
USING AN EFFECTIVE GRADING METHOD
FOR PREVENTING

PLAGIARISM OF PROGRAMMING ASSIGNMENTS

C. Jinshong Hwang
Department of Computer Technology

Purdue University
W. Lafayette, IN 47907

Darryl E. Gibson
Department of Computer Sciences and Mathematics

DePauw University
Greencastle, IN 46135

I. Introduction.

Cheating on programming assignments, it would seem, has become a way of life for
many, and fraudulent misrepresentation of one's credentials for entrance into the
marketplace is increasingly commonplace -- particularly when the monetary and social
rewards are very attractive, or at least perceived as being so. [2,4,5] The computing
industry at present does indeed offer many attractive incentives.

It is not the purpose of this paper to sermonize on the evils of cheating and the
effects of cheating upon the individual character. (We simply assume that cheating on
programming assignments is a highly undesirable practice which has adverse effects
upon the students" prepartation for their later professional performance in the
computing industry.) There are many ways used to prevent plagiarism on programming
assignments. Some of them deal with moral standards, some with cheating policies
(disciplinary) [4,5], some with threats, and some with detection software [1,2,3,6],
but this article deals with grading methods.

The two main purposes of this paper are: i) to discuss four commonly-used
grading methods (which we shall call methods A, B, C, and D) employed with programming
assignments and 2) to present by way of recommendation two experimental methods (which
we shall call methods X and Y) which support our thesis that positive prevention of
cheating on programming assignments through the use of an appropriately-designed
grading method is far more effective than the other approaches in general use.

To accomplish these two purposes we present first (in Section II) a list of the
most common techniques employed by students for cheating on programming assignments, a
list of the most common instructors" responses to this type of cheating, and a brief
discussion of the general seriousness of this type of cheating, not just as a problem
in this country but as a problem of international scope. Section III is devoted to a
discussion of each of the four general methods A, B, C, and D, together with a
description, their advantages and disadvantages, and our conclusion and recommendation
concerning them. In Section IV, we describe the two experimental methods X and Y
which are strongly recommended as grading methods. Finally, in Sections V and VI, we
offer our summary and overall conclusions.

II. Scope and Seriousness of Plagiarism on Programming Assignments.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM0-89791-067-2/82/002/0050 $00.75

It is assumed that preparation
of the student for a career in the
computing industry must include both
factual, theoretical knowledge of
the discipline as well as certain
practical, applied skills. All
educators in the field recognize
this fact, but the relative
proportion of theory to practice
often varies, depending partly upon
the instructor's view of the
relative importance of these two
aspects of discipline, partly upon
whether or not the student is

50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953051.801339&domain=pdf&date_stamp=1982-02-01

actually doing the work, and partly upon the amount of effort an instructor wants to
put into producing a grade (objective-type tests are often easier to grade than
programs). In this paper we are concerned only with the second point: Are the
students actually doing their own work on programming assignments? To what extent can
the instructor trust the students to work independently and honestly on programming
assignments?

Students have devised an assortment of ways for cheating on programming
assignments. Below, are listed several of them:

i. Copying a program by changing only the author's name.

2. Having someone else write all or part of the program.

3. Copying a program given in an earlier class.

4. Copying a program by changing only the line numbers.

5. Copying a program by changing the documentation.

6. Copying a program by changing the logic a little.

7. Copying a program by changing the variable names.

8. Copying a program by changing the logic a lot.

In response to these and other forms of cheating on programming assignments,
several methods have been developed. Some of them emphasize the detection of
violations, while others stress the prevention of cheating. Some methods use negative
reinforcement; others use positive reinforcement.

i. Set up a punishment policy to discourage students from cheating. [4,5] This
method is ineffective, since it is essentially negative. Students can not
be expected to react positively to a negative approach. It can only achieve
minimal results.

2. Set up software detection. [1,3,6] Ingenius, sophisticated techniques have
been created to spot instances of computer plagiarism. It is doubtful that
such methods can be contrived to catch every type of cheating. Such
expensive systems are probably only useful as interesting academic
exercises.

3. Raise the consciousness of the students to understand and appreciate what
they must know in order to obtain a degree in the discipline and later to
function effectively as computing professionals. This is essentially a
positive approach, appealing to the student's higher instincts. But it is
generally ineffective with most students who, although they realize the need
for adequate preparation for their future careers, are nevertheless mainly
interested in the here-and-now matters of passing tests and courses.

