Check for
Updates

b=

Project-Unified Software Engineering Course Sequence

James S. Collofello and Scott N. MHoodfield
Computer Science Department
Arizona State University
Tempe, Arizona 85287

ABSTRACT

In this paper a sequence of software
engineering courses based upon the software Tife
cycle and integrated by a single, medium-size
project will be described in detail. The courses
will be presented from an educational point of
view, emphasizing the topics covered as well as
the logistics of teaching the courses. A
comparison of these courses to other software
engineering courses existing in university
curricula will also be presented. The rotential
advantages for faculty, students, and the research
community of this type of course sequence will
also be enumerated.

1.0 Introduction

The high cost of developing and maintaining
large-scale software is a well-known fact. Soft-
ware quality problems, especially those of
reliability and maintainability, are also
frequently noted. The term "software engineering"
was coined in the Tate 1260's in response to some
of the early symptoms of these problems. Soft-
ware engineering basically attempts to apply an
engineering-type discipline to developing and
maintaining software. Since the coining of the
term "software engineering", a vast amount of
research and experience has been accumulated in
the form of guidelines, techniques, tools, and
methodologies. The software 1ife cycle which is
depicted in Figure 1 has also been documented.
The distinction between programming and software
engineering can be expressed in terms of this
Tife cycle. In general, a programmer is
primarily concerned with the production of code,
where a software engineer has responsibility for
the entire life cvcle including reguirements,
overall design, testing, and maintenance nlans.

The vast and diverse body of knowledge
encompassing the software engineering field can
be mostly classified in terms of its applica-
bility to phases of the software life cyvcle.

For example, entire books have been written on
design methodologies and testing techniques.

The fact that a vast body of knowledge exists for
each phase of the software life cycle is obvious
by a review of the software engineering

literature which consists of many books, dedicated
journals and conferences, as well as papers and
technical reports from many different sources.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-067-2/82/002/0013 $00.75

INTEGRATION
TEST

SPECIFI~
CATIONS

REQU IREMENTS

Fig. 1. Software Life Cycle

It is essential that this body of knowledge be
conveyed to those responsible for development of
software if today's demands for high-quality
economical software are to be met.

The transfer of software engineering
knowledge can Le accomplished in several ways.
In some organizations the process may consist of
in-house training in which particular company-
develoned or acquired tools and techniques are
taught. Professional seminars and tutorials are
other ways of transferring software engineering
knowledge. The universities provide still
another avenue. Within university curricula,
software engineering concepts related to program
design and codirg are evident in many courses,
including elementary programming classes.
Special semester-long software engineering
courses are also becoming popular. In this
paper, a four-semester sequence of software
engineering courses modelled after the software
life cycle and integrated by a single four-
semester project will be described. This
sequence of courses will be contrasted with the
other approaches to transferring software
engineering technology. The courses will be
described in detail and the advantages of the
sequence approach for the instructor, the
students, and the research community will be
noted.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953051.801331&domain=pdf&date_stamp=1982-02-01

2.0 Current Software Lngineering Education
Practices

In the last five years, there has been an
increasing awareness of the need for software
engineering education. In an attempt to satisfy
this need, three educational approaches have been
proposed and implemented. The first approach
uses seminars and short courses to introduce many
to the topic. The second is taken by th2 many
educational institutions which offer a single
course in software engineering. The last
approach is a full master's degree in software
engineering. Each of these has its place in
education but the strength and weakness of each
must be understood.

The seminar approach is very useful for
introducing many of those people unfamiliar with
software engineering to the basic concepts and
terminology. The desire for this type of
education can be seen from the number of courses
offered. Hardly a month goes by without some
new brochure arriving which describes some soft-
ware engineering course offered somewhere in the
United States. (The authors themselves offer
such a course biannually in the Phoenix area.)
Many people taking these courses are satisfied
with the scope and content. They need only under-
stand a 1itte of the area_and have no desire to
know more. Others wish to understand the entire
area of software engineering, for these, such
courses are superficial and do not come close to
meeting their needs.

