STRUCTURED ASSEMBLY LANGUAGE PROGRAMMING

Dr. Robert N. Cook Univ. of Southern Colorado Pueblo, CO 81001

Introduction

For those of us who are essentially high level programmers, the intricacies and lack of structure in assembly language programs are often an insurmountable barrier to effective assembly language programming. This paper attempts to show a way to overcome this barrier. Structured pseudocode is used to solve the problem just as if the solution were to be coded in PL/I, PASCAL, ADA, or some other structured high level language. Then the structured pseudocode is "compiled" into assembly language using appropriate labels to show the structure of the assembly language program. Formal roles for the "compilation" are not given in the paper. Instead, the various control structures are demonstrated in BAL along with the corresponding pseudocode. Branch instructions abound, of course, as they must in any assembly language program. The readability of the program, though, is immensely increased by good statement labels. By using a header, and perhaps even including the pseudocode in the program through comments, the program can be made readable even to non-assembly language programmers. Assignment statements in the assembly language are commented to show the equivalent high level statement of the pseudocode. Then most, if not all, statements in the assembly language are made readable.

IBM BAL is used to demonstrate the concepts in the paper; however, the techniques are adaptable to any assembly language. The remainder of the paper details the technique for the fundamental control structures, other control structures, and assignment statements. Other documentation techniques to increase readability are discussed, and a com-plete program is given to document the techniques. All techniques discussed are those taught to students in CST 210--Assembly Language Programming, at the University of Southern Colorado.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

1982 ACM 0-89791-067-2/82/002/0193 \$00.75 C

Fundamental Control Structures

The three fundamental control structures of sequential execution, alternation, and looping are described here using pseudocode and BAL. One of the easier looping structures to implement in BAL is the DO WHILE DATA AVAILABLE. Pseudocode for this structure is

D

As the usual two GET statements are not necessary, in BAL, they are not used in the pseudocode. To implement this structure, these BAL statements may be used

IN	DTFCD	DEVADDR=SYSRDR,
OUT	DTFPR	DEVADDR=SYSLST,
DOWHILE	GET	IN, INAREA GET A,B,C,D
	; }	PROCESS DATA
ENDDO	PUT B NOP	OUT, OUTAREA PUT A,B,C,D, DOWHILE ENDDO
	•	

For those not familiar with the details of BAL, a few remarks on this example are in order. Note first that the structure of the pseudocode is clearly visible in the BAL statement. Contrast this with the usual method employed, where the GET would be labeled LOOP. This certainly shows the beginning of the loop; but where is the end of the loop? The B DOWHILE is the statement that creates

the loop. An unconditional branch to DOWHILE occurs whenever this statement is reached. But what stops the loop? The DTFCD macro entry EOFADDR=ENDDO specifies the address to which the program branches when an end of file condition occurs on file IN. Details of the storage associated with the GET and PUT macros may be seen in the program example in the Appendix.

Another familiar DO WHILE statement in pseudocode form is

Assuming that A and B contain packed decimal numbers, this pseudocode may be implemented in BAL using the Compare Packed instruction.

The BH instruction branches to ENDDO if A > B. Again, notice the readability of the structure. The No Operation may appear somewhat strange in the previous two BAL segments. Even though it does not generate any executable code, it must have an operand field to avoid a syntax error. The statement label (ENDDO) of the NOP instruction provides this operand to avoid the syntax error.

Alternation may be accomplished in BAL using similar techniques. For example, the pseudocode

assuming that X and Y contain packed decimal numbers, may be implemented in BAL as

Notice the B ENDIF statement at the end of the THEN clause. This statement insures that the THEN and ELSE clauses are not both executed by branching over the ELSE clause to ENDIF when the THEN clause is reached.

An objection to this implementation might be that it uses one more branch instruction than the "unstructured" BAL program would. A shorter implementation is then

This implementation is no longer than the unstructured version except for the NOP instruction. As with the ENDDO, this ENDIF label serves to delimit the control structure and greatly increase the readability of the BAL program.

If the ELSE clause is not present, the BAL implementation becomes

	IF	CP BNE	X,Y ENDIF	X = Y
	THEN	•		
		•		
	ENDIF	NOP	ENDIF	
or				
	IF	CP BE	X,Y THEN ENDIE	X = Y
	THEN	•	ENDIT	
	ENDIF	NOP	ENDIF	
	ENDIF	NOP	ENDIF	

The choice between the above forms is left to the student. The two branch method is easier for most students to understand. For those who think that the two branch method is inefficient, the single branch method is available. In either case, the resulting code is readable.