4. Inform students that they may be called into the office at any time to
verify what they "claim" to have learned on programming assignments. This
is basically a cynical approach, announcing in a loud and clear voice to the
students that the instructor does not believe or trust them. This method is
ineffective and is apt to invite confrontations with students who are called
upon to defend themselves.

5. Assign grades according to the ratio of programming assignments and exams.
This is the method we support in this paper, believing that positive
prevention is much more effective in the long run than the kinds of
prevention and detection suggested by the other methods. We feel that most
cheating can be prevented in a positive way and that most negative measures
are not only ineffective, but they also breed further mistrust which in turn
interferes with the teaching-learning process.

It is just as difficult for institutions as it is for individuals to admit that
cheating is going on, so we, personally and institutionally, strive continuously to
maintain the faCade of untarnished respectability -- but at what cost? What are the

51

ultimate economic costs, for example, of low per capita productivity in a business or
industry caused by incompetent employees who were hired using fraudulent credentials,
who claimed on their college transcripts that they had taken such and such courses in
computer science or computer technology but who in fact can hardly program or program
well? How much does it cost the company, while the employee learns (on the job) what
should have been learned before the person was hired?

These problems are not unique within this country. Every industrialized country
makes extensive use of computer technology, and many people, the world over, are
attracted similarly to the computing industry by among other things, the promise of
relatively high wages. Hence, the motivation for cheating and the temptation to cheat
on programming assignments at the preparation level is universal.

Much of this problem, certainly not all of it, could be alleviated if we who are
charged with the preparation of future computing professionals could guarantee, to the
extent possible, that our graduates have in fact learned the material and are in fact
competent to step into the marketplace. We can do this only if we can design and
adopt practices which will systemmatically require the students to master both the
theoretical and practical aspects of the discipline. We now turn to a discussion of
several methods used in assigning grades on programming assignments. With each method
we shall offer a brief description, the methods's perceived advantages and
disadvantages in terms of the cheating on programming assignments. Finally, we
present our conclusions and recommendations for dealing with cheating effectively and
positively on programming assignments.

III. General Methods Used to Cope or Not to Cope with Cheating.

A. Exams (including routine quizzes) weighted proportionately heavier than
programming assignments.

For example, exams may be given a weight of 70% and the programming
assignments a weight of 30%.

The instructor may wish to weight exams and programming assignment
approximately equally, but feels that since cheating is going on, a heavier
emphasis on exams will give him more control over the grade-producing
process (which cheating tends to take from him). There are other reasons
for an instructor's placing a heavier emphasis upon exams, but we are
interested only in those which are related to cheating.

Advantage

I. If students do not really understand the
principles involved in the programming
assignments, they cannot do well on the exams,
having a significant number of program-related
questions on them.

Disadvantages

I. Honest students are apt to spend
disproportionately more time on the programming
assignments than on preparing for the exams.

2. Students can concentrate on the text and lecture
notes and, consequently, do well on the exams.
They can pass the course with a minimum of
programming practice.

3. If students happen to have a bad day, they may do
poorly on the exam.

On the positive side, the students have to know the material in order
to do well on the exam. This means that the grades the students receive
should be a true reflection of their work. But when we weigh the negative
results of this method against the positive ones, we find that we cannot
recommend it. The honest students, in a sense, are penalized for working

52

B.

hard to learn programming skills and also by having to take a chance on
having a bad day on the exam, while students weaker in programming can
prepare mainly for the exams and get a high enough score on it to offset
whatever they got on the programs to pass the course--without having learned
any programming skill.

Programming assignments weighted proportionately
(including routine quizzes).

heavier than exams

For example, programming assignments may be given a weight of 70% and exams
a weight of 30%.

The instructor who uses this method probably feels that programming
techniques are relatively more important than theoretical knowledge. This
instructor may also (perhaps naively) feel that he doesn't have a
programming assignment cheating problem in his class.

i.

2.

3.

Advantages

This methods encourages students to learn by
doing. Students are less inclined to write
programs by simply emulating syntax rules.

Programming assignments are often time-consuming.
The grade obtained following this method,
therefore, is proportional to the time and effort
expended.

This method is good for students, if students do
not cheat on programming assignments.

