
Implementat ion of Inter l isp on the V A X t

Raymond L. Bates, David Dyer and Johannes A. G. M. Koomen t t

University of Southern California
Information Sciences Institute

4676 Admiralty Way
Marina del Rey, California 90291

1. Introduct ion

This paper presents some of the issues involved in implement-

ing Interlisp [19] on a VAX computer [24] with the goal of produc•

ing a version that runs under UNIX[17], specifically Berkeley

VM/UNIX. This implementation has the following goals:

- To be compatible with and functionally equivalent to
Interlisp-10.

• To serve as a basis for future Interlisp implemen.
tations on other mainframe computers. This goal re-
quires that the implementation to be portable.

- To support a large virtual address space.

- To achieve a reasonable speed.

The implemention draws directly from three sources,

Interlisp-10 [19], Interlisp.D [5], and Multilisp [12]. Interlisp-10, the

progenitor of all Interlisps, runs on the PDP-10 under the

TENEX [2] and TOPS-20 operating systems. Interlisp-D,

developed at Xerox Palo Alto Research Center, runs on personal

computers also developed at PARC. Multilisp, developed at the

University of British Columbia, is a portable interpreter containing

a kernel of Interlisp, written in Pascal [9] and running on the IBM

Series/370 and the VAX. The Interlisp.VAX implementation relies

heavily on these implementations. In turn, Interlisp.D and Multilisp

were developed from The Interlisp Virtual Machine

Specification [15] by J Moore (subsequently referred to as the VM

specification), which discusses what is needed to implement an

Interlisp by describing an Interlisp Virtual Machine from the

implementors' point of view. Approximately six man-years of effort

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM0-89791-082-6/82/008/0081 $00.75

have been spent exclusively in developing Interlisp-VAX, plus the

benefit of many years of development for the previous Interlisp

implementations.

2. History of the Project

A few years ago the research community ceased to consider

Interlisp-10 a useful research vehicle because of its limited ad-

dress space. A search began to provide a new LISP environment

powerful enough to support current and future research. There

was considerable discussion of abandoning the Interlisp dialect

entirely in favor of Maclisp [14], LISP Machine LISP [25], NIL [26],

or Common LISP. The choice of LISP dialect would to some ex.

tent dictate the choice of hardware. Potentially attractive

hardware were the CADR [11] (MIT LISP Machines) and Xerox

1100 Scientific Information Processors (Interlisp-D machines, also

known as Dolphins or D0's). Both are personal LISP machines.

Also considered were machines not specifically oriented toward

LISP. They included the PERQ and the PRIME (both personal

machines), as well as the M68000.based personal machines,

which were promised to be available "soon." The high cost and

unpredictable future of each of these personal machines were

strong influences against their selection. The new feature of ex-

tended addressing on TOPS.20 was also considered and rejected

as the basis for a new LISP implementation on the PDP-10.

The DEC VAX computer was selected as the machine to host

the new Interlisp for several reasons. It has become an extremely

popular machine, especially for universities and research facilities.

t
The development of Interlisp-VAX was sponsored by the Defense Advanced

Research Projects Agency under contract number MDA 903-81-C-0335. Views
and conclusions in this report are the authors' and should not be interpreted as
representing the official opinion or policy of the Defense Advanced Research
Projects Agency, the U.S. Government, or any other person or agency connected
with them.

q t Current affiliation: Department of Computer Science, University of
Rochester, Rochester, NY 14627

81

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800068.802138&domain=pdf&date_stamp=1982-08-15

Although each of the alternative hardwares has acquired a user

community, none approaches the popularity of the VAX. The VAX

family of computers promises to have a long life, to be widely

available, to be extensively supported, and to have a wide variety

of price and performance ranges. It is anticipated that the family

will be extended both up in performance and down in price. All of

these characteristics enhance the usefulness and longevity of

Interlisp.VAX compared to the alternatives.

In June 1980 serious work began on the development and ira-

plementation of an Interlisp compatible with the VAX series of

computers. Initially, most of the effort was directed at the planning

and detailed design of the implementation of various critical parts.

By the end of the year, the writing of code specific to Interlisp-VAX

was begun. Using the Multilisp system as a template, a new Inter-

lisp kernel was developed in the language C [10]. In parallel, the

existing Interlisp compiler was modified to produce VAX code.