What happens when more than one IF THEN ELSE ENDIF structure appears in a program? Certainly, other labels are needed to avoid duplicate statement labels. What about nested IF THEN structures? This pseudocode

ΙF A < B IF B < CTHEN THEN . . . ELSE ٠ . ENDIF ELSE IF C < DTHEN . • . ELSE ٠ . ENDIF

ENDIF

may be implemented in BAL as

IF	СР	A,B A < B
THEN		R C
IF1	BNH	FISE1 B < C
1, 1		
		A < B, B < C
	В	ENDIF1
ELSE1		
	. >	A < B, B ≥ C
	:	
ENDIF1	NOP	ENDIF1
	В	ENDIF
ELSE	СР	C,D C < D
IF2	BNH	ENDIF2
THEN2	• }	
	: }	$A \ge B$, C < D
	. 1	
	- 9	
	B	ENDIF2
ELSE2	в	ENDIF2
ELSE2	B 	ENDIF2 A \geq B, C \geq D
ELSE2	B · · · · · · · · · · · · · · · · · · ·	ENDIF2 $A \ge B, C \ge D$
ELSE2	B B B B B B B B B B B B B B B B B B B	ENDIF2 A ≥ B, C ≥ D ENDIF2 ENDIF

Certainly, this BAL is more difficult to follow than previous examples, but the high level control structures are still visible. Contrast this example with this equivalent BAL code

Y

χ

Ρ

Which of the last two examples do you think a student is more likely to get working? While the first example may be tedious to follow, the second equivalent example is certainly more difficult to follow.

Assignment statements need only be properly commented to assure their readability. For example, the pseudocode

X = (A + B) * C/D

may be written in BAL

ZAP	Х,А	X = A
AP	Х,В	X = A + B
MP	X,C	X = (A + B) * C
DP	X.D	X = (A + B) * C/D

The evolving assignment statement is shown in the comment field to completely document the BAL statements. Details of the Define Constant statements associated with the packed decimal instructions may be seen in the program in the Appendix.

Other Control Structures

While the set of control structures shown so far is a sufficient set to write any program, other control structures are useful. The REPEAT UNTIL, CASE, and iterated DO are shown here. The PASCALlike REPEAT UNTIL structure in pseudocode form is

In BAL we have

REPEAT NOP REPEAT ... BODY OF LOOP ... CP A,B UNTIL BNE REPEAT A = B.

Again, the beginning and the end of the loop are both clearly visible to make a readable BAL program.

A CASE structure is shown by the pseudocode

BEGIN CASE CASE A = 0 . . CASE A < 0 . . CASE A > 0 . .

END CASE.

In BAL we might have this implementation

BEGINCASE	ZAP BZ BM	X,A CASEØ CASELTØ	
CASEØ	вр	LASEGIØ	A = 0
	•		
	В	ENDCASE	
CASELTØ	•		A < 0
	•		
	B	ENDCASE	
CASEGTØ		ENDOADE	A > 0
	•		
	•		
ENDCASE	NOP	ENDCASE.	

The structure of this code is clearly shown by the statement labels and the comment fields.

The iterated DO structure is also easily implemented in BAL. For example, if the pseudocode is

DO I = 1 TO 75 BY 2 . . ENDDO The BAL implementation might be

An advantage of the pseudocode approach is that any known high level structure may be used in pseudocode. Whatever structures are preferred may be implemented in BAL. Thus, in problem solving students are not limited to the structures of any past, present, or future high level language. For example, the structure below could well replace the case structure of a previous example

IF A = THEN	: ()	
•			
•			
•			
ELSE1	А	<	0
•			
•			
•			
ELSE2	А	>	0
•			
•			
•			
ENDIF.			

The BAL implementation is straightforward

IF	ZAP BZ BM BP	X,A THEN ELSE1 ELSE2	
THEN			A = 0
ELSE1	B	ENDIF	A < 0
ELSE2	В	ENDIF	A > 0
ENDIF	NOP	ENDIF.	

This is easier for some students to follow than the case structure. Thus, absolutely any useful structure can be used in problem solving and then implemented in a readable way in BAL or another assembly language. In addition to control structures, other documentation standards are used to improve readability.

Other Documentation Standards

A most important inclusion in any program is a header to explain the purpose of the program. Simple programs only require a line or two to briefly describe what the program does. The pseudocode itself may be included as comments at the top of the program in order to document the program. Both the input and output formats may be described. An appropriate place to describe these formats is where they are declared. Interior comments in the program are, for the most part, unnecessary. The structure stands out enough to make the program readable without separate comment lines.

