such an intervall, as 

its length is the density of S U {CI,C2}, 

there are only three further instructions 
k 

necessary to decide whether x 6 k~/ Hi, 
i=l 

two for asking whether x lies on the hyper- 

plane of S which belongs to this intervall, 

the third to accept or to reject. 

Now let n>l. 

a.~nn 
Let d : = [--~-1 , 

} a set of hyper- • . • , ..- , t.-. 

planes, such that for i=l,...,n, j=l,...,d, 

i . 
D is parallel to C and C the distance 
j i i+n' 

i i r 
between D. and D is --, and these hyper- 

3 j+l /nn 
planes partition C in cubes with edge-length 

r 
-- (resp. somewhat smaller at the boundaries 
/~n 
(*) All logarithms in this paper are to 

the base 2. 
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of C) . Note that these cubes are not open, 

but contain some parts of their boundaries. 

But this doesn't disturb what follows. The 

LSA now begins as follows: 

Part I: Determine in which of the cubes 

defined by D the input x lies. 

Remark I: This can be done in 

,a~n n-|log%--~- + I) ] steps by using a divide- 

and-conquer algorithm for each set 

{D~, D~} of parallel hyperplanes • .- s p 

i=l,...,n. 

Remark 2: Suppose x is determined to lie 

in the cube C' with edge-length at most 

r 
--. As this cube is contained in a ball 

with radius r, the set 

I={i E {i ..... k}, H i n C' # ~} fulfils 

that L:= ~ H. ~ ~ or I = ~. 1 i 6 I  

Let ~ 6 L and C ,i 6 I' c {i ..... 2n} be 
1 

those b o u n d i n g  h y p e r p l a n e s  o f  C w i t h  

~ C i. Let Fl, .... Fs be the (n-2)-dimen- 

sional intersections of two of the C. 's, 
l 

i 6 I' , each. Then for j 6 {I .... ,s}, 

F[ :=3 Aff(y,Fj) is a hyperplane in R n 

Part 2: Determine in which component of 

{ F ~ , . . . , P  x l i e s .  ( T h e  c o m p o n e n t s  c o n -  

tain parts of their boundaries.) 

Remark 3: s ~ 2n(n-l), because each 

Ci,i=l,... ,2n has a non-empty, i.e. (n-2)- 

dimensional intersection with 2 (n-l) many 

other Cj's. As thus we have counted each 

(n-2)-dimensional intersection twice, 

s < ! o 2n • 2 (n-l) = 2n(n-l) Thus part 2 
= 2 

can be executed in 2n(n-l) steps. 

Remark 4: Suppose that ~ lies in the com- 

ponent Q of {F~ ..... F~}. Then Q is a pyra- 

mid with top ~, a base of which is a subset 

of some (n-l)-dimensional cube C. N C with 
l 

edge-length a on C. for some i 6 I' . 
l 

Part 3: Determine whether ~ lies on some 

of the hyperplanes from S, if Q n c # @. 

Otherwise reject. 

Remark 5: By Lemma I, part 3 can be execu- 

ted as fast as deciding S'={H. n Ci, j 6 I} 
3 

(I is defined in remark 2, i in remark 4) 

in A on C.. A is contained in a cube on C. 
1 l 

with edge-length a, and by Lemma 2, r is a 

density for S' U {C N C , j=l, ,2n} j i . . . .  

Thus part 3 needs at most T(n-l,a,r) steps. 

Clearly the above algorithm iscorrect and 

we obtain 

T(l,a,r) ~ [log(~ + I) ] + 3, and for n > 1 
I 

T(n,a,r) ~ n[log(~ + I) ] + 2n(n-l) 

+ T(n-l,a,r) . 
2 3 

Therefore, T(n,a,r) ~ n log( ) + 2n . 

Theorem I: Let S={HI,...,Hk} be a set of 

hyperplanes and C a cube in R n with edge- 

length a > 0 and bounding hyperplanes 

{CI, .... C2n}. Let r > 0 be a density of 

S [I {C I .... ,C2n }. Then S Can be decided by 

a LSA in C on R n in n 2 log(~/n)+2n 3 steps. 
r 

Chapter 3: Determining a Density of a Set 

of Hyperplanes. 