Both of these tasks were essentially completed by August 1981.

Since the beginning of 1981, various parts of the existing Interlisp

code have been adapted or rewritten to fit the VAX-UNIX mold.

Currently the project is substantially completed. The first release

of the Interlisp-VAX system was made publicly available in March

1982.

3. Basic Design Decisions

After the initial choices of a target machine and the dialect of

LISP, a multitude of choices remained. Foremost were the overall

implementation strategy and the implementation language for that

part of the system (if any) that was not to be written in Interlisp.

Although most of Interlisp is written in itself, another language is

traditionally used for a small kernel of code to implement the primi-

tives that are difficult or impossible to implement in LISP.

The resulting implementation follows traditional LISP implemen-

tation techniques more closely than do some other new LISP im-

plementations. For example, it does not use CDR coding, or any

custom microcode; nor does it require any other special hardware.

To some extent, this reflects our design goal that our implemen-

tation be portable to other hardware and that it run on VAXes not

dedicated to or specially modified for Interlisp. It was also impor-

tant to minimize the uncertainty that the resulting system would

run and be usable. Unproven or experimental techniques were

never seriously considered.

3.1 Implementation Language

A LISP implementation written entirely in itself has proven to be

viable and was considered for Interlisp-VAX. Ultimately this ap-

proach was rejected because of the anticipated difficulty of

bootstrapping, and the uncertainty that implies, and because the

lowest level LISP code in such a system would likely be very

machine dependent, and so not an advantage over a conventional

implementation language.

The implementation languages considered were C, Pascal,

BLISS [1], and assembly language. The importance of the choice

of implementation language varies inversely with the amount of

code to be written in LISP. The three primary considerations in

the choice were cost in programming time, efficiency of resulting

object code, and portability to other machines.

An implementation written entirely in assembly language, such

as Interlisp-lO, was eliminated because of its lack of portability

and its prohibitive cost in programming time. It was decided that

writing a small amount of the most critical code in machine lan-

guage would gain most of the efficiency advantages of an im-

plementation written entirely in machine language at a fraction of

its cost. This has proven to be the case. Measurements show that

the portion of time spent in code written in C is small.

BLISS would have been a good choice for the VAX, but it is not

available on non-DEC machines and is not yet available on UNIX.

It did not appear likely that BLISS would be available on non-DEC

machines in the future.

Pascal and C are both suitable languages from the viewpoints of

portability and availability. Since UNIX was chosen as the host

operating system for our VAX, C was the clear favorite. But Pascal

also had its advantages, the primary one being the availability of

the Multilisp program, which met major portions of the Interlisp VM

specification. Considering that the language would be used as an

implementation language, Pascal was clearly inferior for the

project's purposes. Pascal was not originally intended as an im.

plementation language. It does not easily allow the kinds of data

manipulations necessary for efficiency and ease of expression. C

ultimately was chosen over Pascal because of its position as the

universal implementation language for UNIX and the growing

popularity of UNIX as an operating system.

3.2 Division of Labor Among Languages

The amount of code to be written in Interlisp versus that to be

written in C or assembly language was another factor. AS much

code as practical was written in Interlisp without unduly complicat-

ing the process of bootstrapping and debugging, or making the

LISP code unduly complex or machine dependent. The ratio be-

tween Interlisp and C code for Interlisp-VAX is similar to the ratio

between Interlisp and machine language in Interlisp.lO, except

that the services provided by TENEX or TOPS-20 in Interlisp-lO

are mostly written in LISP. Interlisp-VAX relies greatly on Interlisp-

D, because Interlisp-D implements Interlisp almost completely in

82

Interlisp (with a minute kernel written in BCPL[16] and

microcode). The availability of the actual Interlisp code to imple-

merit TENEX or TOPS-20 compatibility was important in achieving

a successful implementation.

The Interlisp.VAX interface to the UNIX operating system is

simple. Little is required beyond the basic attributes of reading

and writing data, delivering interrupts from terminal input, and

providing address space. Except for file names and "operating

system compatibility," problems should be minor for future im.

plementations based on Interlisp-VAX. The Interlisp model of a file

name coincides with a TENEX or TOPS-20 file name, thus it is not

compatible with most other operating systems.

