
Implementat ion of Inter l isp on the V A X  t 

Raymond L. Bates, David Dyer and Johannes A. G. M. Koomen t t  

University of Southern California 
Information Sciences Institute 

4676 Admiralty Way 
Marina del Rey, California 90291 

1. Introduct ion 

This paper presents some of the issues involved in implement- 

ing Interlisp [19] on a VAX computer [24] with the goal of produc• 

ing a version that runs under UNIX[17], specifically Berkeley 

VM/UNIX. This implementation has the following goals: 

- To be compatible with and functionally equivalent to 
Interlisp-10. 

• To serve as a basis for future Interlisp implemen. 
tations on other mainframe computers. This goal re- 
quires that the implementation to be portable. 

- To support a large virtual address space. 

- To achieve a reasonable speed. 

The implemention draws directly from three sources, 

Interlisp-10 [19], Interlisp.D [5], and Multilisp [12]. Interlisp-10, the 

progenitor of all Interlisps, runs on the PDP-10 under the 

TENEX [2] and TOPS-20 operating systems. Interlisp-D, 

developed at Xerox Palo Alto Research Center, runs on personal 

computers also developed at PARC. Multilisp, developed at the 

University of British Columbia, is a portable interpreter containing 

a kernel of Interlisp, written in Pascal [9] and running on the IBM 

Series/370 and the VAX. The Interlisp.VAX implementation relies 

heavily on these implementations. In turn, Interlisp.D and Multilisp 

were developed from The Interlisp Virtual Machine 

Specification [15] by J Moore (subsequently referred to as the VM 

specification), which discusses what is needed to implement an 

Interlisp by describing an Interlisp Virtual Machine from the 

implementors' point of view. Approximately six man-years of effort 
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have been spent exclusively in developing Interlisp-VAX, plus the 

benefit of many years of development for the previous Interlisp 

implementations. 

2. History of the Project 

A few years ago the research community ceased to consider 

Interlisp-10 a useful research vehicle because of its limited ad- 

dress space. A search began to provide a new LISP environment 

powerful enough to support current and future research. There 

was considerable discussion of abandoning the Interlisp dialect 

entirely in favor of Maclisp [14], LISP Machine LISP [25], NIL [26], 

or Common LISP. The choice of LISP dialect would to some ex. 

tent dictate the choice of hardware. Potentially attractive 

hardware were the CADR [11] (MIT LISP Machines) and Xerox 

1100 Scientific Information Processors (Interlisp-D machines, also 

known as Dolphins or D0's). Both are personal LISP machines. 

Also considered were machines not specifically oriented toward 

LISP. They included the PERQ and the PRIME (both personal 

machines), as well as the M68000.based personal machines, 

which were promised to be available "soon." The high cost and 

unpredictable future of each of these personal machines were 

strong influences against their selection. The new feature of ex- 

tended addressing on TOPS.20 was also considered and rejected 

as the basis for a new LISP implementation on the PDP-10. 

The DEC VAX computer was selected as the machine to host 

the new Interlisp for several reasons. It has become an extremely 

popular machine, especially for universities and research facilities. 
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Although each of the alternative hardwares has acquired a user 

community, none approaches the popularity of the VAX. The VAX 

family of computers promises to have a long life, to be widely 

available, to be extensively supported, and to have a wide variety 

of price and performance ranges. It is anticipated that the family 

will be extended both up in performance and down in price. All of 

these characteristics enhance the usefulness and longevity of 

Interlisp.VAX compared to the alternatives. 

In June 1980 serious work began on the development and ira- 

plementation of an Interlisp compatible with the VAX series of 

computers. Initially, most of the effort was directed at the planning 

and detailed design of the implementation of various critical parts. 

By the end of the year, the writing of code specific to Interlisp-VAX 

was begun. Using the Multilisp system as a template, a new Inter- 

lisp kernel was developed in the language C [10]. In parallel, the 

existing Interlisp compiler was modified to produce VAX code. 

Both of these tasks were essentially completed by August 1981. 

Since the beginning of 1981, various parts of the existing Interlisp 

code have been adapted or rewritten to fit the VAX-UNIX mold. 

Currently the project is substantially completed. The first release 

of the Interlisp-VAX system was made publicly available in March 

1982. 