Disadvantages

i. Students can copy programs and pass the course
with minimal work.

2. This method encourages students to copy other
students" programs.

3. This method may encourage better students to
neglect studying the theoretical material.

C.

On the plus side, students are given ample opportunity to develop
programming skills, and the grade received should represent their work. On
the other hand, the better or honest students may end up slighting the
theoretical subjects. The weaker or dishonest students are tempted to copy
the work of others. And since so much of the grade is dependent upon
programming, the incidence of cheating increases as the programming
assignments get harder. We do not recommend this method.

Exams and programming assignments weighted approximately equally.

For example, each might be given a weight of 50%. Clearly, this method is a
compromise between the previous methods. It is an attempt to recognize the
relatively equal importance of theory and practice. This is a widely-used
and accepted model.

I.

Advantage

This method encourages students to approach the
exams and the programming material with equal
seriousness.

53

i.

Disadvantage

If students cheat on the programming assignments,
they can still get an average grade. For example,
if they get only a 40% on the exam but cheat and
get an 100% on their program assignments, their
average is 70%.

D.

Because this method encourages the students to master both the
theoretical and applied aspects of computing, it has a lot going for it.
Still, it is possible to cheat "well enough" on the programs to offset
possible low marks on exams in order to pass the course without learning the
important programming skills.

Final exam used as evidence of what the student has learned.

If the students receive a passing grade on the final exam, they receive the
grade earned throughout the semester; including the final exam grade. If,
however, the students fail the final exam, they fail the course. A failing
grade on the final exam is interpreted as evidence of cheating throughout
the semester.

i.

2.

Advantages

Students will really try to understand the
material in order to do well on the final. This
method encourages students to do programming
assignments regularly.

If the final exam does represent the students"
understanding, this is a good method.

Disadvantages

i. During the final exam period students have many
pressures and distractions from other courses. It
is difficult for students to put their full,
undivided attention on the exam.

2. Students might have a bad day on the exam.
Consequently, all, or most, the time and effort
for a semester could be nullified.

3. If final exam problems do not represent material
fairly, this method can be a disaster.

4. This method has a very high potential for
triggering confrontations between the students and
the teacher, when the exam does not properly test
what was taught and what was learned.

In principle this method sounds like a good one, and it is if the final
exam fairly represents the programs the students were asked to produce
throughout the semester and if the students have a good unobstructed day on
the exam. We have some control over the first condition (although
manufacturing such an exam would be a monumental undertaking), but the
second condition is almost completely out of our hands and to a large extent
out of the hands of the students. If the first condition is not met, and
the exam is not a fair one, we are sure to invite a confrontation with the
students. And if the second condition is also not met, we are putting our
necks on the chopping block. We cannot recommend this particular method of
suicide. Even if the final exam does represent what was taught and what was
learned, an effective grading method for the semester is still desirable.

54

E. Programming Assignment-Related Quiz Associated with
Assignment.

each Programming

This method is similar to method C, in that it also recognizes the
equal value or importance of theory and practice, by assigning approximately
equal weights to each of these areas. This method goes a step further,
however, in providing a concrete mechanism for encouraging students to do
the programming assignments. This method assumes that the students, acting
in their own self-interest, will realize that copying someone else's work
will not prepare them for the programming assignment-related quiz and will,
thus, act accordingly.

The program assignment related quiz, which is given on the due date of
the programming assignment and which normally takes about twenty minutes,
asks the students to reproduce a small segment of the programming assignment
which deals with some particular programming principle, logic and design
involving the completion of programming assignments. There are two
variations of this method which we shall discuss in the next section.

The small programming assignment related quiz should represent the
programming assignment completely. That is, the questions appearing on the
quiz should deal exclusively with the principles and concepts covered in the
programming assignments and that extraneous, non-relevant material should be
avoided. The objective of the quiz is to test the student's knowledge of
the idea behind the programming assignment only. This means that both the
programming assignment and programming assignment-related quiz must be
carefully thought out and correlated one with another.

IV. Experimental and Recommended Methods

Over the past several years we have used some of the general methods described
above (methods A, B, C, and D) with varying degree of success but were never satisfied
that we (or our colleagues) were really in control of the situation, that some of the
most important consideration in the learning processes and in preparing, giving, and
evaluating programming assignments were being overlooked. This dissatisfaction
prompted us to experiment with new methods. This section is devoted to discussing the
two methods which give us a higher measure of assurance that our students are actually
learning the material and upon which we have to base our grading decisions. We shall
refer to these methods as method X and method Y.