Much low-level code is required to map TENEX's or TOPS-20's

complex implementation of version numbers and long file names,

which Interlisp implicitly depends upon, into UNIX's short, un-

adorned file names. Our original implementation has since been

reworked to encompass VMS's somewhat different file names, and

will have to be modified again later if UNIX file names are

changed. File names' dependency has also proven to be one of

the more annoying glitches to users, who frequently have

"canned'.' directory names from TENEX or TOPS.20 that cannot

be mapped directly into UNIX directory structures.

In addition to the low-level operating system interface, the

Interlisp-VAX kernel contains basic memory management,

spaghetti stack primitives [3], a garbage collector, and the inter.

preter. LISP code was written or acquired to provide arrays and

hash arrays, datatypes, all terminal support above the level of the

raw get character and the raw put character, file I /0 above the

level of the read block and the write block, file name recognition,

and all of LISP's READ and PRINT operations.

For successful division of labor between LISP and C, two

slightly unusual features were essential. First, the compiler for the

VAX was developed and debugged using Interlisp.lO. Second,

the C kernel contains a throwaway simple version of LISP's READ

and PRINT, which simplified the debugging and bootstrapping

processes.

Almost all of the Interlisp system is required for the compiler to

work. Although the compiler was one of the last components of

Interlisp-VAX to be brought up on the VAX, compiled LISP code

was used almost from the beginning. Since the Intedisp system

uses advanced language features of Interlisp (CLISP, Records,

etc.), it cannot be interpreted or compiled in anything less than a

complete Interlisp system. Therefore, a cross compiler for a new

machine is necessary. Interlisp-D and Interlisp.VAX were imple-

mented using cross compilers. Multilisp developed from the VM

specification but, without the support of a cross compiler, has not

bridged the functionality gap necessary to load the Interlisp en-

vironment.

The process of bootstrapping was accelerated by having a

primitive READ, EVAL, and PRINT loop built into the kernel. In-

itially the usual C debuggers were used to start the READ, EVAL,

and PRINT working. Later the VM was used to debug itself.

The current Interlisp-VAX kernel contains approximately 1000

lines of assembly language devoted to function linkage, free vari-

able lookup, and low level interrupt handling, as well as a little

over 11,000 lines of C code providing basic memory management,

spaghetti stack primitives, a garbage collector, the interpreter and

a low-level operating system interface. Of the approximately

83000 lines of Interlisp code in this implementation, about 16000

were written explicitly for this implementation. About 9500 are

shared with Interlisp-D, and about 57500 are shared with the other

Interlisp implementations.

4. Overal l Memory Management

4.1 Memory Management Decisions

Interlisp-VAX uses a BBOP (big bag of pages) memory manage-

ment scheme, where the "page" is Co4K bytes. This scheme was

selected over a tagged object architecture or a tagged pointer

architecture, because the VAX is not a tagged architecture

machine. It would not use tagged objects or pointers efficiently.

The greatest advantages of a BBOP memory management

schemes are its simplicity, efficient use of space and efficiency of

data management. The architecture of all existing existing

machines allows blocks of storage to be allocated efficiently within

the block of space. No special hardware is required.

Similar arguments influenced choosing to segment addresses

by pages rather than to partition the address space as a whole.

Chunks of address space are easily found, whereas the overall

shape and texture of the address space varies widely among

machines. Likewise, a segmentation appropriate for a 4-megabyte

system would not be appropriate for a 40-megabyte system, and

we wanted Interlisp-VAX to scale up smoothly. For the VAX, with a

32-bit address space and a 32-bit pointer, 64K bytes was the Iogi.

cal size, since 64K bytes is the square root of the address space.

Two of these "sectors" are devoted to a table of data type num-

bers that serve as indices to a third sector containing multiword

descriptors of each data type. These three sectors are the only

fixed-memory allocations in the system. All other storage for user-

defined and predefined data types is allocated from the operating

system pool.

83

All objects in a 64K block of data are of a single type. For areas

containing variable length objects, either those objects will con-

tain no pointers themselves (e.g., PNAMES) or the pointer is to a

sequence descriptor that describes the object. The basic

datatypes definition mechanisms allow for all combinations of

datatypes .. fixed length, variable length, those containing

pointers, and those not containing pointers.

4.2 Garbage Collection

The Interlisp-VAX kernel contains a nonrecursive, copying gar-

bage collector based on Cheney's Algorithm [6]. The practicality

of this scheme for very large address space remains to be proven.

