
James S. Co l lo fe l lo and Scott N. l loodfield
Computer Science Department
Arizona State Univers i ty

Tempe, Arizona 85287

ABSTRACT
INTEGRATION

TEST
~nu~ In th is paper a sequence of software

engineering courses based upon the software l i f e
cycle and integrated by a s ingle, medium-size
project w i l l be described in de ta i l . The courses
w i l l be presented from an educational point of
view, emphasizing the topics covered as well as
the l og i s t i cs of teaching the courses. A
comparison of these courses to other software
engineering courses ex is t ing in un ivers i ty
cur r icu la w i l l also be presented. The potent ia l
advantages for facu l t y , students, arld the research
community of th is type of course sequence w i l l
also be enumerated.

1.0 Introduct ion

The high cost of developing and maintaining
large-scale software is a well-known fact . Soft-
ware qua l i t y problems, especia l ly those of
r e l i a b i l i t y and ma in ta inab i l i t y , are also
f requent ly noted. The term "software engineering"
was coined in the late 1960's in response to some
of the ear ly symptoms of these problems. Soft-
ware engineering bas ica l ly attempts to apply an
engineering-type d i sc ip l i ne to developing and
maintaining software. Since the coining of the
term "software engineering", a vast amount of
research and experience has been accumulated in
the form of guidel ines, techniques, too ls , and
methodologies. The software l i f e cycle which is
depicted in Figure 1 has also been documented.
The d i s t i nc t i on between programming and software
engineering can be expressed in terms of th is
l i f e cycle. In general, a programmer is
pr imar i ly concerned with the production of code,
where a software engineer has respons ib i l i t y for
the ent i re l i f e cycle inc luding requirements,
overal l design, tes t ing, and maintenance plans.

The vast and diverse body of knowledge
encompassing the software engineering f i e l d can
be mostly c lass i f i ed in terms of i t s appl ica-
b i l i t y to phases of the software l i f e cycle.
For example, ent i re books have been wr i t ten on
design methodologies and test ing techniques.
The fact that a vast body of knowledge ex is ts for
each phase of the software l i f e cycle is obvious
by a review of the software engineering
l i t e ra tu re which consists of many books, dedicated
journals and conferences, as well as papers and
technical reports from many d i f f e ren t sources.

Permission to copy without ~e all or part of this material is granted
provided that the copies a ~ not made or distributed ~ r di~ct
commercial advantage, the ACM copyright notice and the title of the
publication and i~ da~ appear, and notice is given that copying is by
permission of the Association ~ r Computing Machinery. To copy
otherwise, or to republish, ~qui~s a ~e and/or specific permission.

© 1982 ACMO-89791-067-2/82/O02/O013 $00.75
13

A Project-Uni f ied Software Engineering Course Sequence

Fig. I. Software Life Cycle

CO~E

DESIGN

SP~.CIFI-
CATIONS

,~EOU I R ~

I t is essential that th is body of knowledge be
conveyed to those responsible for development of
software i f today's demands for h igh-qua l i t y
economical software are to be met.

The t ransfer of software enqineering
knowledge can be accomplished in several ways.
In some organizations the process may consist of
in-house t ra in ing in which par t i cu la r company-
developed or acquired tools and techniques are
taught. Professional seminars and t u t o r i a l s are
other ways of t rans fer r ing software engineering
knowledge. The un ive rs i t i es provide s t i l l
another avenue. Within un ivers i t y cu r r i cu la ,
software engineering concepts related to program
design and coding are evident in many courses,
inc lud ing elementary programming classes.
Special semester-long software engineering
courses are also becoming popular. In th is
paper, a four-semester sequence of software
engineering courses modelled a f ter the software
l i f e cycle and integrated by a single four-
semester project w i l l be described. This
sequence of courses w i l l be contrasted with the
other approaches to t rans fer r ing software
engineering technology. The courses w i l l be
described in deta i l and the advantages of the
sequence approach for the i ns t ruc to r , the
students, and the research community w i l l be
noted.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953051.801331&domain=pdf&date_stamp=1982-02-01

2.0 Current Software Engineering Education
Practices

In the las t f ive years, there has been an
increasing awareness of the need for software
engineering education. In an attempt to sat is fy
th is need, three educational approaches have been
proposed and implemented. The f i r s t approach
uses seminars and short courses to introduce many
to the topic. The second is taken by the many
educational i ns t i tu t ions which o f fe r a single
course in software engineering. The last
approach is a f u l l master's degree in software
engineering. Each of these has i ts place in
education but the strength and weakness of each
must be understood.