In each of these two methods there are two factors to take into account: the
score obtained on the programming assignment and the score on the programming
assignment-related quiz. The "provisional" score is the initial score on the
programming assignment, before it is modified by the score or percentage on the
programming assignment-related quiz. The "actual" score is the final score on the
programming project after the modification.

X. Percentage on programming assignment-related quiz applied to the score
obtained on the programming assignment.

Provisional score on programming assignment
Percentage on programming assignment-related quiz

= Actual score on programming project

For example, there is a total of 100 points possible on a programming
project. If a student gets 80 points (as a provisional score) on the
programming assignment and 90% on the programming assignment-related quiz,
the student's actual score on the project is 72 points:

72 points = 90% X 80 points

Advantages

i. This method encourages the students to do the
programming assignments in order to do well on the
programming assignment-related quizzes.

55

2. The score actually represents the students"
understanding of the programming assignment.

3.

4.

The grade is proportional to the time and effort
expended.

This method offsets the disadvantage of methods C
and D.

Y.

Disadvantages

i. If the students have a bad day, the score will not
represent their true ability.

2. If the programming assignment-related quiz does
not represent the programmng assignment well, the
score does not represent the students" ability.

Even though we have very little control over the kind of day the students
may have on the exam, we do have control over the type of programming
assignments and the associated quizzes we give. If we control these
factors, this method is an excellent one, one which we highly recommend.

Score obtained on the programming assignment-related quiz added to the
provisional score obtained on the programming assignment.

Provisional score on programming assignment
Score on programming assignment-related quiz

= Actual score on programming project

For example, there is a total of 100 points possible on a project, 50 points
for the programming assignment and 50 points for the programming
assignment-related quiz. If the student gets a provisional score of 40
points on the programming assignment and 45 points on the quiz, the
student's actual score on the project is 85 points:

85 points = 45 points + 40 points

Advantages

i. This method encourages the students to do the
programming assignments in order to do well on the
programming assignment quiz.

2. The score actually represents the students"
understanding of the programming assignment.

3. The grade is proportional to the time and effort
expended.

4. This method can offset the disadvantages in method
X to a minimum.

5. This method takes care of all the disadvantages
associated with all the general methods.

6. This method represents the students" grades very
well for all unexpected situations.

7. This method is well accepted by all categories of
students.

56

i.

Disadvantage

This method still has the disadvantages of method
X, but it can offset the disadvantages to a
minimum.

This method is not perfect, but it will take care of the problems
encountered in the discussion of all the previous methods. This is the
method which we most highly recommend according to our experience and
experiment. Students" responses as well as instructors" reaction are very
favorable in method Y.

Comparing each of the grading methods discussed in this paper side by side
reveals some most interesting results. For the sake of this comparison we shall
assume that a student cheats on all programming assignments and receives full credit
for them. We shall also assume, that because the student does not understand the
material, he or she receives only 20% on the exam, quizzes, and so on. With each of
the different methods, he or she will receive the following grades:

Method A 42%
Method B 76%
Method C 60%
Method D 20%
Method X 20%
Method Y 40%

There is indeed a great difference among the grades! We observe that methods B and C
(with grades of 76% and 60%, respectively) allow the dishonest students to pass.
These methods are clearly too lenient on the dishonest students. With methods D and
X, we know that not only the dishonest students but also the honest students are being
penalized unfairly if they have had a bad day. The resulting grades of methods A and
Y are similar, but method A has too many disadvantages. Method Y represents the
compromise among all of the discussed methods: It not ony prevents the dishonest
students from passing and rewards the honest students, but it also contains all of the
advantages of the other methods. Needless to say, we recommend method Y most highly.

V. Grade Distribution Using Method Y

According to the method which we use for grading programming projects, students
turn in their I/O planning, their logic design, as well as other preparation work, at
least one week before the programming assignment is due and the programming
assignment-related quiz is taken. The following is the point distribution for a
typical I00 point project:

Logic design (at least one week earlier)
Programming assignment
Programming assignment-related quiz

(on the due date of the assignment)

20 points
40 points

40 points

i00 points

57

The following is the scheme we use for calculating the final semester grade. It
is based upon a total of 1000 points.