In order to apply Theorem 1 to concrete 

problems we have to determine the density 

n 
of a set S={HI,...,H k} of hyperplanes in R 

The first step in this direction is to re- 
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late the density of S to the inner radii 

of its components. 

Lemma 3: The minimum inner radius of the 

components of S is a density of S. 

Proof: First we prove the lemma for the 

case that k=n+1 and S has a bounded compo- 

nent. In this case, S has exactly one boun- 

ded component P, which is a simplex, i.e. 

which has n+l vertices. Thus each intersec- 

tion of n of the hyperplanes of S inter- 

sects in exactly one point. Now suppose 

that B, a ball with radius r and center 

6 R n, is intersected by a set of hyper- 

planes which has an empty intersection. As 

mentioned above this set must be S. If no 

hyperplane from S separates y from P, then 

6 P and as B intersects all bounding hy- 

perplanes of P, its radius r is larger than 

the inner radius of P. If there is a hyper- 

plane, say Hi, from S which separates 

from P, let Q be the pyramid with bounding 

hyperplanes H., j=1,...,n+l,j # i, which 
3 

contains ~. Let x be the top of Q. Then 

x and y are separated by H i , because x is 

a vertex of P. Now let y' be a point on the 

straight line between x and y, such that 

~' and y are separated by H i and d(y',Hi)<r. 

Let B' be the ball with radius r and cen- 

ter ~' then H,I intersects B' as d(y',Hi)<r 

and all other H. 's intersect B' , too, ] 

because they intersect B and Q tapers to 

x. But y' is neither separated from P by 

H. nor by any H. from which B is not sepa- 
l 3 

rated. Repeating this process until we 

have found a ball with radius r whose can- 

ter belongs to P, we have proved that r is 

larger then the inner radius of P. 

Now let k be arbitrary and let S= 

{H I .... ,H k } be any set of hyperplanes in R n. 

Let B be a ball with center y and radius r, 

fQr which the hyperplanes from S which in- 

tersect B have an empty intersection. Let 

I c {I, .... k} have minimum cardinality such 

that H. n B ~ @ for i 6 I and ~ H.=@. Let 
l i6I 

R:= ~ L(H.) (*) , then L is a linear sub- 
l 

i61 
space of R n with dimensional p, say. 

We claim that #I=n-p+1. 

As I is chosen minimally, it holds for 

every i 6 I that R. := N H.#@. Let j 6 I 
3 i6I l 

i@j 

be fixed. As R. N H = @ we obtain that 
3 J 

L(R.) ~ L(H ) . This implies that 
3 

L(R.) = L(R ) n L(H ) = L( ~ H.) N L(H.) 
3 3 3 i~I l 3 

i@j 

= N L(Hi) n L(H.) = R. 
i6I 3 
i#j 

Thus R. has dimension p and therefore 
3 

#(I~{j}) ~ n-p which implies #I ~ n-p+1. 

Now suppose that #I > n-p+l. 

For some j 6 I let J c I be chosen minimal- 

ly such that R.= NH.. Then #J=n-p and 
3 i£J l 

j ~ J. Let I'=JU{j} then #I'=n-p+l and 

N H = R. N H =( ~ H ) N H. = ~. Thus 
i6I' x 3 J i6I i 3 

i~j 

we obtain a contradiction to the minimalli- 

(*) For some affine subspace A in R n, L(A) 

denotes the linear subspace parallel to A, 

L(A) :={x-~ I ~ ~ A} for some y 6 A. 
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ty of I. 

Let A be the (n-p)-dimensional affine sub- 

space of R n which contains ~ and is ortho- 

gonal to R. Then B'=B n A is a ball on A 

with radius r which is intersected by every 

H' = H j  j,: , N A, j' 6 I. This is true because 

the shortest connection between y and some 

H. , i 6 I is orthogonal to H. and there- 
l 1 

fore is contained in A, because A is ortho- 

gonal to a subspace of H i . Thus H.I n B # 

implies H. n A n B # ~. As clearly 
1 

{H i N A, i 6 I} has a bounded component P 

on A we know from the beginning of this 

proof that r is larger then the inner ra- 

dius of P. But then it is also larger than 

the inner radius of the component P' of 

{H. , i 6 I} in R n, which contains P, and 
1 

therefore it is larger than the inner ra- 

dius of any of the components of S which 

are subsets of P' . 