3. Basic Design Decisions 

After the initial choices of a target machine and the dialect of 

LISP, a multitude of choices remained. Foremost were the overall 

implementation strategy and the implementation language for that 

part of the system (if any) that was not to be written in Interlisp. 

Although most of Interlisp is written in itself, another language is 

traditionally used for a small kernel of code to implement the primi- 

tives that are difficult or impossible to implement in LISP. 

The resulting implementation follows traditional LISP implemen- 

tation techniques more closely than do some other new LISP im- 

plementations. For example, it does not use CDR coding, or any 

custom microcode; nor does it require any other special hardware. 

To some extent, this reflects our design goal that our implemen- 

tation be portable to other hardware and that it run on VAXes not 

dedicated to or specially modified for Interlisp. It was also impor- 

tant to minimize the uncertainty that the resulting system would 

run and be usable. Unproven or experimental techniques were 

never seriously considered. 

3.1 Implementation Language 

A LISP implementation written entirely in itself has proven to be 

viable and was considered for Interlisp-VAX. Ultimately this ap- 

proach was rejected because of the anticipated difficulty of 

bootstrapping, and the uncertainty that implies, and because the 

lowest level LISP code in such a system would likely be very 

machine dependent, and so not an advantage over a conventional 

implementation language. 

The implementation languages considered were C, Pascal, 

BLISS [1], and assembly language. The importance of the choice 

of implementation language varies inversely with the amount of 

code to be written in LISP. The three primary considerations in 

the choice were cost in programming time, efficiency of resulting 

object code, and portability to other machines. 

An implementation written entirely in assembly language, such 

as Interlisp-lO, was eliminated because of its lack of portability 

and its prohibitive cost in programming time. It was decided that 

writing a small amount of the most critical code in machine lan- 

guage would gain most of the efficiency advantages of an im- 

plementation written entirely in machine language at a fraction of 

its cost. This has proven to be the case. Measurements show that 

the portion of time spent in code written in C is small. 

BLISS would have been a good choice for the VAX, but it is not 

available on non-DEC machines and is not yet available on UNIX. 

It did not appear likely that BLISS would be available on non-DEC 

machines in the future. 

Pascal and C are both suitable languages from the viewpoints of 

portability and availability. Since UNIX was chosen as the host 

operating system for our VAX, C was the clear favorite. But Pascal 

also had its advantages, the primary one being the availability of 

the Multilisp program, which met major portions of the Interlisp VM 

specification. Considering that the language would be used as an 

implementation language, Pascal was clearly inferior for the 

project's purposes. Pascal was not originally intended as an im. 

plementation language. It does not easily allow the kinds of data 

manipulations necessary for efficiency and ease of expression. C 

ultimately was chosen over Pascal because of its position as the 

universal implementation language for UNIX and the growing 

popularity of UNIX as an operating system. 

3.2 Division of Labor Among Languages 

The amount of code to be written in Interlisp versus that to be 

written in C or assembly language was another factor. AS much 

code as practical was written in Interlisp without unduly complicat- 

ing the process of bootstrapping and debugging, or making the 

LISP code unduly complex or machine dependent. The ratio be- 

tween Interlisp and C code for Interlisp-VAX is similar to the ratio 

between Interlisp and machine language in Interlisp.lO, except 

that the services provided by TENEX or TOPS-20 in Interlisp-lO 

are mostly written in LISP. Interlisp-VAX relies greatly on Interlisp- 

D, because Interlisp-D implements Interlisp almost completely in 
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Interlisp (with a minute kernel written in BCPL[16] and 

microcode). The availability of the actual Interlisp code to imple- 

merit TENEX or TOPS-20 compatibility was important in achieving 

a successful implementation. 

The Interlisp.VAX interface to the UNIX operating system is 

simple. Little is required beyond the basic attributes of reading 

and writing data, delivering interrupts from terminal input, and 

providing address space. Except for file names and "operating 

system compatibility," problems should be minor for future im. 

plementations based on Interlisp-VAX. The Interlisp model of a file 

name coincides with a TENEX or TOPS-20 file name, thus it is not 

compatible with most other operating systems. 

Much low-level code is required to map TENEX's or TOPS-20's 

complex implementation of version numbers and long file names, 

which Interlisp implicitly depends upon, into UNIX's short, un- 

adorned file names. Our original implementation has since been 

reworked to encompass VMS's somewhat different file names, and 

will have to be modified again later if UNIX file names are 

changed. File names' dependency has also proven to be one of 

the more annoying glitches to users, who frequently have 

"canned'.' directory names from TENEX or TOPS.20 that cannot 

be mapped directly into UNIX directory structures. 