There are two basic problems with short
courses. First, the volume of information is so
large that it cannot be presented in the few
hours allocated, except at a very elementary
level. Second, to understand the basic software
engineering principles completely, one must
Tearn them not only in the classroom but also
through experience. In an attempt to overcome
these problems, many universities (including ASU)
offer a one-semester software engineering
course., Typically, such a course will cover
the different phases of the 1ife cycle, intro-
duce some management principles, and expose the
students to some of the software enginearing
literature [Kant81]. In addition, the course
usually requires each student to participate in
a one-semester project in which some of the
principles learned in the classroom are applied.
Such a course has proven very popular. For
those interested in other areas of computer
science (e.g., data base, compiler construction,
operating systems) this one course satisfies
their quest for knowledge. Unfortunately,
others who determine that software engineering
is the area in which they wish to specialize
often find very few institutions which offer
advanced courses in the subject [Fage81].

Software engineering education now finds
itself in the same position that comouter science
did in the early sixties. There seems to be a
strong demand for the discipline but few wish to
accept it as an independent area of study. In
the last few years, several proposals have
emerged which describe software engineering
curricula [Wass78, Hoff78, Fair78, Stuc78]. These

oroposed degrees generally require 10 to 15
courses which cover the phases of the life cycle,
software management, software documentation,
communication, and several basic computer science
topics {e.g., compiler construction, data base).
Most professionals agree that if such a program
could be offered it would be very beneficial.
However, there are several nroblems. One, the
program usually requires two or more years of
graduate work while a normal computer science
degree can often be completed in one to one and a
half years. Second, few universities have the
faculty qualified to cover all the subjects, and
if qualified faculty are available, the
universities are often not willing to devote the
resources needed to teach the courses effectively.
(Those who have taught such classes learn that an
inordinate amount of time, as comnared to normal
classes, must be devoted to preparation and
supervision.) Third, in some universities it is
very difficult to obtain a master's program in
computer science much less a perceived subfield
such as software engineering. Fourth, as

Freeman and Yasserman have stated [Free78], the
field might be too immature to be considered for
a separate degree program. We are still in the
process of defining boundaries and determining
basic principles. Of course we have to start some
time and some place and to those who pioneer this
area we will owe a debt of gratitude. However,
until the boundaries and principles of software
engineering become commonly accepted, the area
will be difficult to justify as an independent
academic area of interest worthy of degree status.

The difficulty in teaching software
engineering can be attributed to the following
three facts. The subject area is too large to be
comnletely covered in one semester, much less in
a seminar, We do not have the resources. The
subject area is not mature enough to motivate us
to develop a complete master's program except at
a very few universities and institutes. In order
to meet the demand for software engineering
instruction, we propose a limited set of courses
which can cover the area in more denth than a
single-semester class but which requires only one-
half or one-third the faculty resources needed
for a fully implemented master's program in
software engineering.

The program is essentially a four-semester
sequence based on the software 1ife cycle and uses
a project for unification. The project would be
of medium-size (3-5 man years) and as such would
be a more faithful renroduction of the real world.
The experience gained from rnarticipation in a
project is very beneficial. In addition to
being realistic {(as compared to toy programs found
in most computer science classes) such projects
also promote better team work. The team size
(7-10 people) requires the participants to
develop some organization and management structure
if they are to finish on time. The multi-semester
nature of the project also forces the teams to
experience personnel turnover so they can learn to
anticipate and account for it. In general, a
four-semester course sequence allows students to
explore the area of software engineering in
denth while applying the knowledge gained in class

to projects that are similar in many aspects to
projects they will encounter in the real world.