The seminar approach is very useful for
introducing many of those people unfami l iar with
software engineering to the basic concepts and
terminology. The desire for this type of
education can be seen from the number of courses
offered. Haraly a month goes by without some
new brochure ar r iv ing which describes some soft-
ware engineering course offered somewhere in the
United States. (The authors themselves o f fe r
such a course biannual ly in the Phoenix area.)
Many people taking these courses are sat is f ied
with the scope and content. They need only under-
stand a l i t t e of the area and have no desire to
know more. Others wish to understand the ent i re
area of software engineering, for these, such
courses are superf ic ia l and do not come close to
meeting t he i r needs.

There are two basic problems with short
courses. F i rs t , the volume of information is so
large that i t cannot be presented in the few
hours a l located, except at a very elementary
leve l . Second, to understand the basic software
engineering pr inc ip les completely, one must
learn them not only in the classroom but also
through experience. In an attempt to overcome
these problems, many un ivers i t ies (including ASU)
o f fe r a one-semester software engineering
course. Typical ly , such a course w i l l cover
the d i f fe ren t phases of the l i f e cycle, in t ro -
duce some management pr inc ip les, and expose the
students to some of the software engineering
l i t e ra tu re [Kant81]. In addi t ion, the course
usually requires each student to par t ic ipate in
a one-semester project in which some of the
pr inciples learned in the classroom are applied.
Such a course has proven very popular. For
those interested in other areas of computer
science (e.g. , data base, compiler construction,
operating systems) this one course sat is f ies
the i r quest for knowledge. Unfortunately,
others who determine that software engineering
is the area in which they wish to special ize
often f ind very few ins t i t u t i ons which o f fe r
advanced courses in the subject [Fage81].

Software engineering education now finds
i t s e l f in the same posit ion that computer science
did in the early s i x t ies . There seems to be a
strong demand for the d isc ip l ine but few wish to
accept i t as an independent area of study. In
the las t few years, several proposals have
emerged which describe software engineering
curr icula [Wass78, Hoff78, Fair78, Stuc78]. These

proposed degrees general ly require I0 to 15
courses which cover the phases of the l i f e cycle,
software management, software documentation,
communication, and several basic computer science
topics (e.g. , compiler construction, data base).
rlost professionals agree that i f such a program
could be offered i t would be very benef ic ia l .
However, there are several problems. One, the
program usually requires two or more years of
graduate work while a normal computer science
degree can often be completed in one to one and a
hal f years. Second, few un ivers i t ies have the
facul ty qua l i f ied to cover a l l the subjects, and
i f qua l i f ied facul ty are ava i lab le , the
un ivers i t ies are often not w i l l i n g to devote the
resources needed to teach the courses e f fec t i ve ly .
(Those who have taught such classes learn that an
inordinate amount of time, as compared to normal
classes, must be devoted to preparation and
supervision.) Third, in some univers i t ies i t is
very d i f f i c u l t to obtain a master's program in
computer science much less a perceived subf ield
such as software engineering. Fourth, as
Freeman and Wasserman have stated [Free78], the
f i e l d might be too immature to be considered for
a separate degree program. We are s t i l l in the
process of def ining boundaries and determining
basic pr inc ip les. Of course we have to s tar t some
time and some place and to those who pioneer this
area we w i l l owe a debt of grat i tude. However,
un t i l the boundaries and pr inc ip les of software
engineering become commonly accepted, the area
w i l l be d i f f i c u l t to j u s t i f y as an independent
academic area of in terest worthy of degree status.

The d i f f i c u l t y in teaching software
engineering can be a t t r ibuted to the fo l lowing
three facts. The subject area is too large to be
completely covered in one semester, much less in
a seminar. We do not have the resources. The
subject area is not mature enough to motivate us
to develop a complete master's program except at
a very few univers i t ies and ins t i tu tes . In order
to meet the demand for software engineering
ins t ruc t ion , we propose a l imi ted set of courses
which can cover the area in more depth than a
single-semester class but which requires only one-
ha l f or one-third the facul ty resources needed
for a f u l l y implemented master's program in
software engineering.