Garbage collection, although infrequent, is expensive. For

Interlisp-VAX a compacting collector achieves locality of refer-

ence in the expected large virtual address space. Although copy-

ing is the simplest and most efficient method of compacting, its

main disadvantage is the requirement that the operating system,

during collection, provide twice as much working storage as is

being used. Another disadvantage of the scheme is that it is

necessary to be certain of what is and what is not a pointer. In a

traditional mark and sweep collection, any questionable objects

can be treated as pointers, and at worst, some space will not be

collected. In a copying collector, all pointers and only pointers

must be moved. Because of this hazard Interlisp-VAX does not

contain a "VAG" operator, which converts a random integer into a

pointer.

Interlisp-VAX uses approximately 4-megabytes of virtual ad-

dress space at startup, which compares to UNIX's default restric-

tion of 6-megabytes per process. The 6-megabyte limit is rarely

reached during a normal day's session. Only when a massive

computation is in progress is collection necessary; and then it is

extremely slow, taking several minutes elapsed time (though only

a few seconds cpu time!). If the system limit is increased to 11-

megabytes, those same compilations run to completion without

garbage collection. We believe that the lack of garbage collection

does not affect the paging rate significantly.

Our experience has shown that the garbage collector is not an

important part of the overall efficiency of the implementation,

provided one follows Jon L White's dictum: "Don't do it" [27]. The

best overall performance tradeoff is to increase the amount of

virtual address space in use. Garbage collect only as a result of

limitations in the operating system or hardware architecture.

5. Representation Decisions

5.1 Stack Representation

The choice of representation for LISP data structures is crucial

to the ultimate efficiency of a LISP implementation. The greatest

compromises in this area were made in favor of efficiency at the

expense of portability. As few different structures as practical

were used in order to keep the number of different access

methods to a minimum.

The stack representation is the most complex, the most tuned to

the VAX, and the most vital to efficient operation. The stack

representation of Interlisp-VAX uses the VAX's native instructions

CALLS to construct stack frames and RET to destroy them. The

auxiliary mechanisms to map the VAX's stack into the more com-

plex spaghetti stack expected by Interlisp are the most complex

code in the kernel. "Only" 10 to 15 percent of the time is spent in

function application and stack management code. The details of

the stack management are peculiar to the VAX and will need to be

substantially redone to achieve efficiency in another implemen-

tation. The implementors believe the choice of efficiency above all

else for stack representation is justified.

5.2 Binding Scheme

Interlisp-lO has employed two different binding schemes for

variables. Currently it uses a shallow-binding scheme. Prior to

April 1976 it used a deep.binding scheme. In both shallow binding

and deep bindings, associated with each variable there is a spe-

cial cell (the value cell), which normally contains the the top level

value of the variable. Using deep binding, when a variable is

rebound, a name/new-value pair is stored on the stack. To obtain

or modify the current value of a variable, the stack must be

searched to determine whether or not the variable was rebound.

This is potentially time consuming especially if the stack is large.

At the time of unbinding the variable or spaghetti context switch,

no special actions are required. Under a shallow-bound system,

the current value of a variable is always stored in the value cell.

When a variable is rebound, a name/old-value pair is stored on

the stack and its new value is placed in the value cell. At the time

of unbinding, the old value must be restored. During a spaghetti

context switch between two environments the values of all vari-

ables not common to both environments have to be restored.

Shallow binding eventually was chosen over deep binding to im-

prove performance by eliminating the stack search required in

deep binding; however, the only major improvement appears to be

an increase in the speed of the Interlisp-lO Interpreter [21].

We deliberately chose deep over shallow binding in Interlisp-

VAX. There are substantial tradeoffs between deep and shallow

binding for spaghetti stacks (multiple stack groups). With

Interlisp-lO, the expense of shallow bindings in spaghetti

manipulations results in spaghetti stacks that are perceived as too

slow for use in many applications.

84

The basic performance tradeoffs are these: For shallow bind-

ing, the basic bind/unbind operations are marginally more expen-

sive; locality of reference is less; "free variable" lookup is free;

and spaghetti stack environment switching is expensive, because

it involves rebinding all variables on both threads back to a com-

mon root. For deep binding, free variable lookup is expensive, but

spaghetti operations are cheap. For a system without spaghetti,

the performance tradeoff is clearly in favor of shallow binding. For

a system that actually uses spaghetti the tradeoff is less clear.