In addition to the low-level operating system interface, the 

Interlisp-VAX kernel contains basic memory management, 

spaghetti stack primitives [3], a garbage collector, and the inter. 

preter. LISP code was written or acquired to provide arrays and 

hash arrays, datatypes, all terminal support above the level of the 

raw get character and the raw put character, file I /0  above the 

level of the read block and the write block, file name recognition, 

and all of LISP's READ and PRINT operations. 

For successful division of labor between LISP and C, two 

slightly unusual features were essential. First, the compiler for the 

VAX was developed and debugged using Interlisp.lO. Second, 

the C kernel contains a throwaway simple version of LISP's READ 

and PRINT, which simplified the debugging and bootstrapping 

processes. 

Almost all of the Interlisp system is required for the compiler to 

work. Although the compiler was one of the last components of 

Interlisp-VAX to be brought up on the VAX, compiled LISP code 

was used almost from the beginning. Since the Intedisp system 

uses advanced language features of Interlisp (CLISP, Records, 

etc.), it cannot be interpreted or compiled in anything less than a 

complete Interlisp system. Therefore, a cross compiler for a new 

machine is necessary. Interlisp-D and Interlisp.VAX were imple- 

mented using cross compilers. Multilisp developed from the VM 

specification but, without the support of a cross compiler, has not 

bridged the functionality gap necessary to load the Interlisp en- 

vironment. 

The process of bootstrapping was accelerated by having a 

primitive READ, EVAL, and PRINT loop built into the kernel. In- 

itially the usual C debuggers were used to start the READ, EVAL, 

and PRINT working. Later the VM was used to debug itself. 

The current Interlisp-VAX kernel contains approximately 1000 

lines of assembly language devoted to function linkage, free vari- 

able lookup, and low level interrupt handling, as well as a little 

over 11,000 lines of C code providing basic memory management, 

spaghetti stack primitives, a garbage collector, the interpreter and 

a low-level operating system interface. Of the approximately 

83000 lines of Interlisp code in this implementation, about 16000 

were written explicitly for this implementation. About 9500 are 

shared with Interlisp-D, and about 57500 are shared with the other 

Interlisp implementations. 

4. Overal l  Memory Management 

4.1 Memory Management Decisions 

Interlisp-VAX uses a BBOP (big bag of pages) memory manage- 

ment scheme, where the "page" is Co4K bytes. This scheme was 

selected over a tagged object architecture or a tagged pointer 

architecture, because the VAX is not a tagged architecture 

machine. It would not use tagged objects or pointers efficiently. 

The greatest advantages of a BBOP memory management 

schemes are its simplicity, efficient use of space and efficiency of 

data management. The architecture of all existing existing 

machines allows blocks of storage to be allocated efficiently within 

the block of space. No special hardware is required. 

Similar arguments influenced choosing to segment addresses 

by pages rather than to partition the address space as a whole. 

Chunks of address space are easily found, whereas the overall 

shape and texture of the address space varies widely among 

machines. Likewise, a segmentation appropriate for a 4-megabyte 

system would not be appropriate for a 40-megabyte system, and 

we wanted Interlisp-VAX to scale up smoothly. For the VAX, with a 

32-bit address space and a 32-bit pointer, 64K bytes was the Iogi. 

cal size, since 64K bytes is the square root of the address space. 

Two of these "sectors" are devoted to a table of data type num- 

bers that serve as indices to a third sector containing multiword 

descriptors of each data type. These three sectors are the only 

fixed-memory allocations in the system. All other storage for user- 

defined and predefined data types is allocated from the operating 

system pool. 
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All objects in a 64K block of data are of a single type. For areas 

containing variable length objects, either those objects will con- 

tain no pointers themselves (e.g., PNAMES) or the pointer is to a 

sequence descriptor that describes the object. The basic 

datatypes definition mechanisms allow for all combinations of 

datatypes .. fixed length, variable length, those containing 

pointers, and those not containing pointers. 

4.2 Garbage Collection 

The Interlisp-VAX kernel contains a nonrecursive, copying gar- 

bage collector based on Cheney's Algorithm [6]. The practicality 

of this scheme for very large address space remains to be proven. 