I.

2.

3.

Five programming projects
(50 percent of semester grade) 500 points

Logical design (or walkthrough), 20 points each
Programming assignments, 40 points each
Programming assignment-related quiz, 40 points each
Three exams
Exam I 120 points
Exam II 130 points
Exam III 150 points
Miscellaneous

(exercises, regular quizzes, etc.) i00 points

i000 points

Some adjustments to the above schedule might be necessary, depending upon the
circumstances of the course. This grade distribution system automatically prevents
plagiarism of programming assignments.

VI. Conclusions and Summary.

Cheating on programming assignments is a problem of significant proportions, and
it is one with which computing professionals and educators are rightly concerned. In
an effort to stem the tide of this type of plagiarism, instructors have devised a wide
range of methods for both detecting and preventing cheating. In this paper we have
presented several methods in common use today and have contrasted them with two
experimental methods which we feel respond to the problem in a more positive,
effective manner. It is our contention that positive prevention using a simple,
well-defined grading system is far more productive than the more negative
suspicion-motivated approaches. From our own experience we can report that our
students, both the strong ones and the weaker ones welcome this method, feeling above
all that it is basically fair. This method is not perfect, particularly if the
instructor is careless in designing the programming assignments and the associated
quizzes, but when these are structured properly, we are assured that the students are
learning the material more effectively and that the grades they receive accurately
reflect their level of understanding. We, therefore, enthusiastically recommend these
two methods, especially method Y.

We experimented only two months with method X. During that time we observed that
some students (including the stronger ones) did well on the programming assignments,
but poorly on the programming assignment-related quizzes. Assuming that the stronger
students did indeed understand the material, we concluded that the strong students"
poor performances, at least, were due to the students" having had a bad day or the
programming assignment-related quiz being unable to represent the programming
assignment. We concluded further, that these students in particular, and all the
other students in general, were being inadvertently penalized too severely. We,
therefore, developed method Y.

Our immediate experience with method Y was so successful that we in effect
adopted the method right away. We now have had about a year's experience with it. At
the end of a year we asked 71 students randomly for their personal reactions to the
system. We correlated their responses with their grades which are summarized in the
following table:

58

A B

---i ---I
Strongly favor _5_ _~_

Favor 11 15

Neutral 0 I I

Disfavor _0_I_0

C D F

8 f 4

-o-I-2-
0 3 1 2

16

49

I

5

0

71

Strongly disfavor 0_I 0 I 0 0 0

16 21 15 13 6

From the table it can be seen that those who favored the system most strongly had
received the highest grades, and, conversely, those who disfavored the system most
strongly had received the lowest marks.

An additional benefit from method Y is by having everyone take the quiz at the
same time. Students are discouraged from procrastinating with their programming
assignments. When everyone turns their work in on time, the chances are improved that
their work will be evaluated more uniformly.

Finally, after a year's experience with method Y we can say that there is
virtually n__oo more plagiarism on programming assignments in our programming courses!
This is a strong statement, we know, but private conversations with students, along
with all other objective measuring methods at our disposal support this fact.
Students respond overwhelmingly and affirmatively that it is a fair and equitable
system.

VI. References

(1)

(2)

(3)

(4)

(5)

(6)

Sam Grier, "A Tool that Detects Plagiarism in Pascal Programs",
ACM SIGCSE Bulletin, Vol. 13, No. I, February 1981.

K. J. Ottenstein, "An Algorithmic Approach to the Detection and
Prevention of Plagiarism", ACM SIGCSE Bulletin, Vol. 8, No. 4,
Dec. 1976.

John L. Donaldson, et al, "A Plagiarism Detection System", ACM
SIGCSE Bulletin, Vol. 13, No. i, February 1981.

M. Shaw, et al, "Cheating Policy in a Computer Science
Department", ACM SIGCSE Bulletin, Vol. 12, No. 2, July 1980.

William Dodrill, et al, "Plagiarism in Computer Sciences
Courses", ACM SIGCSE Bulletin, Vol. 13, No. i, February 1981.

S. Robinson, et al, "An Instructional Aid for Student Programs",
ACM SIGCSE Bulletin, Vol. 12, No. i, February 1980.

59