The choice of deep over shallow binding has proven to be even

more critical than at first realized. The original deep-binding

scheme was straightforward; free variable lookup occurred at

every reference. Preliminary timings showed that 15 to 40 percent

of all time was spent in the free variable lookup routine and that

the interpreter was slow. A simple caching scheme to reduce the

frequency of scans has been implemented and more elaborate

schemes are under consideration. At present the overhead to

support deep binding is typically the largest single item in the per-

formance of average programs. In retrospect, this one choice is

the most obviously questionable we have made. We at least

should have considered performance optimizations for deep bind-

ing from the beginning, and possibly should have chosen shallow

binding.

5.3 Integer Representat ion

The representation of integers is one of the more unusual

aspects of Interlisp-VAX. Unlike most LISPs implemented on

machines without tagged architectures, Interlisp-VAX has no no-

tion of integer number boxes. The VAX architecture has a 32-bit

address space, where the high-order bit selects system space or

user space. Since user programs cannot have addresses in the

range 2t31 to 2t32, these addresses are used to provide 2t31

immediate integers. The loss of 1 bit of integer precision is not

significant to Interlisp applications, which typically have not used

much arithmetic. The gain is considerable as all integer arithmetic

is fast.

5.4 Other Objects

All other objects are organized by two parameters. All are

treated similarly by memory management and garbage collection.

They have similar data fetch and store procedures. Our

preference here was to keep the representation as simple as pos-

sible and still retain reasonable implementation efficiency. Two

methods allow a few simple data primitives to describe all possible

operations on Interlisp-VAX's data.

All objects are described by a single, separate type descriptor,

which includes the length of the objects and the number of

pointers they contain. The pointers are always allocated at the

beginning of the object. All user-defined types and all basic data

types except arrays and strings are in this group.

All variable-length objects are described by a sequence

descriptor. These include arrays, code arrays, and strings. There

is only one type of sequence descriptor. All data access to objects

described by sequence descriptors takes exactly the same form

(e.g., fetching the nth character of a string involves exactly the

same arithmetic as fetching the nth item of an array).

6. Current Status

A compatible Interlisp running on the VAX is presently available.

Several large Interlisp systems have been transported onto the

VAX with little difficulty. Some of the systems now running on the

VAX are Affirm [8, 22] (a program verification system), AP3 (an AI

programming language), Hearsay-Ill [7] (a domain-independent

framework for building knowledge-based expert systems),

Consul [4] (a knowledge-based user interface to interactive tools)

and KL-One [13] (a language for representing knowledge as a

semantic network). The current speed is about one-third of a

DEC-KL. The system is being tuned to improve the performance.

Our goal is to reach the speed of approximately one.half of a DEC.

KL.

7. The Difficulties of Implementing Interlisp

Implementing Interlisp is a more difficult task than implementing

"any LISP," as the task is strongly constrained. Generally speak-

ing, it is not acceptable to heavily modify Interlisp programs in

order to make them run on another machine. Although it is not

difficult to create a LISP that resembles Interlisp, the result is not

Interlisp and will not support the multitude of code already written

in Interlisp. Particularly, the Interlisp environment [20, 18] is es-

sential as part of a recognizable Interlisp system, and the environ-

ment is dependent on all the quirks and hidden features of the

original Interlisp-10.

The VM specification is an invaluable aid in producing a new

Interlisp. However, its relatively small size (126 pages) makes the

task of implementing Interlisp seem deceptively easy. If only the

functions of the VM were implemented, the result would not be

Interlisp. There are many small but important features that are not

mentioned in the VM specification, the Interlisp manual, nor

anywhere else. Many nonobvious constraints remain to be dis-

covered by a potential implementor. Subtle interactions of seem-

ingly straightforward features must be anticipated or they will be

discovered as bugs.

To achieve reasonable efficiency with Interlisp, conceptually

simple data structures can require complex representations. For

85

example, great care has been taken to use the correct VAX in-

struction necessary for a function call (CALLS instruction) in order

to attain an acceptable speed. If it were not necessary to be con-

cerned with the spaghetti stack for the convenience of theVAX,

the task would be easier, but again Interlisp would not result. AS

complexity increases, planning, implementing, debugging, and

maintenance become more difficult.