All of these documentation techniques are illustrated in the sample program included in the Appendix. This program is self-documenting. Its purpose and flow of control are easy to follow even for readers who do not know BAL.

Summary and Conclusions

By solving the problem first using structured pseudocode and them "compiling" the pseudocode into assembly language, students can write readable self-documenting programs beginning with their first simple assignments. As the problems become more complex, the advantages of the approach described here become even more obvious. A side benefit is the availability of absolutely any control structure in the pseudocode. Students are not restricted to the structures of any single high level language.

Previous to taking assembly language, it is extremely useful, but not absolutely necessary, if the students have taken an introductory course using the pseudocode approach to problem solving. If they have never seen any of the pseudocode structures before, they must learn pseudocode and BAL at the same time. Most students do, in fact, accept this approach readily, perhaps because it makes it much easier for me and the consultants to help them debug their programs. This approach minimizes the number of runs it takes to produce a working program. In addition to assembly language this approach of pseudocoding the solution and then manufacturing appropriate control structures can be applied to any high level language such as FORTRAN or BASIC that lacks some useful control structures (for example see reference 3).

In conclusion, I would urge prospective authors and editors of BAL textbooks to consider using this approach in your books. The resulting books will be greatly enhanced and perhaps even more marketable.

Acknowledgements

I would like to thank my students for their feedback while I have been evolving this approach to teaching assembly language. In particular I would like to thank Ms. Kris Payte, who wrote the sample BAL program in the Appendix. Comments of the reviewers of this paper are gratefully acknowledged.

References

- IBM Corporation, "System 370 Principles of 1. Operation.'
- 2. Yarmish and Yarmish, Assembly Language
- Fundamentals, Addison-Wesley, 1979. Cook, Robert N., "Structured Programming Using BASIC," <u>SIGCSE Bulletin</u>, Vol. 12, No. 1, (Presented at Eleventh Annual SIGCSE Sympo-3. sium).

ADDR 2	STMT	SOURCE	STATE	MENT	DRS/VSE ASSEMBLER 12.14 E
	1234567	* * * * * * * * * * * * * * * * * * * *	****** THIS IT IS ON THI ****** PSfUD *****	**************************************	**************************************
	090112345678901223456 111111111112223456	~~~~		CPENT FILT PRINT HEACERS DOWHILE CATA TX ISTS GET SALND, SALARY, SALE AMOUN IF SALES>=5000 THEN BONUS='YTS' SALARY'SALARY+200 ELST IF SALES>=1000 THEN BONUS='YES' SALARY'SALARY+100 CLSF BONUS='ND' FNDIF FNDIF FNDIF FNDIF FNDIF SALNC, SALARY, AMOUNT, BONUS SND	T
	27	*	PPINT START	NOGEN	
00002	30	BEGIN	BALR UST NG	11,0 *,11	SET UP BASE REGISTER
	24328456628490	•	OPEN PUT PUT PUT PUT PUT PUT PUT	IN, CUT OUT, BLANKS OUT, BLANKS OUT, BLANKS OUT, BLANKS OUT, BLANKS CUT, HFADER2 OUT, HFADER3 OUT, BLANKS	OPEN FILES PRINT BLANK LINF PRINT BLANK LINF PRINT BLANK LINF PRINT FFADER PRINT FFADER PRINT BLANK LINE PRINT COLUMN HEADER PRINT COLUMN HEADER PRINT COLUMN HEADER PRINT BLANK LINF
00203 00207 00204 00532 00536 00536	56 97 103 105 105 1067 108	* DG₩HILE IF	GET MVC PACK PACK PACK CP	IN.INARFA OSALNE,SALNO PSAL,SAL PANT,AMT PBBSALE,BESALE PBSALE,BESALE PAMT,PBBSALE	SALNO, SAL, SAL₹ (MT MOVE SALNO TO PPINT PACK SALARY AMOUNT PACK AMOUNT OF SAL₹ PBBSAL₹=P'1000' SALES=5000'
0053A 00524 0052 00318 0020A 00542	109 110 111 112 113 114 115	THEN	BL PACK AP UNPK MVZ MVC B	-LSS PBBCN,BBCN PBBCN,PSAL OPAY,PBBON OPAY+3(1),OPAY+2 OAMT;AMT DACK,YES ENDIE	PBBON=P *2CO* SALAPY=SALARY+2CO FIX LAST DIGIT MOVE DAMT TO PRINT BONUS=*YES*
00520	117 118 119	ELSE TF1		ËLSË PAMT, PBSALE Fisei	SALFS=1CCC SALFS LESS THAN 1000
00535 00524 00524 00318 00204 00542	121 122 1223 1234 1254	THE N1	PACK AP UNPK MVZ MVC MVC	PSHEN, SBCN PSREN, PSAL CPAY, PSBEN CPAY+3(1), UPYY+2 CAMT, AMT DACK, YES	PSBDN=P+1CO SALARY=SALAPY+1CO FIX LAST DIGIT MOVE DAMT TO PPINT BONUS=YYES+
0020A 00207 00545	127	ELSE1		DANT AMT OPAY,SAL	MOVE DAMT TO PRINT MOVE DPAY TO PRINT BONUS=(NO)
00747	130 131 137	ENDIF1 ENDIF	NCP PUT B	ENDIFI OUT,OUTAREA DOWHILE	PRINT DUTPUT
	138 139 148 151	* NDD 0 *	ELOSE ECJ	IN,CUT	CLOSE THE FILES END DE JOB

