Check for
Updates

STRUCTURED ASSEMBLY
LANGUAGE PROGRAMMING

Dr. Robert N. Cook
Univ. of Southern Colorado

Pueblo,

Introduction

For those of us who are essentially high level
programmers, the intricacies and lack of structure
in assembly language programs are often an in-
surmountable barrier to effective assembly
language programming. This paper attempts to show
a way to overcome this barrier. Structured
pseudocode is used to solve the problem just as if
the solution were to be coded in PL/I, PASCAL,
ADA, or some other structured high level language.
Then the structured pseudocode is "compiled" into
assembly language using appropriate labels to show
the structure of the assembly language program.
Formal roles for the "compilation" are not given
in the paper. Instead, the various control
structures are demonstrated in BAL along with the
corresponding pseudocode. Branch instructions
abound, of course, as they must in any assembly
language program. The readability of the program,
though, is immensely increased by good statement
labels. By using a header, and perhaps even in-
cluding the pseudocode in the program through
comments, the program can be made readable even to
non-assembly language programmers. Assignment
statements in the assembly language are commented
to show the equivalent high level statement of the
pseudocode. Then most, if not all, statements in
the assembly language are made readable.

IBM BAL is used to demonstrate the concepts in the
paper; however, the techniques are adaptable to
any assembly language. The remainder of the paper
details the technique for the fundamental control
structures, other control structures, and assign-
ment statements. Other documentation techniques
to increase readability are discussed, and a com-
plete program is given to document the techniques.
A1l techniques discussed are those taught to
students in CST 210--Assembly Language Program-
ming, at the University of Southern Colorado.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-067-2/82/002/0193 $00.75

co

193

81001

Fundamental Control Structures

The three fundamental control structures of
sequential execution, alternation, and Tooping
are described here using pseudocode and BAL. One
of the easier looping structures to implement in
BAL is the DO WHILE DATA AVAILABLE. Pseudocode
for this structure is

DO WHILE DATA AVAILABLE
GET A,B,C,D

PROCESS DATA

PUT A,B,C,D,X.:.
END DO.

As the usual two GET statements are not necessary,
in BAL, they are not used in the pseudocode. To

implement this structure, these BAL statements
may be used

IN DTFCD DEVADDR=SYSRDR,
EOFADDR=ENDDO, ...
DEVADDR=SYSLST, ...

ouT DTFPR

DOWHILE GET IN, INAREA GET A,B,C,D

PROCESS DATA

PUT O0UT, OUTAREA PUT A,B,C,D,X

B DOWHILE
ENDDO NOP ENDDO

For those not familiar with the details of BAL, a
few remarks on this example are in order. Note
first that the structure of the pseudocode is
clearly visible in the BAL statement. Contrast
this with the usual method employed, where the GET
would be labeled LOOP. This certainly shows the
beginning of the Tloop; but where is the end of the
loop? The B DOWHILE is the statement that creates

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953051.801367&domain=pdf&date_stamp=1982-02-01

An unconditional branch to DOWHILE
But

the Toop.
occurs whenever this statement is reached.
what stops the loop? The DTFCD macro entry
EOFADDR=ENDDO specifies the address to which the
program branches when an end of file condition oc-
curs on file IN. Details of the storage associated
with the GET and PUT macros may be seen in the
program example in the Appendix.

Another familiar DO WHILE statement in pseudocode
form is

DO WHILE A < B

BODY OF LOOP

END DO.

Assuming that A and B contain packed decimal num-
bers, this pseudocode may be implemented in BAL
using the Compare Packed instruction.

DOWHILE cp A,B A<B
BH ENDDO
N
BODY OF Loop
B DOWHILE
ENDDO NOP ENDDO

The BH instruction branches to ENDDO if A > B.
Again, notice the readability of the structure.

The No Operation may appear somewhat strange in the
previous two BAL segments. Even though it does not
generate any executable code, it must have an
operand field to avoid a syntax error. The state-
ment label (ENDDQ) of the NOP instruction provides
this operand to avoid the syntax error.

Alternation may be accomplished in BAL using simi-
lar techniques. For example, the pseudocode

IFX=Y
THEN

ELSE

ENDIF

assuming that X and Y contain packed decimal
numbers, may be implemented in BAL as

194

IF cp X,Y X=Y
BE THEN
B ELSE
THEN .
X =Y CLAUSE
B ENDIF
ELSE
X # Y CLAUSE
ENDIF NOP ENDIF.