Garbage collection, although infrequent, is expensive. For 

Interlisp-VAX a compacting collector achieves locality of refer- 

ence in the expected large virtual address space. Although copy- 

ing is the simplest and most efficient method of compacting, its 

main disadvantage is the requirement that the operating system, 

during collection, provide twice as much working storage as is 

being used. Another disadvantage of the scheme is that it is 

necessary to be certain of what is and what is not a pointer. In a 

traditional mark and sweep collection, any questionable objects 

can be treated as pointers, and at worst, some space will not be 

collected. In a copying collector, all pointers and only pointers 

must be moved. Because of this hazard Interlisp-VAX does not 

contain a "VAG" operator, which converts a random integer into a 

pointer. 

Interlisp-VAX uses approximately 4-megabytes of virtual ad- 

dress space at startup, which compares to UNIX's default restric- 

tion of 6-megabytes per process. The 6-megabyte limit is rarely 

reached during a normal day's session. Only when a massive 

computation is in progress is collection necessary; and then it is 

extremely slow, taking several minutes elapsed time (though only 

a few seconds cpu time!). If the system limit is increased to 11- 

megabytes, those same compilations run to completion without 

garbage collection. We believe that the lack of garbage collection 

does not affect the paging rate significantly. 

Our experience has shown that the garbage collector is not an 

important part of the overall efficiency of the implementation, 

provided one follows Jon L White's dictum: "Don't do it" [27]. The 

best overall performance tradeoff is to increase the amount of 

virtual address space in use. Garbage collect only as a result of 

limitations in the operating system or hardware architecture. 

5. Representation Decisions 

5.1 Stack Representation 

The choice of representation for LISP data structures is crucial 

to the ultimate efficiency of a LISP implementation. The greatest 

compromises in this area were made in favor of efficiency at the 

expense of portability. As few different structures as practical 

were used in order to keep the number of different access 

methods to a minimum. 

The stack representation is the most complex, the most tuned to 

the VAX, and the most vital to efficient operation. The stack 

representation of Interlisp-VAX uses the VAX's native instructions 

CALLS to construct stack frames and RET to destroy them. The 

auxiliary mechanisms to map the VAX's stack into the more com- 

plex spaghetti stack expected by Interlisp are the most complex 

code in the kernel. "Only" 10 to 15 percent of the time is spent in 

function application and stack management code. The details of 

the stack management are peculiar to the VAX and will need to be 

substantially redone to achieve efficiency in another implemen- 

tation. The implementors believe the choice of efficiency above all 

else for stack representation is justified. 

5.2 Binding Scheme 

Interlisp-lO has employed two different binding schemes for 

variables. Currently it uses a shallow-binding scheme. Prior to 

April 1976 it used a deep.binding scheme. In both shallow binding 

and deep bindings, associated with each variable there is a spe- 

cial cell ( the value cell), which normally contains the the top level 

value of the variable. Using deep binding, when a variable is 

rebound, a name/new-value pair is stored on the stack. To obtain 

or modify the current value of a variable, the stack must be 

searched to determine whether or not the variable was rebound. 

This is potentially time consuming especially if the stack is large. 

At the time of unbinding the variable or spaghetti context switch, 

no special actions are required. Under a shallow-bound system, 

the current value of a variable is always stored in the value cell. 

When a variable is rebound, a name/old-value pair is stored on 

the stack and its new value is placed in the value cell. At the time 

of unbinding, the old value must be restored. During a spaghetti 

context switch between two environments the values of all vari- 

ables not common to both environments have to be restored. 

Shallow binding eventually was chosen over deep binding to im- 

prove performance by eliminating the stack search required in 

deep binding; however, the only major improvement appears to be 

an increase in the speed of the Interlisp-lO Interpreter [21 ]. 

We deliberately chose deep over shallow binding in Interlisp- 

VAX. There are substantial tradeoffs between deep and shallow 

binding for spaghetti stacks (multiple stack groups). With 

Interlisp-lO, the expense of shallow bindings in spaghetti 

manipulations results in spaghetti stacks that are perceived as too 

slow for use in many applications. 
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The basic performance tradeoffs are these: For shallow bind- 

ing, the basic bind/unbind operations are marginally more expen- 

sive; locality of reference is less; "free variable" lookup is free; 

and spaghetti stack environment switching is expensive, because 

it involves rebinding all variables on both threads back to a com- 

mon root. For deep binding, free variable lookup is expensive, but 

spaghetti operations are cheap. For a system without spaghetti, 

the performance tradeoff is clearly in favor of shallow binding. For 

a system that actually uses spaghetti the tradeoff is less clear. 