The program is essent ia l ly a four-semester
sequence based on the software l i f e cycle and uses
a project for un i f i ca t ion . The project would be
of medium-size (3-5 man years) and as such would
be a more fa i t h fu l reproduction of the real world.
The experience gained from par t ic ipa t ion in a
project is very benef ic ia l . In addi t ion to
being r e a l i s t i c (as compared to toy programs found
in most computer science classes) such projects
also promote better team work. The team size
(7-10 people) requires the part ic ipants to
develop some organizat ion and management structure
i f they are to f in ish on time. The multi-semester
nature of the project also forces the teams to
experience personnel turnover so they can learn to
ant ic ipate and account for i t . In general, a
four-semester course sequence allows students to
explore the area of software engineering in
depth while applying the knowledge gained in class

Z4

to projects that are s imi lar in many aspects to
projects they w i l l encounter in the real world.

3.0 Description of Course Sequence

The sequence of courses follows the software
l i f e cycle. The f i r s t w i l l be concerned with
software analysis, the second with software
design, the th i rd with software test ing, and the
fourth with software maintenance. A single
medium-size project w i l l integrate the four
courses. Each of the software engineering
courses w i l l basical ly apply the s ta te-of - the-
art knowledge concerning the par t icu lar l i f e
cycle phase being studied to the course project.
A team approach is u t i l i zed in the development
and maintenance of the project. The log is t i cs
of running these courses, including c r i t e r i a for
selecting projects, composition of project
teams, and student evaluat ion, w i l l be described
la ter .

Course I . Software Analysis

This course w i l l invest igate the analysis
phase of the l i f e cycle as well as teach
fundamental management concepts. Of course, i t
is not su f f i c ien t to ta lk only about analysis,
i t is also necessary for the students to under-
stand the overal l picture (i . e . , the software
l i f e cycle) and see the role of the analysis
phase. Once students understand the l i f e cycle,
i t is much easier to show the boundaries of
software analysis and give a short de f i n i t i on .
Included in the de f i n i t i on is a presentation of
accumulated data showing the need for analysis.
Since there is no one universal ly accepted
analysis method, several approaches need to be
presented. Through the exposure to d i f fe ren t
analysis techniques, the information needed for
analysis can be generalized and d i f fe ren t forms
of representation can be taught. I t should be
remembered, however, that since this is a
project oriented class, i t is necessary that
one analysis method be presented in de ta i l .
Several basic software management concepts are
also taught, including the notions of a phase
plan, team organizations, qua l i ty assurance
planning, and reviews and reports. Other
concepts included are documentation for project
management (including a user's guide), change
control , and resource planning. The references
for the class come from books and papers on
the d i f fe ren t analysis and management techniques
[Wein80, Gane79, Hetz81]. A valuable source of
such information is the tu to r i a l series
published by the IEEE [Free80, Rama78, Reif79].

As the material for the class is
presented, teams are formed and the project
i n i t i a t ed . During the f i r s t few weeks a phase
plan is prepared showing each team's milestones
for the remainder of the semester. At the same
time, the d i f fe ren t parts of the documentation
required at the f ina l review are taught in terms
of documentation for management. The next
several weeks are spent on a specif ic analysis
technique to be used by the teams for the project.
After that , several other techniques are pre-
sented including, SADT, PSL/PSA, SREM, and data
flows. The last part of the course covers

several aspects of software project management.
The course out l ine for the current semester is
shown in Table I.

Course 2. Software Design

This course w i l l invest igate d i f fe ren t design
methodologies and discuss basic concepts pert inent
to good design. Included w i l l be a discussion of
the transformation or evolut ion of analysis
information into design information. Several
high-level design concepts w i l l be introduced
including archi tectural techniques, data design
techniques, and information hiding. After the
high-level design concepts have been shown, de-
ta i led design methods can be introduced. These
include program design languages, Nasi-Shneiderman
charts, and flow charts. Along with the design
concepts, management concepts w i l l also be
presented. The references for this class can come
from texts, papers, and tu to r ia l s used for
teaching design [Free80, Yeh77, Jens79]. Those
texts which teach a specif ic technique are
especial ly needed [Your79, Jack75, Myer75]. For
the management aspect of software design the
material made avai lable for the analysis course
can be used.