Notice the B ENDIF statement at the end of the
THEN clause. This statement insures that the THEN
and ELSE clauses are not both executed by branch-
ing over the ELSE clause to ENDIF when the THEN
clause is reached.

An objection to this implementation might be that
it uses one more branch instruction than the
"unstructured" BAL program would. A shorter
implementation is then

IF cp X,Y X=Y
BNE ELSE
THEN
X =Y CLAUSE
B ENDIF
ELSE
X # Y CLAUSE
ENDIF NOP ENDIF.

This implementation is no longer than the un-
structured version except for the NOP instruction.
As with the ENDDO, this ENDIF label serves to
delimit the control structure and greatly increase
the readability of the BAL program.

If the ELSE clause is not present, the BAL imple-
mentation becomes

IF Cp XY X=Y
BNE ENDIF

THEN .

ENDIF NOP ENDIF

or

IF cp X, Y X=Y
BE THEN
B ENDIF

THEN .

ENDIF NOP ENDIF

The choice between the above forms is left to the
student. The two branch method is easier for most
students to understand. For those who think that
the two branch method is inefficient, the sinale
branch method is available. In either case, the
resulting code is readable.

What happens when more than one IF THEN ELSE ENDIF
structure appears in a program? Certainly, other
labels are needed to avoid duplicate statement
labels. What about nested IF THEN structures?
This pseudocode

IF A<B
THEN IFB<C
THEN
ELSE
ENDIF
ELSE IFC<D
THEN
ELSE
ENDIF
ENDIF
may be implemented in BAL as
IF cP A,B A<B
BNH ELSE
THEN CP B,C
IF1 BNH ELSE1 B<C
A<B,B<C
B ENDIF1
ELSEL .
A<B,BzC
ENDIF1 NOP ENDIF1
B ENDIF
ELSE cpP C,D C<D
IF2 BNH ENDIF2
THEN2 .
A2B, <D
B ENDIF2
ELSE2
Az2B,Cz20D
ENDIF2 NOP ENDIF2
ENDIF NOP ENDIF.

195

Certainly, this BAL is more difficult to follow
than previous examples, but the high level con-
trol structures are still visible. Contrast this
example with this equivalent BAL code

P A,B
BNH X
P B,C
BNH Y
B p

Y)
B p

X ¢c C,D
BNH- P
B p

p

Which of the last two examples do you think a
student is more 1ikely to get working? While the
first example may be tedious to follow, the
second equivalent example is certainly more dif-
ficult to follow.

Assignment statements need only be properly com-
mented to assure their readability. For example,
the pseudocode

X=(A+B) *(C/D

may be written in BAL

ZAP X,A X=A

AP X,B X=A+B8B

MP X,C X=(A+B) *C
DpP X,D X=(A+B)*C/D

The evolving assignment statement is shown in the
comment field to completely document the BAL
statements. Details of the Define Constant state-
ments associated with the packed decimal instruc-
tions may be seen in the program in the Appendix.

Other Control Structures

While the set of control structures shown so far
is a sufficient set to write any program, other
control structures are useful. The REPEAT UNTIL,
CASE, and iterated DO are shown here. The PASCAL-
1ike REPEAT UNTIL structure in pseudocode form is

REPEAT

UNTIL A = B

In BAL we have

REPEAT NOP REPEAT
BODY OF LOOP
cp A,B
UNTIL BNE REPEAT A =B,

Again, the beginning and the end of the loop are
both clearly visible to make a readable BAL pro-
gram.

A CASE structure is shown by the pseudocode

BEGIN CASE
CASEA =0

CASE A <O
CASE A > 0

END CASE.

In BAL we might have this implementation

BEGINCASE ZAP X,A
BZ CASED
BM CASELTP
BP CASEGT®
CASEQ A=0
B ENDCASE
CASELTP . A<O
B ENDCASE
CASEGT® . A>0
ENDCASE NOP ENDCASE.

The structure of this code is clearly shown by the
statement labels and the comment fields.