The choice of deep over shallow binding has proven to be even 

more critical than at first realized. The original deep-binding 

scheme was straightforward; free variable lookup occurred at 

every reference. Preliminary timings showed that 15 to 40 percent 

of all time was spent in the free variable lookup routine and that 

the interpreter was slow. A simple caching scheme to reduce the 

frequency of scans has been implemented and more elaborate 

schemes are under consideration. At present the overhead to 

support deep binding is typically the largest single item in the per- 

formance of average programs. In retrospect, this one choice is 

the most obviously questionable we have made. We at least 

should have considered performance optimizations for deep bind- 

ing from the beginning, and possibly should have chosen shallow 

binding. 

5.3 Integer Representat ion 

The representation of integers is one of the more unusual 

aspects of Interlisp-VAX. Unlike most LISPs implemented on 

machines without tagged architectures, Interlisp-VAX has no no- 

tion of integer number boxes. The VAX architecture has a 32-bit 

address space, where the high-order bit selects system space or 

user space. Since user programs cannot have addresses in the 

range 2t31 to 2t32, these addresses are used to provide 2t31 

immediate integers. The loss of 1 bit of integer precision is not 

significant to Interlisp applications, which typically have not used 

much arithmetic. The gain is considerable as all integer arithmetic 

is fast. 

5.4 Other Objects 

All other objects are organized by two parameters. All are 

treated similarly by memory management and garbage collection. 

They have similar data fetch and store procedures. Our 

preference here was to keep the representation as simple as pos- 

sible and still retain reasonable implementation efficiency. Two 

methods allow a few simple data primitives to describe all possible 

operations on Interlisp-VAX's data. 

All objects are described by a single, separate type descriptor, 

which includes the length of the objects and the number of 

pointers they contain. The pointers are always allocated at the 

beginning of the object. All user-defined types and all basic data 

types except arrays and strings are in this group. 

All variable-length objects are described by a sequence 

descriptor. These include arrays, code arrays, and strings. There 

is only one type of sequence descriptor. All data access to objects 

described by sequence descriptors takes exactly the same form 

(e.g., fetching the nth character of a string involves exactly the 

same arithmetic as fetching the nth item of an array). 

6. Current  Status 

A compatible Interlisp running on the VAX is presently available. 

Several large Interlisp systems have been transported onto the 

VAX with little difficulty. Some of the systems now running on the 

VAX are Affirm [8, 22] (a program verification system), AP3 (an AI 

programming language), Hearsay-Ill [7] (a domain-independent 

framework for building knowledge-based expert systems), 

Consul [4] (a knowledge-based user interface to interactive tools) 

and KL-One [13] (a language for representing knowledge as a 

semantic network). The current speed is about one-third of a 

DEC-KL. The system is being tuned to improve the performance. 

Our goal is to reach the speed of approximately one.half of a DEC. 

KL. 

7. The Difficulties of Implementing Interlisp 

Implementing Interlisp is a more difficult task than implementing 

"any LISP," as the task is strongly constrained. Generally speak- 

ing, it is not acceptable to heavily modify Interlisp programs in 

order to make them run on another machine. Although it is not 

difficult to create a LISP that resembles Interlisp, the result is not 

Interlisp and will not support the multitude of code already written 

in Interlisp. Particularly, the Interlisp environment [20, 18] is es- 

sential as part of a recognizable Interlisp system, and the environ- 

ment is dependent on all the quirks and hidden features of the 

original Interlisp-10. 

The VM specification is an invaluable aid in producing a new 

Interlisp. However, its relatively small size (126 pages) makes the 

task of implementing Interlisp seem deceptively easy. If only the 

functions of the VM were implemented, the result would not be 

Interlisp. There are many small but important features that are not 

mentioned in the VM specification, the Interlisp manual, nor 

anywhere else. Many nonobvious constraints remain to be dis- 

covered by a potential implementor. Subtle interactions of seem- 

ingly straightforward features must be anticipated or they will be 

discovered as bugs. 