3.0 Description of Course Sequence

The sequence of courses follows the software
life cycle. The first will be concerned with
software analysis, the second with software
design, the third with software testing, and the
fourth with software maintenance. A single
medium-size project will integrate the four
courses. Each of the software engineering
courses will basically apply the state-of-the-
art knowledge concerning the particular life
cycle phase being studied to the course project.
A team approach is utilized in the development
and maintenance of the project. The logistics
of running these courses, including criteria for
selecting projects, composition of project
teams, and student evaluation, will be described
later,
Course 1. Software Analysis

This course will investigate the analysis
phase of the 1ife cycle as well as teach
fundamental management concepts. Of course, it
is not sufficient to talk only about analysis,
it is also necessary for the students to under-
stand the overall picture (i.e., the software
life cycle) and see the role of the analysis
phase. Once students understand the life cycle,
it is much easier to show the boundaries of
software analysis and give a short definition.
Included in the definition is a presentation of
accumulated data showing the need for analysis.
Since there is no one universally accepted
analysis method, several approaches need to be
presented. Through the exposure to different
analysis techniques, the information needed for
analysis can be generalized and different forms
of representation can be taught. It should be
remembered, however, that since this is a
project oriented class, it is necessary that
one analysis method be presented in detail.
Several basic software management concepts are
also taught, including the notions of a phase
plan, team organizations, quality assurance
planning, and reviews and reports. Other
concepts included are documentation for project
management (including a user's guide), change
control, and resource planning. The references
for the class come from books and papers on
the different analysis and management techniques
[WeinB80, Gane79, ietz81]. A valuable source of
such information is the tutorial series
published by the IEEE [Free80, Rama78, Reif79].

As the material for the class is
presented, teams are formed and the project
initiated. During the first few weeks a phase
plan is prepared showing each team's milestones
for the remainder of the semester. At the same
time, the different parts of the documentation
required at the final review are taught in terms
of documentation for management. The next
several weeks are spent on a specific analysis
technique to be used by the teams for the project.
After that, several other techniques are pre-
sented including, SADT, PSL/PSA, SREM, and data
flows. The last part of the course covers

15

several aspects of software project management.
The course outline for the current semester is
shown in Table I.
Course 2. Software Design

This course will investigate different design
methodologies and discuss basic concepts pertinent
to g00d design. Included will be a discussion of
the transformation or evolution of analysis
information into design information. Several
high-Tevel design concepts will be introduced
including architectural techniques, data design
techniques, and information hiding. After the
high-Tevel design concents have been shown, de-
tailed design methods can be introduced. These
include nrogram design languages, Nasi-Shneiderman
charts, and flow charts. Along with the design
concepts, management concepts will also be
presented. The references for this class can come
from texts, papers, and tutorials used for
teaching design [Free80, Yeh77, Jens79].
texts which teach a specific technique are
especially needed [Your79, Jack75, Myer75].
the management aspect of software design the
material made available for the analysis course
can be used.

Those

For

As the design material is being taught in
class, it must also be used in the project: The
first few weeks of the project will be devoted to
understanding the document produced by the
analysis class. After that, the high-level design
concepts will be applied to the problem at hand.
This step will take several weeks and will lead
into the detailed design process which will take
the remainder of the semester. During both high-
and low-level design different management concepts
such as design review and quality assurance
checks will be used. A suggested course outline
is shown in Table II.

Course 3. Software Testing

This course will investigate the software
testing phase of the software life cycle. State-
of-the-art testing tools and techniques will be
studied and analyzed in terms of their ability
to detect errors and their cost-effectiveness.
Strategies for module and integration testing of
software and management approaches for test
planning and control, will be covered. HMeasures
for estimating software reliability will also be
analvzed. The reference material for this course
should come from several sources. Reliability
and testing textbooks, testing tutorials, and
published papers provide a rich selection of
applicable information [Myers79, Kope80, Yeh77].

In parallel to the course lectures and
discussion, the project teams continue to work on
the course project. During approximately the
first third of the course, the project is coded.
The project teams will then test the software for
the remaining time in the course. The lectures
and project team efforts must be synchronized in
order to maximize the learning experience. A
suggested semester course outline illustrating
lecture material and project team efforts is
shown in Table III.

Table I.