8. Conversion Problems Encountered by Users

Users face three classes of problems in converting large Inter-

lisp programs to run on the VAX (most programs now originate

from Interlisp.lO). The first class of problems arises because

Interlisp-lO is a shallow-bound system while Interlisp-VAX is a

deep-bound system. Programs running on a deep-bound system

must be more selective with compiler declarations than programs

running on a shallow-bound system (otherwise the programs

might not run). Shallow-bound systems are less restrictive in terms

of compiler declarations and coding style. This difference creates

problems because certain compiler declarations that are possible

in a shallow-bound system will not work in a deep-bound system.

Specifically, in a deep-bound system the variables bounded by

RESETVARS must be GLOBALVAR, and the variables bounded by

PROG cannot be GLOBALVAR. For example, the following

program will compile only in a shallow-bound system:

(FO0
[LAMBDA (X)

(DECLARE: (SPECVARS Y)
(GLOBALVARS HELPFLG))

(PROG (HELPFLG Y I)
(. . .])

To make the program compile in a deep-bound system it must be

re-coded to:

(FO0
[LAMBDA (X)

(DECLARE: (SPECVARS Y)
(GLOBALVARS HELPFLG))

(RESETVARS (HELPFLG
(RETURN PROG (Y I)

(. . .])

The second class of problems arises because the program is

running under a different operating system with different restric-

tions. Although it is obvious that any direct call to a JSYS (a

TENEX or TOPS-20 operating system call) must be removed, other

problems can arise. The greatest limitation of UNIX is that file

names are restricted to fourteen characters and have no version

numbers.

The third problem comes closest to being the Achilles' heel of

the implementation, and illustrates the importance of considering

all of the implications of representation decisions. Because of the

representation of integers in Interlisp-VAX, taking CAR of a num-

ber generates a machine check. A surprising number of programs

do this without the programmer being aware of the action, canoni-

cally:

(AND (EQ (CAR X) (QUOTE QUOTE) --)

where X has not been guaranteed to be a LISTP. In the previous

implementations, CAR and CDR of numbers and other non-lists

were harmless, if meaningless, operations.

9. Remaining Tasks

Interlisp-VAX achieves compatibility with Interlisp-10 and

Interlisp-D. However, continuous effort is necessary to maintain

compatibility with still-evolving Interlisp-D (currently Interlisp-10 is

very stable and is expected to remain so). A few functions remain

to be coded, and of course there are still bugs to remove. A major

concern is to increase the speed of Interlisp.VAX. Currently the

compiler is being changed to produce better code for the VAX (by

using peephole optimization and better register allocation, and

producing more compact code). A VMS[23] version using

EUNICE should be available by the time this paper is published.

We are considering more optimizations of free variable lookup,

and may eventually experiment with shallow binding. Some minor

implementation choices may have unexpectedly large impact on

the total performance, for example, the fact that atom PNAMEs are

really strings, including a superfluous string header, so inspecting

the PNAME involves touching three different areas of memory.

There is much more "open coding" to be done. Currently, only

the primitive predicates and some integer arithmetic are compiled

in line, with the result that Interlisp-VAX code still is top heavy with

function calls. Finally, there is much more to be done in coopera-

tion with improvements in UNIX to reduce the size of SYSOUT and

increase the effective sharing of active pages among copies from

zero to some reasonable level.

10. Conclusions

The implementation of Interlisp on the VAX is a technical suc-

cess, and should prove to be a popular and useful tool within the

combined VAX and Interlisp communities. Among the most impor.

tant contributing elements to our success were the reliance on

proven software technology, careful planning in advance of

coding, the availability of reliable specifications for what was to be

produced, and especially the ability to share large masses of code

with other Interlisp implementations.

86

1 1. Acknow ledgments

This project would have been immeasurably more difficult and

less likely to succeed without the cooperation of Xerox Corpora-

tion: historical contributions to Interlisp-lO, support for the writing

of the Interlisp Virtual Machine Specification, sharing of code

developed for Interlisp-D, and the personal assistance and advice

of the staff of the Xerox Pale Alto Research Center.

The following members of the ISI staff have contributed to the

implementation of the Interlisp-VAX: Dan Lynch, Bob Balzer,

Andrea Ignatowski, Steve Saunders, and Don Voreck.