The iterated DO structure is also easily imple-
mented in BAL. For example, if the pseudocode is

DO I =1TO0 75 BY 2

ENDDO

196

The BAL implementation might be
L 6, =F'1" R6 =1 T0 75 BY 2
DO C 6, =F'75'
BH ENDDO
A 6, =F'2'
B DO
ENDDO NOP ENDDO

An advantage of the pseudocode approach is that
any known high level structure may be used in
pseudocode. Whatever structures are preferred may
be implemented in BAL. Thus, in problem solving
students are not limited to the structures of any
past, present, or future high level language. For
example, the structure below could well replace
the case structure of a previous example

IFA=0
THEN
ELSE1 A <O
ELSE2 A > 0O
ENDIF.
The BAL implementation is straightforward
IF ZAP X,A
BZ THEN
BM ELSE1
BP ELSE2
THEN . A=0
B ENDIF
ELSE1 . A<Q
B ENDIF
ELSE? . A>0
ENDIF NOP ENDIF.

This is easier for some students to follow than

the case structure. Thus, absolutely any useful
structure can be used in problem solving and then
implemented in a readable way in BAL or another
assembly language. In addition to control
structures, other documentation standards are used
to improve readability.

Other Documentation Standards

A most important inclusion in any proqram is a
header to explain the purpose of the program.
Simple programs only require a line or two to
briefly describe what the program does. The
pseudocode itself may be included as comments at
the top of the program in order to document the
program. Both the input and output formats may be
described. An appropriate place to describe these
formats is where they are declared. Interior com-
ments in the program are, for the most part,
unnecessary. The structure stands out enough to
make the program readable without separate comment
Tines.

A1l of these documentation techniques are illus-
trated in the sample program included in the
Appendix. This program is self-documenting. Its
purpose and flow of control are easy to follow
even for readers who do not know BAL.

Summary and Conclusions

By solving the problem first using structured
pseudocode and them "compiling" the pseudocode
into assembly language, students can write read-
able self-documenting programs beginning with
their first simple assignments. As the problems
become more complex, the advantages of the
approach described here become even more obvious.
A side benefit is the availability of absolutely
any control structure in the pseudocode. Students
are not restricted to the structures of any single
high level language.

Previous to taking assembly language, it is ex-
tremely useful, but not absolutely necessary, if
the students have taken an introductory course
using the pseudocode approach to problem solving.
If they have never seen any of the pseudocode
structures before, they must learn pseudocode and
BAL at the same time. Most students do, in fact,
accept this approach readily, perhaps because it
makes it much easier for me and the consultants to
help them debug their programs. This approach
minimizes the number of runs it takes to produce a
working program. In addition to assembly language
this approach of pseudocoding the solution and
then manufacturing appropriate control structures
can be applied to any high level language such as
FORTRAN or BASIC that lacks some useful control
structures (for example see reference 3).

In conclusion, I would urge prospective authors
and editors of BAL textbooks to consider using
this approach in your books. The resulting books
will be greatly enhanced and perhaps even more
marketable.

Acknowledgements

I would 1ike to thank my students for their feed-
back while I have been evolving this approach to
teaching assembly language. In particular I would
like to thank Ms. Kris Payte, who wrote the sample
BAL program in the Appendix. Comments of the
reviewers of this paper are gratefully
acknowledged.

References

1. IBM Corporation, "System 370 Principles of
Operation."”

2. Yarmish and Yarmish, Assembly Language
Fundamentals, Addison-Wesley, 1979.

3. Cook, Robert N., "Structured Programming
Using BASIC," SIGCSE Bulletin, Vol. 12, No. 1,
(Presented at Eleventh Annual SIGCSE Sympo-
sium).

i3

12.14

CNS/VSE ASS¥MALTE

JRTE STATEMENT

sou

STMT

ADDR 2

3638 3 40 % 3¢ 3¢)

#* & ¥ it 154

#00Z # Ve e 4

FYOEY . TS b (AN b < - -

¥ ro.x i v S T [e] g - O & -

St SV g E - - o "4 < — s bl

e Lot e 3] it - N [°% <z = <3 cix vi

HO o de 4 [t [E U I + O g + ko o.n .

PRTRE E o SO O D - T > = P

* a3 # * <k Gt - OO T a OO jale - -

L D> i V3 > O Cg = Qe rbme ppew T .

#CTLE] ColmT0 v v cuio o @ oo m

% W 8 % < drgda e O N - (S L 7 - Uiy

¥ LT % H [s < Jm At ®=v g > LWe 1 > ¥ o P

FS VT S O OLLDOC T ViadTL N all vidg® ol Via* o (T -

#ell =i 3 Q. 1R a2 e LS [e I Wooh> et el .