Software Analysis Qutline

Weeks Lecture Topics Project Team Efforts

1-3 General management concepts Introduce and describe project.
and documentation needed for Develop semester phase plan.
management.

4.8 Details of a specific analysis Organize team, define
technique. documentation, develop general

idea of project.

9-10 Show general analysis Start putting analysis results in
techniques, in general. written form.

11-15 Management aspects of software Finalize requirements and

development projects.

documentation reports.
review.

Table II. Software Design Qutline

Weeks Lecture Topics Project Team Efforts

1-3 Relationship of analysis to Review analysis document.
design. Review basic
management concents.

4-8 The high-level design Begin design and organize team.
technique to be used for
the project.

9-11 The Tow-level design Finish the high-level design.
technique to be used for the Start on low-level design.
project.

12-15 Discuss other design Finish design. Prepare for
techniques, both high- and and present final review.
low-level. Show how they
relate to the current
techniques used.

Table III. Software Testing OQutline

Weeks Lecture Topics Project Team Efforts

1-2 Test planning and control Code

3-5 Module and integration
testing tools and techniques

6-7 Advanced testing concepts Module testing

8-9 Integration testing

10-14 Software reliability Advanced testing technique

experimentation

15 Testing perspective Acceptance testing

16

Give final

Course 4. Software Maintenance

This course will investigate the software
maintenance phase of the software life cycle. The
definition and dimensions of software maintenance
will be explored. The maintenance process will be
modelled and management approaches to software
change will be studied. HMaintenance tools and
techniques including those for ripple-effect
analysis and regression testing, will also be
described. The reference material for this course
should come from several sources. Recent
published papers, tutorials, and texts should pro-
vide a rich selection of applicable information
[McC181, Lien78].

In parallel to the course Tectures and
discussion, the project teams will perform both
planned and unplanned maintenance activities on
the completed software. The planned maintenance
activities will consist of fixing known and
documented errors as well as implementing
modifications to add new program capabilities,
delete obsolete capabilities, and improve program
performance. The unplanned maintenance
activities will consist of correction of new soft-
ware errors detected after the course has begun.
Most of the program modifications will involve
team members in parallel efforts to implement
several changes. The lectures and project team
efforts must be synchronized in order to
maximize the Tearning experience. A suggested
semester course outline illustrating lecture
material and project team efforts is shown in
Table IV.

instructor does not have total control over the
project. Diligence is required to ensure the
proper participation of both the user and the
students. The other approach is to develop a
project in-house. That is, the instructor

becomes both user and instructor. This allows

him to retain complete control over both the
concepts taught in class and the experience gained
in the project. l!lowever, such a situation re-
quires the instructor to wear two hats. Without
care the project could become a class of slaves.
There are good reasons for both types of projects.
At ASU we have initially chosen to have in-house
nrojects in order to allow us to determine how
best to organize the four courses. After we have
gained more experience, we hope to be able to go
to industry for projects.

There are other aspects of a project one
must consider before making a choice. Of primary
importance is project size. We have observed
that many projects chosen for project oriented
classes are too big. It is difficult to judge a
project's size but our experience has shown that
those projects often judged as being a little too
small initially, often seem to be of about the
right size Tater. e have chosen a problem which
can be made smaller as time goes on. Our teams
are currently working on an entity-relationship
data base system which will be used as a
foundation for later research into an integrated
software development system. Originally, the
data base system was planned to provide for the
standard data base functions of query, retrieval,
modification, creation, deletion, etc. In
addition, we had hoped that security and archival

Table IV. Software Maintenance Outline

Weeks Lecture Topics Project Team Efforts

1 Definition and dimensions Familjarization with software and
of maintenance planned changes

2-3 Maintenance modelling

4-5 Software Change Control

6-7 Ripple effect analysis Formulate maintenance plan

8-9 Regression testing Generate detailed maintenance
. proposals

10-11 Other maintenance tools Implement software changes

12 Ripple effect analysis

13 Advanced maintenance topics

14-15 Regression testing

4.0 Course Logistics

One of the most important ingredients for a
successful software engineering class is the
project. There are two primary ways projects can
be chosen, One method asks outside industry to
submit projects for which they are willing to act
as users. Such an approach allows the project to
be much more realistic and develops a better
relationship between industry and the university
[Buse79]. It does have drawbacks because the

17

functions could be added. As we progressed into
the project we discovered that due to time
constraints, the latter two sets of functions are
not feasible and have therefore eliminated them.