As the design material is being taught in
class, i t must also be used in the project: The
f i r s t few weeks of the project w i l l be devoted to
understanding the document produced by the
analysis class. After that, the high-level design
concepts w i l l be applied to the problem at hand.
This step w i l l take several weeks and w i l l lead
into the detai led design process which w i l l take
the remainder of the semester. During both high-
and low-level design d i f fe ren t management concepts
such as design review and qual i ty assurance
checks w i l l be used. A suggested course out l ine
is shown in Table I I .

Course 3. Software Testing

This course w i l l invest igate the software
test ing phase of the software l i f e cycle. State-
o f - the-ar t test ing tools and techniques w i l l be
studied and analyzed in terms of the i r a b i l i t y
to detect errors and the i r cost-effectiveness.
Strategies for module and integrat ion testing of
software and management approaches for test
planning and contro l , w i l l be covered. Measures
for estimating software r e l i a b i l i t y w i l l also be
analyzed. The reference material for this course
should come from several sources. R e l i a b i l i t y
and test ing textbooks, testing tu to r i a l s , and
published papers provide a rich selection of
appl icable information [Myers79, Kope80, Yeh77].

In para l le l to the course lectures and
discussion, the project teams continue to work on
the course project. During approximately the
f i r s t th i rd of the course, the project is coded.
The project teams w i l l then test the software for
the remaining time in the course. The lectures
and project team ef for ts must be synchronized in
order to maximize the learning experience. A
suggested semester course out l ine i l l u s t r a t i n g
lecture material and project team ef for ts is
shown in Table I I I .

IS

Table I . Software Analysis Outl ine

Weeks Lecture Topics Project Team Efforts

I.-3 General management concepts
and documentation needed for
management.

Introduce and describe project .
Develop semester phase plan.

4--8 Details of a spec i f ic analysis
technique.

Organize team, define
documentation, develop general
idea of project .

9-10 Show general analysis
techniques, in general.

Star t put t ing analysis resul ts in
wr i t ten form.

I I -15 Management aspects of software
development projects.

F inal ize requirements and
documentation reports. Give f ina l
review.

Table I I . Software Design Outl ine

Weeks Lecture Topics Project Team Effor ts

I -3

4-8

9-11

12-15

Relationship of analysis to
design. Review basic
management concepts.

The high- level design
technique to be used for
the project .

The low-level design
technique to be used for the
project .

Discuss other design
techniques, both high- and
low- leve l . Show how they
re la te to the current
techniques used.

Review analysis document.

Begin design and organize team.

Finish the high- level design.
Start on low-level design.

Finish design. Prepare for
and present f i na l review.

Table I I I . Software Testing Outl ine

Weeks Lecture Topics Project Team Effor ts

I -2

3-5

6-7

8-9

10-14

15

Test planning and control

Module and in tegrat ion
test ing tools and techniques

Advanced test ing concepts

Software r e l i a b i l i t y

Testing perspective

Code

Module test ing

Integrat ion test ing

Advanced test ing technique
experimentation

Acceptance test ing

16

Course 4. Software Maintenance

This course wi l l investigate the software
maintenance phase of the software l i f e cycle. The
definit ion and dimensions of software maintenance
wi l l be explored. The maintenance process wi l l be
modelled and management approaches to software
change wi l l be studied. ~laintenance tools and
techniques including those for ripple-effect
analysis and regression testing, wi l l also be
described. The reference material for this course
should come from several sources. Recent
published papers, tutor ials, and texts should pro-
vide a rich selection of applicable information
[McCl81, Lien78].