•

ADDR 2	STMT	SOURCE	STATE	ENT DOS/VSE ASSEMBLEP 12.14	8
	152 153 154 155	* ********** *	****** INPUT	**************************************	
	156 157	¥ IN	PTECD	DEVADDF=SYSRDR, ICAFEA1=INA, GUFADDR=ENDDO, BLKSIZE=80, WCRKA=YES, RECFORM=FIXUNB	* * * *
	1790 180 181 182 1885 1885	× INAR≂A SALNO SAL AMT		DC L 80 CL 1 CL 4 CL 3 CL 4 CL 68	
	180 187 188 189 190	* * * * * * * *	****** 101720 *****	**************************************	
	212	-UTA	DS	ICAPEAL=OUTA ICAPEAL=OUTA BLKSIZC=132, WORKA=YFS, RECFORM=FIXUNB CTL132	* * *
	213 214 215 216 217 218 220 222 222 222 222	* ПUTAREA D SALND ПРАҮ ПАМТ ПАСК		DCL132 CL4 1 CL4 1 CL5 CL4 CL5 CL4 CL5 CL4 CL5 CL4 CL3 CL3 CL3	
	225	* ******* * *	****** HEADE *****	~~~~~ LINES ************************************	
	228 229 230 231 232	* HEADER1 HEADER3 *	DC DC DC	CLI32' SALFSMAN SALARY AND BONUS- CLI32' SALESMAN AMOUNT' CLI32' NUMBER SALARY SOLD BONUS'	
	233 234 235	* * * * * * * * * * * * * * * * * * * *	****** PACKE ******	**************************************	
	2367 2378 2389 2390 2241 2241 2442 2442	≠ PBBSAL PBSAL PSAL PAMT PSBCN PBBCN ≠	00000000 00000000	PL4 BIG BONUS SALF OVER 5000 PL4 BONUS SALE OVER 5000 PL3 SALESMANS SALARY PL3 AMOUNT OF SALES PL4 SMALL BONUS =\$100 PL4 BIG BONUS =\$200	
	244 245 245	********* * ****	***** SPAC 5 *****	**************************************	
	24890 24890 2551 2551 2554 2554	¥BSALE BSALE BBCN SBCN YES ND BLANKS		C' 5000' C' 1000' C' 0200' C' 0100' C' YFS' C' NC' CL132'	
00000	2557 2557 2558 2559 2559 2559	T	FND	₽₴₲IN = C!\$\$\$80₽%N = C!\$\$8CLC2₽! = A (CUT) = A (CUT)	

•

,

DIAGNOSTICS AND STATISTICS

.

NO FRRORS FOUND

THE FOLLOWING MACRO NAMES HAVE BEEN FOUND IN MACRO INSTRUCTIONS OPEN PUT GET CLOSE FOUND IN MACRO INSTRUCTIONS OPTIONS FOR THIS ASSEMBLY - ALIGN, LIST, NOVPEF, LINK, NOPLD, NOCTCK, NOPDECK THE ASSEMBLER WAS RUN IN 65416 BYTES END OF ASSEMBLY

SALESMAN SALARY AND BONUS

SAL ESMAN NUMBER	SALARY	AMOUNT SOLD	BANUS
1234 1235 1236 1237 1238 9964	800 600 400 1000 1099 0525	500 600 800 2000 4000 8000	ND NN YEIHA YYYY