#U g 4 o [0 ol o o] o Sl Sl Y o < LIV e a0 W Az o W v W

e % TEZZNZZEITZ VI LU e] W T WD usuD =z v

H el b 3 [e e D e Lt e L B = X U L35 7« 5 S N o DU B iy XD DT>z W [iy o8}

TH 3 L PQRRPRRQRR <O OL el I LLNG HOC OO0 o A

e % # v Coeanancsaoae ViFaoaoalW av Wz vy LED EEa Qo ol

FANC 4 Lol

% Woed ¥ =

¥ > 3]

eI % % C (%

O AR H X =

< F < =

%7 g% 3 [

e L I W Q < 28]

* v B +* -t QO = Ce -

W LS <, o e, [

TOliondt # wy A it PR o) <

#Opr% # >C > =

wZR - C - D - o

s O > e § g

de T4 W [¥ P) [V [V} <%

PEOC ¢ # (751 Mg R) >JA~U -

e Q% % it al’al"s sve >

o RIZ A N 1 2D [

#*OULH A R D e D10 < o N

#* G #* % > ® N0l o W - + +

OB R 3] Q>UA:DK<A Lot < L > >

O g gt [T RD=AY, - Bt R Y. | ax) o -1 < -

* < 3 % [SIE N 1 EET WL SUT A LS -8 - c ks o oo

O, s W T A AP e n LD Cly — o e Z [y) Y 2)

#ES ¥ ® - ludae [T) VUL r:..\,..\,RQ.S - Qi ZJx’ ~ - DE . L)

eI W F LWL et B s I MM AAYX YUY Ty I Cm o TS~ o

#TgasH #* S e U v 0 < ZEZZ0OZ2200Z Wudp. »0O0 Gy Orip-¢) V) Nt b «l

Wptr e e =TT 2 vu AU ALY ¢ w2l -0 DADT N O O iUl ZE D el

OJdH F U O W i beowddedd ol S LN e s > Qe e0mnd> SCOZetDd -

WO L et [&TENTT) = TOLATOORTYIN ZZ evnde Z2Z egp.oe ol Pt ZZ v m oL e e el (D

#LXVNFUT LT & (13 Ord 2o ® oo rse e et e P AT D 0 poe X bt e LI = D e bt - X0 & T U

W0 H R e Qe & L LT S PN T e Y el DB NN RAGF Oy 2 N0 E S 3 COR G- e

¥* ww R aac Zovds e ZODTODDIIDTD FZUNSCHAINDO ACEZ L SnnA 0 IQZI0< LT Z

MSAIM Ci Lan roagy 2 -t OO OROUGH ~—Caoo oo adC OOty as CLOOULCOUWE D
- WO

#* T H O | el (4] JLH]

el R T ZiL WK < X ¥ X X ¥ ;

L i 4k [S ST UM ol ol el sl il e i ad L LU ST 186) O aeNpe b ANy QU Qo=

*TZ Vs G <, CDOITODDIODITIDD RGO b dae0 223232 Oadala>>> >>5000 -

Wb O% O 3% v, o CccaQananan OO0 oUM DI 2 IO OIDEITITAOIT I IO LY

3* #* 4F

¥* * ¥

L LI tir

* +* #* - —

* #* z b — —t uu fo)

3 * — I < L 4 1 .]

s * 3 [0 4 w Vo~ [T) oo o

#* L W o u I -~u. T - P-4 4

LA E A SRR RS EEEEEEESEEEEE NN #a 3F * 0 L (1AL Lo i wu #0

—HAMNM TN O TSN OGN 0T C i FUNND - O C i P N G TN OO O O P DO OO HN O DO O NN F IO MO G C i P 00 C O gt
et et gt o et et e A O VN O NI NN N N T TN O SO O P QC 2 GO0 bt e bt o O OG CLOS N QTN I QIO MO 0N N N 0O LN
e v ot] s e et b o e el el el e et el et ol et ek e ek g e £ el et it e el e bt