R e f e r e n c e s

BLISS-IO Programmer's Reference Manual, Digital Equi-
pment Corporation, Maynard, Mass., 1974.

Bobrow, D. G., J. D. Burchfiel, D. L. Murphy, and
R. S. Tomlinson, "TENEX, a paged time sharing system for
the PDP-IO," Communications of the ACM 15, (3), March
1972, 135-143.

Bobrow, D. G., and B. Wegbreit, "A model and stack im-
plementation for multiple environments," Communications of
the ACM 16, (10), October 1973, 591-603.

Brachman, R., A Structural Paradigm for Representing
Knowledge, Bolt, Beranek, and Newman, Inc., Technical
Report, 1978.

Burton, R. R., et al., "Overview and status of DoradoLISP," in
Proceedings of the 1980 LISP Conference, pp. 243-247. Stan-
ford, Calif., August 1980.

Cheney, C. J., "A Non-recursive list compacting algorithm,"
Communications of the ACM 13, (11), November 1970,
677-678.

9.

10.

11.

Erman, L., P. London, and S. Fickas, "The design and an
example use of Hearsay-Ill," in Proceedings of the Seventh
International Joint Conference on Artificial Intelligence,
pp. 409-415, Vancouver, B.C., August 1981.

Gerhart, S. L., et al., "An overview of Affirm: A specification
and verification system," in Proceedings IFIP 80, pp~ 343.348,
Australia, October 1980.

Jensen, K., and N. Wirth, Pascal User Manual and Report,
Springer-Verlag, New York, 1975.

Kernighan, B. W., and D. M. Richie, The C Programming Lan-
guage, Prentice-Hall, Englewood Cliffs, N. J., 1978.

Knight, T., D. Moon, J. Holloway, and G. Steele, CADR, Mas-
sachusetts Institute of Technology, Technical Report 528,
June 1979.

12.

13.

Koomen, J. A.G.M., The Interlisp Virtual Machine: A Study of
its Design and its Implementation as Multilisp, Master's thesis,
University of British Columbia, 1980.

Mark, W., "Representation and inference in the Consul
System," in Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, pp. 375-381, Vancouver,
B.C., August 1981.

14. Moon, D. A., Maclisp Reference Manual, Massachusetts In-
stitute of Technology, Laboratory for Computer Science,
Technical Report, March 1974.

15. Moore, J S., The Interlisp Virtual Machine Specification,
Xerox Pale Alto Research Center, Technical Report CSL
76-5, March 1979.

16. Richards, M., and C. Whitby-Strevens, BCPL - The Language
and its Compiler, Cambridge University Press, New York,
1979.

17. Ritchie, D. M., and K. Tompson, "The UNIX time-sharing
system," Communications of the ACM 17, (7), July 1974,
365-375.

18.

19.

Sandewall, E., "Programming in an interactive environment:
The LISP experience," Computing Surveys 10, (1), March
1978, 35-71.

Teitelman, W., Interlisp Reference Manual, Pale Alto, Calif.,
1978.

20.

21.

22.

23.

Teitelman, W., and L. Masinter, "The Interlisp programming
environment," Computer 14, (4), April 1981,25-33.

Teitelman, W., Shallow bindings in Interlisp-lO (April 22,
1976). Note to Interlisp Users, Xerox Memo.

Thompson, D. H., S. L. Gerhart, R. W. Erickson, S. Lee, and
R. L. Bates (eds.), The Affirm Reference Library,
USC/Information Sciences Institute, 1981. (Five volumes:
Reference Manual, User's Guide, Type Library, Annotated
Transcripts, and Collected Papers; 450 pages.)

VAX Software Handbook, Digital Equipment Corporation,
1980.

24. VAX Architecture Handbook, Digital Equipment Corporation,
1981.

25.

26.

Weinreb, D., and D. Moon, LISP Machine Manual, Massachu-
setts Institute of Technology, Artificial Intelligence
Laboratory, Technical Report, January 1979.

White, J. L., "NIL - A perspective," in Macsyma Users' Con-
ference Proceedings, June 1979.

27. White, J. L., "Address/memory management for a giganitic
LISP environment or, GC considered harmful," in
Proceedings of the 1980 LISP Conference, pp. 119-127, Stan-
ford, Calif., August 1980.

87