In p a r a l l e l to the course lec tu res and
d iscuss ion, the p ro jec t teams w i l l perform both
planned and unplanned maintenance a c t i v i t i e s on
the completed sof tware. The planned maintenance
a c t i v i t i e s w i l l cons is t o f f i x i n g known and
documented er rors as wel l as implementing
mod i f i ca t i ons to add new program c a p a b i l i t i e s ,
de le te obsolete c a p a b i l i t i e s , and improve program
performance. The unplanned maintenance
a c t i v i t i e s w i l l cons is t o f co r rec t i on o f new s o f t -
ware er rors detected a f t e r the course has begun.
Most o f the program mod i f i ca t i ons w i l l i nvo lve
team members in p a r a l l e l e f f o r t s to implement
several changes. The lec tu res and p ro jec t team
e f f o r t s must be synchronized in order to
maximize the learn ing exper ience. A suggested
semester course o u t l i n e i l l u s t r a t i n g l ec tu re
mater ia l and p ro jec t team e f f o r t s is shown in
Table IV.

i n s t r u c t o r does not have t o t a l cont ro l over the
p r o j e c t . D i l igence is requ i red to ensure the
proper p a r t i c i p a t i o n of both the user and the
students. The other approach is to develop a
p ro j ec t in-house. That i s , the i n s t r u c t o r
becomes both user and i n s t r u c t o r . This a l lows
him to re ta i n complete con t ro l over both the
concepts taught in c lass and the experience gained
in the p r o j e c t . However, such a s i t u a t i o n re-
quires the i n s t r u c t o r to wear two hats. Without
care the p ro jec t could become a class o f s laves.
There are good reasons fo r both types of p ro jec t s .
At ASU we have i n i t i a l l y chosen to have in-house
p ro jec ts in order to a l l ow us to determine how
best to organize the four courses. A f te r we have
gained more exper ience, ~e hope to be able to go
to indus t ry fo r p ro j ec t s .

There are o ther aspects o f a p ro jec t one
must consider before making a choice. Of pr imary
importance is p ro jec t s ize . We have observed
tha t many p ro jec ts chosen fo r p ro j ec t o r ien ted
classes are too b ig . I t is d i f f i c u l t to judge a
p r o j e c t ' s s ize but our exper ience has shown tha t
those p ro jec ts o f ten judged as being a l i t t l e too
small i n i t i a l l y , o f ten seem to be o f about the
r i g h t s ize l a t e r , l~e have chosen a problem which
can be made smal ler as t ime goes on. Our teams
are c u r r e n t l y working on an e n t i t y - r e l a t i o n s h i p
data base system which w i l l be used as a
foundat ion fo r l a t e r research i n to an in teg ra ted
sof tware development system. O r i g i n a l l y , the
data base system was planned to prov ide fo r the
standard data base funct ions of query, r e t r i e v a l ,
m o d i f i c a t i o n , c rea t i on , d e l e t i o n , e tc . In
a d d i t i o n , we had hoped tha t secu r i t y and arch iva l

Table IV. Software Maintenance Outline

Weeks Lecture Topics Project Team Efforts

2-3

4-5

6-7

8-9

I 0 - I I

12

13

14-15

D e f i n i t i o n and dimensions
of maintenance

I Iaintenance model l ing

Software Change Control

Ripple e f f e c t ana lys is

Regression t es t i ng

Other maintenance too ls

Advanced maintenance top ics

Familiarization with software and
planned changes

Formulate maintenance plan

Generate d e t a i l e d maintenance
proposals

Implement sof tware changes

Ripple e f f e c t ana lys is

Regression tes t i ng

4.0 Course Logistics

One o f the most impor tant ing red ien ts fo r a
successful sof tware engineer ing class is the
p r o j e c t . There are two pr imary ways p ro jec ts can
be chosen. One method asks outs ide indus t ry to
submit p ro jec ts fo r which they are w i l l i n g to act
as users. Such an approach al lows the p ro j ec t to
be much more r e a l i s t i c and develops a be t t e r
r e l a t i o n s h i p between indus t ry and the u n i v e r s i t y
[Buse79]. I t does have drawbacks because the

funct ions could be added. As we progressed in to
the p ro j ec t we discovered tha t due to t ime
c o n s t r a i n t s , the l a t t e r two sets of funct ions are
not f eas ib le and have the re fo re e l im ina ted them.