Mo N0y o gt
QUTMEN A ARG
NN DIDINMAIN
ODOOCC GOCCCC
QUOOCEH OACOHO

e i gMin
CANNAOT OO
DNENN aeIn
COOoOOC Coo
COCOOC OO0

n0062
02520

198

PAG

ADDR2 STMT SOUACE STATEMENT DNS/VSE ASSEMBLEP 12.14 8
? %
%21 *********#*****##v*1##*#*#****#***#*****##*#*#**##*****t*#*###********
154 % N LENGTH DEFINTTIC
155 *****#******#*ﬂ#* %%k ok #*#*****¢**#*##*****#***###************#*#****
156 *
157 IN nTECD DT YS DR, %
[SE *
nRAa, *
Ty *
v *
IxUns
178 TNA DS
179 %
189 INARSA DS
181 ng
182 SALND s
183 SAL A%
184 AmT ng
185 ng
Re *
187 %o v ol ok e o ok o ookl e ool ook o ok o Rk o ol ok ot ok o s ook o o o o ool o o o e koo ok e oK ok Xl 3k o ok R o st o e ke
188 % WIPUT LENGTH DFEFINTT IONS *
130 kol ko ook dk kool o ool o ook o X 3 ke o sk ook o kel o e ol o ko e ko e o oo ek el ook ok okl e ke ook ke e ek
190 *
191 LT DTFPR DEVADDR=SYSLST, *
1CAREAL=TUT AL *
BLKSTZT=132, *
WORKA=YFS,, *
QE CFORM= FIXUNB
a¢TA s cLI3
3
TUTAREA DS aCL132
Nt Crav s
psALMG RS CLs
N CLse
npaY ns CL&
ald ¢use
nanT ng cL4
pe LI
AACK oS i3
ale ¢Licot

#*
******#******#*##*»*****##*******#####***#*#*#*#*********#********#*#*
* BREACGER LIAES *
******#*k#*##*#********##t#*****#***#*%***#**#********##*#*******#t***
*

HEACTEL DO CL132? SALESHAN SALARY AND EINUS-

HEADERD DC CL132t SAL¥SMON AMIUNT ¢

HEABERT NC CL132' ~NUMBSR SALAnY SALD PINUS®

*

Wk ek K e R e gk ek e e ek ook ke e ol ol ok ****‘*********#****##********#**t*#******

* PACKED AREA DEFINITIO
*****#**##*****#*******#*****#**#*****###t********t*v

A Aol ko ook ook o kk 3k
*

NN NI MM IR AN TR VI NN PINIII NI NI NI N N NN UMM N PO NN PN NI NI N

AN AANIN L DD DL P DD P PRI 500 NNINININININI I NN bt ot st st o et o 1t
SONNIUL SN0 DI PIAP BNV S0P NH NN 00N TS W N~ 00D NH W

PRRSALE NS L4 BIG BINYS SALF DVER 5CCC
DREALE DS PL4 BONUS SELEAVER 1€CO
PSAL 1% PL3 L Em AN S SAL ar Y
PANT ng PL3 AMOUNT 2F SALES
PERON ne PLA SMALL BINUS =$100
DBRCN rg PL4 BIG BONUS =$2C0
e e ofe 2k e vie ok oo e oo e ok e o e afe ok ofe st e ol ofe o o oo o o i o ol o o oot o e o ol e o o ol ot ot ok o o ook R e ok Rkt ok
* SPACT NIFINITICNS FNR ATHER VAQRIABLES
EREFERAREXFRRG DR S R Fh AL SRR b bk R ek Tk ke k kR kR Rk ko kR kR kX
E3
ARSALE ng g1 50008
R SALE ¢ €r100
BECN 0c £+ 5599
SALM RE €10109"

N 2¢ £1yFSi

N n¢ € ACr

BLANKS Pr CL132"

00799 ERD RIGIN

=C? $§SEP TN 1
=Cv 4BCLOSEY
=A(CUT)
=R (ELANKS)

199

DIAGNASTIZS e&ND STATISTICS

NOY FRRORS FOUND
THE FOLLOWING MACRD NAMES HAVFE BEEMN FOUND IN MACR. INSTRUCTIONS
0P EN PUT ET cLnsE =04 NYECD DYFPR
CPTIONS FOR THIS aSSEMBLY — ALIGN, LIST, MAXREF, LINK, NOPLD, NANYCK, NOFORECK
THE ASSEMBLER WAS RUN IN €%416 BYTTS
END OF ASSEMBLY

SALESMAN SALARY AND RINUS

SALESMAN AMOUNT
NUMBER SALARY SALD BAMUS
1234 800 5C0 N7
1235 600 66 ND
1235 400 8rd N
1237 1900 2000 YS$
1238 1099 4900 YIS
9364 0525 8070 ¥iS

200