Now we have restricted our problem of de- 

termining a density of S to bounding the 

inner radii of its components. 

This will be done by relating them to 

the coefficients of the hyperplanes of S. 

Let for i=l ..... k,H. ;={x 6 R n, a. "x = b. }, 
l l l 

ai=(ail,...,a. ) 6 z n in , b. 6 Z. (Z is the l" 

set of integers) • Then we say that S has 

integer coefficients and define 

m(S) :=max{ laij I ,i=l ..... k, j=l ..... n} and 

M(S) :?max({Ibil , i=l ..... k} U {m(S)}), 

The following two lemmas 4 and 5 and the 

corollary 1 are almost identical to the 

lemmas I and 2 and the corollary 1 from [8]. 

Lemma 4 : Every vertex of some component 
P P 
i n_ 

of S can be represented as (--, .... - ) 

n 
n r w i t h  P l  . . . . .  p n , q  6 Z ,  I q l  --< m ( S )  

1 
• = n 2n • IPl I .... IPnl < M(S) n 

Proof: A vertex x=(xl'''''Xn) of some com- 

ponent of S is the intersection of n hyper- 

planes from S, wlog. of HI,...,H n. By 

Cramer's Rule we know that for 

det (Di) 
i=l,...,n, x i det(D) , where D consists 

of the colums (ail,...,ain)T for i=l,...,n 

and Di arises from D by replacing its i'th 

column by (b I .... ,bn) " 

As det (D) # 0 and Idet (D) I is the volume 

of the hyperparallelepiped spanned by its 

column vectors, we may conclude : 

n 1 I 
2 ~n ~n n 

=n -m(S ) . Idet (D) I < ~ d(0,ai)=<(nom(S) ) 
i=l 

Analogously we obtain 
1 
~n n 

Idet (D.) I < n • M(S) 
1 

Corollary I : Let C be the cube with boun- 

ding hyperplane C.={x 6 R n x =c} t . f 1 l 

C ={x 6 R n, x.=-c} for i=I ..... n, where 
i+n l 

[½n ] 
c =  n • M ( S )  n + l .  T h e n  

a) each component of S has a non-empty in- 

tersection with C, and 

b) each vertex of S tJ {CI, .... C2n} can be 

represented as a vector of rational num- 

bers with common denominator at most 

1 ~n 
n . M(S) n in absolute value. 

Proof: Let E.={xl 6 R n, xi=0} for i=l, . ..,n 

and let S'=S U {EI'''''En}" Then each com- 

ponent of S' has at least one vertex. Thus 
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by lemma 4 it has a non-empty intersection 

with C, because M(S') =M(S) . To verify b) 

we again apply lemma 4 and notice that 

m(S)=m(S U {C 1 . . . . .  C 2 n } )  . ~ 

Lemma 5: The volume ~f each component of 
--n 2 

S is at least (n! • n 2 . m(s)n )-I 

Proof: By corollary 1 a) it suffices to 

prove the assertion above for the bounded 

components of S U {C1,...,C2n}. As each of 

these components has at least n+l vertices, 

its volume is at least the volume of 

P=Conv (v0,...,Vn) , where v0'''''Vn are n+l 

of the above vertices which do not lie on 

one h y p e r p l a n e .  A s  P i s  a s i m p l e x ,  i t s  v o -  

lume v(P) fulfils 

1 (I . . 1 ) I > 0, where the v(P) = ~ I det v0 Vn 

v. 's are column vectors. For each 
1 

i=l,...,n we know from corollary 1 that its 

components hav~ the same denominator qi 
~n 

where lqil ~ n ° m(S) n. 