In order to make the p ro jec ts more r e a l i s t i c ,
we need to be t t e r model the outs ide wor ld . One
area in which most computer science graduates need
more exper ience is team p ro jec t development. This
is a v a i l a b l e in one-semester sof tware engineer ing
c lasses, but the team sizes are usua l ly small

17

enough (3-5 people) to al low them to funct ion
without serious communication problems. Larger
teams enable the par t ic ipants to experience
problems not seen in one-semester pro jects. Our
teams cur rent ly consist of seven people. In order
to funct ion smoothly, they have u t i l i z e d concepts
such as team leaders (ro ta ted) , agendas, regular
meeting, subcommittees, milestones, etc. Al l o f
these concepts seem commonplace and the standard
student response is " I know a l l about tha t . "
However, our students have indicated that th is
pro ject is the f i r s t time they have had to use
the concepts. Although they were taught many of
the concepts in the one-semester class, the team
size was so small that ad hoc and impromptu
methods were used throughout the pro jec t . I t was
easier to use whatever method seemed r i gh t at the
moment, rather than to learn how to cons is tent ly
apply concepts learned in class. With larger
projects and larger teams, such unorganized
methods became counterproduct ive, forcing them to
implement standard management procedures and team
organizat ions.

One of the most d i f f i c u l t parts of any team
or iented pro jec t is the evaluat ion of students
for grading purposes. We are using several
c r i t e r i a for student evaluat ion. A tes t , usual ly
a take home tes t , is used to determine i f the
students have been learning basic concepts and
doing the reading. This test counts for twenty-
f ive percent of the grade. There is also a
required term paper which accounts for twenty
percent of the grade. The paper is usual ly a
survey of the current state of the a r t in the
subject being studied. This semester, correspond-
ing to Course l , the paper w i l l survey analysis
and requirements spec i f i ca t i on . Point-wise, the
most important piece of work for student
evaluation is the f ina l review. This review con-
s is ts of evaluat ing a l l the f ina l documentation
as well as a one-hour oral presentat ion given by
one of the team members. The f ina l review is
worth t h i r t y percent of each student 's grade.
Each team receives one grade for a l l members.
There is no attempt to determine who worked
harder than anyone else. This is done for two
reasons: i t encourages the team to work
together in order to produce a good f ina l re-
port , and there is another method for evaluating
ind iv idua l performance wi th in each group. Each
team member is evaluated by his peers and by the
ins t ruc to r . Ten percent of a person's grade is
determined by peer review. Each time a team
leader is f in ished with his turn as leader he
produces a wr i t t en report ind ica t ing how well
each member performed his share of the work load.
The co l l ec t i on of these reports is used to judge
a student 's performance for the semester. Each
student is also subject ive l~ evaluated by the
ins t ruc to r . This evaluation is worth another ten
percent of his grade and is done through weekly
v i s i t s to each team to determine the pa r t i c i pa t i on
and qua l i t y of work by each member. The las t f i ve
percent of the grade is a l located to class
p a r t i c i p a t i o n . There are several topics for which
there is no s ingle correct answer and class
pa r t i c i pa t i on is deemed necessary for proper
ins t ruc t ion in these areas.

5.0 Course Sequence Advantages

The sequence of software engineering courses
described in this paper has a number of potential
advantages for faculty, students, and the research
community. For students, the sequence provides an
opportunity to participate in a medium-scale
software project at al l or any selected phase of
development or maintenance. This provides for
knowledge of the entire software l i f e cycle and is
comparable to the experience of rotating positions
in an industrial environment. I f a student is
only interested in a part icular phase of the soft-
ware l i f e cycle, his professional development
needs can be satisf ied by part icipating in the
appropriate course in the sequence. The relevance
and effectiveness of the tools and techniques
ut i l i zed in each course can be witnessed and
evaluated by the students part icipating in subse-
quent courses. This can be a signif icant factor
in motivating students completing the sequence
to transfer their experience in the course
sequence to their work environment.

The sequence of courses also helps to
develop the interpersonal s k i l l s of i t s
par t i c ipan ts . Project team members must learn
e f fec t i ve verbal and nonverbal communication
s k i l l s as well as organizat ional s k i l l s which
support the cooperative atmosphere necessary for
the team to survive and perform i t s work
e f f i c i e n t l y and e f f ec t i ve l y . Leadership qua l i t i es
necessary to successful ly delegate work and
evaluate subordinates are also developed. Due to
the l og i s t i c s of the courses, a student must
develop a sense of r e s p o n s i b i l i t y for his share
of the pro ject and re f ine his s k i l l s at scheduling
and a l l oca t ing time to perform tasks.