In order to make the projects more realistic,
we need to better model the outside world. One
area in which most computer science graduates need
more experience is team project development. This
is available in one-semester software engineering
classes, but the team sizes are usually small

enough (3-5 neople) to allow them to function
without serious communication problems. Larger
teams enable the participants to experience

problems not seen in one-semester projects. Our
teams currently consist of seven people. In order

to function smoothly, they have utilized concepts
such as team leaders (rotated), agendas, regular
meeting, subcommittees, milestones, etc. All of
these concepts seem commonplace and the standard
student response is "I know all about that."
However, our students have indicated that this
project is the first time they have had to use
the concepts. Although they were taught many of
the concepts in the one-semester class, the team
size was so smail that ad hoc and impromptu
methods were used throughout the project. It was
easier to use whatever method seemed right at the
moment, rather than to learn how to consistently
apply concepts learned in class. With larger
projects and larger teams, such unorganized
methods became counterproductive, forcing them to
implement standard management procedures and team
organizations.

One of the most difficult parts of any team
oriented project is the evaluation of students
for grading purposes. le are using several
criteria for student evaluation. A test, usually
a take home test, is used to determine if the
students have been learning basic concepts and
doing the reading. This test counts for twenty-
five percent of the grade. There is also a
required term paper which accounts for twenty
percent of the grade. The paper is usually a
survey of the current state of the art in the
subject being studied. This semester, correspond-
ing to Course 1, the paper will survey analysis
and requirements specification. Point-wise, the
most important piece of work for student
evaluation is the final review. This review con-
sists of evaluating all the final documentation
as well as a one-hour oral presentation given by
one of the team members. The final review is
worth thirty percent of each student's grade.
Each team receives one grade for all menbers.
There is no attempt to determine who worked
harder than anyone else. This is done for two
reasons: it encourages the team to work
together in order to produce a good final re-
port, and there is another method for evaluating
individual performance within each group. Each
team member is evaluated by his peers and by the
instructor. Ten percent of a person's grade is
determined by peer review. Each time a team
leader is finished with his turn as leader he
produces a written report indicating how well
each member performed his share of the work load.
The collection of these reports is used to judge
a student's performance for the semester., Each
student is also subjectively evaluated by the
instructor. This evaluation is worth another ten
percent of his grade and is done through weekly
visits to each team to determine the participation
and quality of work by each member. The last five
percent of the grade is allocated to class
participation. There are several topics for which
there is no single correct answer and class
participation is deemed necessary for proper
instruction in these areas.

18

5.0 Course Sequence Advantages

The sequence of software engineering courses
described in this paper has a number of potential
advantages for faculty, students, and the research
community. For students, the sequence provides an
opportunity to participate in a medium-scale
software project at all or any selected phase of
development or maintenance. This provides for
knowledge of the entire software 1ife cycle and is
comparable to the experience of rotating positions
in an industrial environment. If a student is
only interested in a particular phase of the soft-
ware 1ife cycle, his professional development
needs can be satisfied by participating in the
aporopriate course in the sequence. The relevance
and effectiveness of the tools and techniques
utilized in each course can be witnessed and
evaluated by the students participating in subse-
quent courses. This can be a significant factor
in motivating students completing the sequence
to transfer their experience in the course
sequence to their work environment.

The sequence of courses also helps to
develop the interpersonal skills of its
participants. Project team members must learn
effective verbal and nonverbal communication
skills as well as organizational skills which
support the cooperative atmosphere necessary for
the team to survive and perform its work
efficiently and effectively. Leadership qualities
necessary to successfully delegate work and
evaluate subordinates are also developed. Due to
the logistics of the courses, a student must
develop a sense of responsibility for his share
of the project and refine his skills at scheduling
and allocating time to perform tasks.