To achieve reasonable efficiency with Interlisp, conceptually 

simple data structures can require complex representations. For 
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example, great care has been taken to use the correct VAX in- 

struction necessary for a function call (CALLS instruction) in order 

to attain an acceptable speed. If it were not necessary to be con- 

cerned with the spaghetti stack for the convenience of theVAX, 

the task would be easier, but again Interlisp would not result. AS 

complexity increases, planning, implementing, debugging, and 

maintenance become more difficult. 

8. Conversion Problems Encountered by Users 

Users face three classes of problems in converting large Inter- 

lisp programs to run on the VAX (most programs now originate 

from Interlisp.lO). The first class of problems arises because 

Interlisp-lO is a shallow-bound system while Interlisp-VAX is a 

deep-bound system. Programs running on a deep-bound system 

must be more selective with compiler declarations than programs 

running on a shallow-bound system (otherwise the programs 

might not run). Shallow-bound systems are less restrictive in terms 

of compiler declarations and coding style. This difference creates 

problems because certain compiler declarations that are possible 

in a shallow-bound system will not work in a deep-bound system. 

Specifically, in a deep-bound system the variables bounded by 

RESETVARS must be GLOBALVAR, and the variables bounded by 

PROG cannot be GLOBALVAR. For example, the following 

program will compile only in a shallow-bound system: 

(FO0 
[LAMBDA (X) 

(DECLARE: (SPECVARS Y) 
(GLOBALVARS HELPFLG)) 

(PROG (HELPFLG Y I) 
( . . .  ]) 

To make the program compile in a deep-bound system it must be 

re-coded to: 

(FO0 
[LAMBDA (X) 

(DECLARE: (SPECVARS Y) 
(GLOBALVARS HELPFLG)) 

( RESETVARS (HELPFLG 
(RETURN PROG (Y I )  

( . . .  ]) 

The second class of problems arises because the program is 

running under a different operating system with different restric- 

tions. Although it is obvious that any direct call to a JSYS (a 

TENEX or TOPS-20 operating system call) must be removed, other 

problems can arise. The greatest limitation of UNIX is that file 

names are restricted to fourteen characters and have no version 

numbers. 

The third problem comes closest to being the Achilles' heel of 

the implementation, and illustrates the importance of considering 

all of the implications of representation decisions. Because of the 

representation of integers in Interlisp-VAX, taking CAR of a num- 

ber generates a machine check. A surprising number of programs 

do this without the programmer being aware of the action, canoni- 

cally: 

(AND (EQ (CAR X) (QUOTE QUOTE) --) 

where X has not been guaranteed to be a LISTP. In the previous 

implementations, CAR and CDR of numbers and other non-lists 

were harmless, if meaningless, operations. 

9. Remaining Tasks 

Interlisp-VAX achieves compatibility with Interlisp-10 and 

Interlisp-D. However, continuous effort is necessary to maintain 

compatibility with still-evolving Interlisp-D (currently Interlisp-10 is 

very stable and is expected to remain so). A few functions remain 

to be coded, and of course there are still bugs to remove. A major 

concern is to increase the speed of Interlisp.VAX. Currently the 

compiler is being changed to produce better code for the VAX (by 

using peephole optimization and better register allocation, and 

producing more compact code). A VMS[23] version using 

EUNICE should be available by the time this paper is published. 

We are considering more optimizations of free variable lookup, 

and may eventually experiment with shallow binding. Some minor 

implementation choices may have unexpectedly large impact on 

the total performance, for example, the fact that atom PNAMEs are 

really strings, including a superfluous string header, so inspecting 

the PNAME involves touching three different areas of memory. 

There is much more "open coding" to be done. Currently, only 

the primitive predicates and some integer arithmetic are compiled 

in line, with the result that Interlisp-VAX code still is top heavy with 

function calls. Finally, there is much more to be done in coopera- 

tion with improvements in UNIX to reduce the size of SYSOUT and 

increase the effective sharing of active pages among copies from 

zero to some reasonable level. 

10. Conclusions 

The implementation of Interlisp on the VAX is a technical suc- 

cess, and should prove to be a popular and useful tool within the 

combined VAX and Interlisp communities. Among the most impor. 

tant contributing elements to our success were the reliance on 

proven software technology, careful planning in advance of 

coding, the availability of reliable specifications for what was to be 

produced, and especially the ability to share large masses of code 

with other Interlisp implementations. 
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