The sequence of software engineering courses
has a number of potential advantages for faculty
administering the course. Due to the nature of
the projects and the logist ics of the courses,
teaching the classes can be a signif icant
educational experience in terms of project manage-
ment. The courses also provide a vehicle for the
development of software designed by the faculty.
The courses can also serve as a research vehicle
for the faculty or Ph.D. students who wish to
perform software engineering experiments. One
of the most signif icant factors hindering soft-
ware engineering research is the capabil i ty of
conducting controlled experiments on rea l i s t i c
projects. This sequence of courses should provide
an ideal test bed for these types of experiments.
Thus, the sequence of software engineering
courses described in this paper can potent ial ly
be advantageous to the software engineering
community.

References

Fage81 Fagenbaum, J., "A New Breed: The
Software Engineer," IEEE Spectrum 18, 9
(September Ig81), 62-66.

Fair78 Fairley, R. E., "Educational Issues in
Software Engineering," Proc. ACM 1978
Annu. Conf., 58-62.

18

Free78

Free80

Gane79

Hoff78

Jack75

Jens79

Kant81

Kope80

Lien78

McCI81

Hetz81

Myer75

Myer79

Rama78

Rei f79

Stuc78

Wein80

Freeman, P., "A Proposed Curriculum for
Software Engineering Education," Proc.
3rd Inter. Conf. on Soft. Eng., 56-62.

Freeman, P., and Wasserman, A. i . ,
Tutorial on Software Design Techniques,
IEEE Computer Society, New York, N.Y.,
1980.

Gane, C., and Sarson, T. Structured
System Analysis: Tools and Techniques,
Prentice-Hall, Inc., Englewood Cl i f f s ,
N.J., 1979.

Hoffman, A. A. J., "A Proposed Master's
Degree in Software Engineering," Proc.
ACM 1978 Annu. Conf., 54-61.

Jackson, M. A., Principles of Program
Design, Academic Press, New York, N.Y.,
1975.

Jensen, R. W., and Tonies, C. C.,
Software Engineering, Prentice-Hall,
Inc., Englewood Cl i f fs , N.J., 1979.

Kant, E., "A Semester Course in
Software Engineering," Software Eng.
Notes 6, 4 (August 1981), 52-76.

Kopetz, H., Software Re l iab i l i t y ,
Springer-Verlag, 1980.

Lientz, B., Swanson, E., and Tompkins,
G., "Characteristics of Application
Software Maintenance," CACM 21, No. 6
(June 1978)

McClure, C. L., i4anaging Software
Development and Maintenance, Van
Nostrand Reinhold Company, 1981.

Metzger, P. :~., Managin 9 a Programmin 9
Project, Prentice-Hall, Inc., Englewood
C l i f f s , N.J., 1981.

Myers, G. J., Reliable Soft,tare Through
Composite Design, Petrocelli/Charter,
New York, N.Y., 1975.

Myers, G. J., The Art of Software
Testin 9, John Wiley and Sons, 1979.

Ramamoorthy, C. V., and Yeh, R. T.,
Tutorial: Software Methodology, IEEE
Computer Society, New York, N.Y., 1978.

Reifer, D. J., Tutorial Software
Management, IEEE Computer Society, New
York, N.Y., 1979.

Stucki, L. G., and Peters, L. J., "A
Software Engineering Graduate
Curriculum," Proc. ACM 1978 Annu. Conf.,
63-67.

Weinberg, V., Structured Analysis,
Prentice-Hall, Inc., Englewood Cli f fs,
N.J., 1980.

Yeh77

Yeh77

Your79

Yeh, R. T., Current Trends in
Programming Methodology, Vol. I ,
Software Specification and Design,
Prentice-Hall, Inc., Englewood C l i f f s ,
~;.J., 1977.

Yeh, R. T., Current Trends in
Programmin 9 ~]ethodology, Vol. I I ,
Program Validation, Prentice-Hall, Inc.,
Englewood C l i f f s , N.J., 1977.

Yourden, E., and Constantine, L. L.,
Structured Design, Fundamentals of a
b isc ip l ine of Computer Program and Systems
Design, Prentice-Hall, Inc., Englewood
~ , N.J., 1979.

19