The sequence of software engineering courses
has a number of potential advantages for faculty
administering the course. Due to the nature of
the srojects and the logistics of the courses,
teaching the classes can be a significant
educational experience in terms of project manage-
ment. The courses also provide a vehicle for the
development of software designed by the faculty.
The courses can also serve as a research vehicle
for the faculty or Ph.D. students who wish to
perform software engineering experiments. One
of the most significant factors hindering soft-
ware engineering research is the capability of
conducting controlled experiments on realistic
nrojects. This sequence of courses should provide
an ideal test bed for these types of experiments.
Thus, the sequence of software engineering
courses described in this paper can potentially
be advantageous to the software engineering
community.

References

Fage81 Fagenbaum, J., "A New Breed: The
Software Engineer," IEEE Spectrum 18, 9
(September 1981), 62-66.

Fairley, R. E., "Educational Issues in
Software Engineering," Proc. ACM 1978
Annu. Conf., 58-62.

Fair78

Free78

Free80

Gane79

lioff78

Jack75

Jens79

Kant81

Kope80

Lien78

McC181

iletz81

Myer75

Myer79

Rama78

Reif79

Stuc78

Wein80

Freeman, P., "A Proposed Curriculum for Yeh77
Software Engineering Education," Proc.

3rd Inter. Conf. on Soft. Eng., 56-62.

Freeman, P., and Yasserman, A. I.,
Tutorial on Software Design Techniques,
IEEE Computer Society, New York, N.Y.,
19380.

Yeh77

Gane, C., and Sarson, T. Structured
System Analysis: Tools and Techniques,
Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1979.

Your79

Hoffman, A. A. J., "A Proposed Master's
Degree in Software Engineering," Proc.
ACHM 1978 Annu. Conf., 54-61.

Jackson, M. A., Principles of Program
Design, Academic Press, New York, N.Y.,
1975.

Jensen, R. W., and Tonies, C. C.,
Software Engineering, Prentice-Hall,
Inc., Englewood C1iffs, N.J., 1979.

Kant, E., "A Semester Course in
Software Engineering,”" Software Eng.
Notes 6, 4 (August 1981), 52-76.
Kopetz, H., Software Reliability,
Springer-Verlag, 1980.

Lientz, B., Swanson, E., and Tompkins,
G., "Characteristics of Application
Software Maintenance," CACM 21, No. 6
(June 1978)

McClure, C. L., ifanaging Software
Development and Maintenance, Van
Nostrand Reinhold Company, 1981.

Metzger, P. l., Managing a Programming
Project, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1981,

Myers, G. J., Reliable Softuare Through
Composite Design, Petrocelli/Charter,
New York, N.Y., 1975,

Myers, G. J., The Art of Software
Testing, John Wiley and Sons, 1979.

Ramamoorthy, C. V., and Yeh, R. T.,
Tutorial: Software Methodology, IECE
Computer Society, New York, N.Y., 1978.

Reifer, D. d., Tutorial Software
Management, IEEE Computer Society, New
York, N.Y., 1979.

Stucki, L. G., and Peters, L. J., "A
Software Engineering Graduate
Curriculum," Proc. ACM 1978 Annu. Conf.,
63-67.

Weinberg, V., Structured Analysis,
Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1980.

19

Yeh, R. T., Current Trends in
Programming Methodology, Vol. I,
Software Specification and Design,

Prentice-Hall, Inc., Englewood Cliffs,
n.d., 1977,

Yeh, R. T., Current Trends in
Programming Methodology, Vol. II,

Program Validation, Prentice-Hall, Inc.,

Englewood Cliffs, N.J., 1977.

Yourden, E., and Constantine, L. L.,
Structured Design, Fundamentals of a

Discipline of Computer Program and Systems

Design, Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1979.