I I Thus v(P) . . . .  
n! lq01 ... lqnl 

q0 qn 

q0"" Vn qn ) 

As the matrix above only has integer 

coefficients and as its determinant is un- 

equal to zero, its absolute value is at 

least one. Therefore we obtain 

1 1 > 1 1 
- -  o .  = n 2 - ~  v(P) > n! iq01 .lqnl n! n 2n re(s) 

Now we are able to relate the inner radii 

of the components of S to M(S) . 

Lemma 6: The inner radi~s of each component 

of S is at least 

(M(S) 2n2 • n3n2) -I 

Proof: Again it suffices to prove the lemma 

for a bounded polytope P= Cony (v0,. °.,v n) 

as in the proof of lemma 5. We first bound 

v(P) from above in terms of M(S) , n and 

the so-called thickness d of P, i.e. the 

minimum distance of two parallel hyper- 

planes, between which P lies. Let HI,H 2 

be these hyperplanes. As P c C, we know 

that P c Conv (HI,H 2) D C. 

I 

Let c = 2 (|n~nr S(S)n|+1)~ be the edge- 

length of C then we obtain: 

v(P) < v(Conv (H1,H 2) n C) < (~n.c) n-I 

Applying lemma 5 it follows: 

i 2 --n 2 
d > (n! °n 2 )n ~nn-1 n-i -I 

= • m(S • • c ) 

"d. 

NOW we apply a theorem due to Blaschke [10] 

which says that the inner radius of a poly- 

d tope with thickness d is a least n+l 

This theorem and a ruff estimation prove 

the lemma. 

Now we can bound the complexity of the LSA 

from chapter 2. 

Theorem 2: Let S = {HI,...,Hk} be a set of 

hyperplanes with integer coefficients, and 

C a cube with edge-length a 6 Z, a > 0 and 

bounding hyperplanes 

C I ..... C2n;b : = M(S U {C I ..... C2n}i . 

n 
Then S can be decided in C on R in 

3n 4 log(n) + n 2 log(a) + 2n 4 log(b) + 0(n 3) 
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steps. 

Proof: By lemma 3, each density of S is 

bounded by the minimum inner radius of the 

components of S. Inserting the bound for 

it from lemma 6 in theorem 1 yields theo- 

rem 2. 

Chapter 4: A LSA for the n-Dimensional 

Knapsack Problem. 

We now apply theorem 2 to the n-dimensional 

knapsack problem, i.e. we want to decide 

K :={~R n, ~Ic{l ..... n} with Z x = I} 
n + i6I i " 

Theorem 3: K can be decided by a LSA in 
n 

n in n 4 log(n) + 0(n 3) steps. R+ 

can be decided in 3 steps. 

Let n > I. Then we apply the following al- 

gorithm. 

Part I : Determine in which component of 

{CI .... 'C2n} ~ lies and accept if it lies 

on C n + l , . . . , C 2 n .  

Part 2: If x lies in C, then use the algo- 

rithm from the first chapter for it. If 

lies in an other component, use this algo- 

rithm recursively to decide K , in R n' for 
n + 

the appropiate n' < n as described above. 

Let T(n) be the time this algorithm needs. 

Then T(1)=3 and for n>l 

T(n)~2n + max {T(n-l) , n 4 log(n) + 0(n3) }. 

This implies that T(n)~n 4 log(n) + 0(n3) }. 

Proof: Let 

C :={~6Rn,x.=0}, C :={~6Rn,x =i} for 
i 1 i+n 1 

i=l,...,n be the bounding hyperplanes of 

the cube C with edge-length i. As 

M(K n U {C I ..... C2n}) = 1, we know from 

theorem 2 that K can be decided in C on R n 
n 

in n 4 log(n) + 0 (n 3) steps. But for each 

component of {Cl,...,C2n} except C, each 

element x of it has a component x. > i. 
1 

Thus in such components we have to decide 

K , in R n' for some n' < n, where we only 
n + 

have to consider those n' components of x 

< i. This holds a~ it is impossible with x i = 

that [ x. ,= 1 if an i 6 I exists with 
i6I i, 

x > I, because x ~ 0 for i=l, ...,n. 
1 i 

Therefore, the following LSA decides K on 
n 

R n " 
+ 

If n=l then ~ consists of one point and 
n 
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