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1. Iatroductionm.

Since the publication of two influential papers
on lazy evaluation in 1976 [Henderson and Morris,
Friedman and Wise], the idea has gained widespread
acceptance among language theoreticians -- particu-
larly among the advocates of ®functional program-
ming"™ [Henderson80, Backus78]. There are two basic
reasons for the popularity of lazy evaluation.
First, by making some of the data constructors in
a functional language non-strict, it supports pro-
grams that manipulate "infinite objects™ such as
recursively enumerable sequences, which may make
some applications easier to program. Second, by
delaying evaluation of arguments until they are
actually needed, it may speed up computations
involving ordinary finite objects.

Despite the popularity of lazy evaluation, its
semantics are deceptively complex. Although the
implementation of lazy evaluation is easy to
describe, its semantic consequences are not. In
lazy domains, the existence of infinite objects
nullifies the usual principle of structural induc-
tion for program data. As a result, many simple
theorems about ordinary data objects do not bold in
the context of lazy evaluation. For example,
although the function reverseereverse is the iden-
tity function on ordinary linear lists, it does not
equal the identity function in the context of lazy
evaluation; applying reverse to an infinite list
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yields the undefined object L. Replacing conven-
tional data comstructors by their lazy counterparts
radically alters the structure of the data domain.
As a result, reasoning about programs defined over
lazy spaces is a subtle endeavor. In respouse to
these issues, this paper develops a comprehensive
semantic theory of lazy evaluation and explores
several approaches to formalizing that theory
within & programming logic. The paper includes
four new interesting results.

First, there are several semantically distinct
definitions of lazy evaluation that plausibly cap-
ture the intuitive notion. In contrast to usual
implementation-oriented approaches in the litera-
ture, we define lazy evaluation as a change in the
value space over which computstion is performed.
We use a small collection of domain constructors
from denotational semantics [Scott8l, Scott76] to
build abstract value spaces that correspond to the
meanings of computations using various lazy con-
structors. Our abstract approach to defining lazy
domains accommodates several distinct interpreta-
tions of the informal concept of lazy lists
developed in the literature [Friedman and Wise76,
Henderson and Morris76]. Apparently trivial pro-
grams produce radically different results under the
different interpretatiomns.

Second, non-trivial lazy spaces are similar in
structure (under the approximation ordering) to
universal domains (as defined by Scott [Scott8l,
Scott76]) such as the P& model for the untyped
lambda calculus. Specifically, we show that Pe
(with the standard primitive operations @, sucec,
pred, cond, K, S, and apply) is isomorphic to the
simple lazy space

trivseq = triv x trivseq

(with corresponding primitive operations) where
triv is the trivial data domain consisting of two
objects {1, trwe} and x denotes the standard
cartesian product of two sets., The corresponding
primitive operations on trivseq are recursively
definable (using first order recursion equations)
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in terms of the constants txwe and 1, the con-
structor and selector functions for forming and
tearing apart objects in trivseq, and the logical
operations amd and por (parallel or) on triv.
Hence, lazy trivial sequences (as defined above)
provide an elegant model of the (untyped) lambda
calculus that is intuitively familiar to most com~
puter scientists,

Third, we prove that neither initial algebra
specifications [ADJ76,77] nor final algebra specif-~
ications [Guttag78, Kamin80] have the power to
define lazy spaces. This result, which is surpris-
ingly easy to prove, establishes a fundamental lim-
itation on the power of equational theories as data
type specifications.

Fourth, although lazy spaces have the same
"higher-order®™ structure as Ps, they nevertheless
have an elegant, natural characterization within
first order logic. In this paper, we develop a
simple, yet comprehensive first order theory of
lazy spaces relying on three axiom schemes assert-
ing
(1) the principle of structural induction for fin-

ite objects;

(2) the existence of least bounds for

directed sets; and

upper

(3) the continuity of functions.

To demonstrate the deductive power of the system,
we embed the higher-order logic LCF [Gordon77] in
our system and derive a generalized induction rule
(analogous to fixed point induction im LCF) for
admissible predicates called lazy induction which
extends conventional structural induction to lazy
spaces, greatly simplifying the proof of many
theorems. An instance of this generalized rule
reduces to ordinary fixed point induction.

The remainder of the paper is divided into six
sections. Section 2 provides a brief overview of
Scott's theory of data domains [Scott8l,Scott76].
Section 3 develops the specific machinery required
to define the abstract semantics of lazy data
domains. Using this machinery, Section 4 presents
a taxonomy of lazy lists, demonstrating that there
are many semantically distinct data domains that
capture the intuitive notion of lazy evaluation.
Section 5 explores various approaches to formaliz-
ing our semantics definition of lazy domains within
a logical theory. In the process, we prove that
algebraic specification is too weak to accomplish
the task and that lazy spaces have the same rich
Thigher-order™ structure as Pw. Finally, in Sec-
tion 6, we present a simple first order theory for
lazy data domains and demonstrate that it is as
least as powerful as the corresponding theory for-
mulated in the higher-order logic LCF., Section 7

assesses the intuitive significance of our results
and speculates about promising directions for
future research.

2, Backgrosad

In Scott's theory of data domains, a domain D
is a set of abstract data objects partially ordered
under an approximation relation S that satisfies
the following three properties:

l. Every directed set! has a least upper bound
within the domain.

2. The domain has a minimum element L1 (®bottom").
In intuitive terms, L corresponds to the result of
a non-terminating or erroneous computationm.

3. The domain D has a countable subset B = {b; |
ieR} (where N denotes the set of natural numbers
{0, 1, .e.}), called the bagis or the fipite ele-
ments of D, such that:

a. LleB and B is closed under the least upper
bound operation on finite consistent? subsets.

b. Every element xeD is the least upper bound
of the subset of B that approximates it, i.e.

V x¢D x = lwb {yeB | ysx]}.

c. For every element xeB, the set {yeB | y<x}
is finite.

Note that the structure of D is completely
determined by the structure of B; D is isomorphic
to the set of filters3 over B under the subset ord-
ering. Any element of D that is not a basis ele-

ment is called a limit point or total elemenf of D.

2.1. Computability

The domain D corresponding to the basis set B
is computable if and only if it satisfies the fol-
lowing additional comstraints:

1, For every element x € D, the subset of B that
approximates x is recursively enumerable. In an
implementation of D, x is represented by a concrete
description (such as a Goedel number or lazy list)
of this recursively enumerable set.

2. Om the basis set B, the termary relation

z = lub{x,y}

1A get S is directed iff for every finite subset
E € S, S contains an upper bound for E.

25 gsubset S € D is sonsistent under the partial
ordering < iff there exists an upper bound for S in
D,

3A filter over B is a set F such that (i) Vx,yeF
lub{x,y}eF, and (ii) VxeF,yeB ysx = ye¢F.
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and the binary relation

Jk keB ksx A ksy

are both decidable assuming that we represent
basis elements bj by their integer indices i.

The computable functions on the data domain D
can be implemented solely in terms of the two
decidable relations and ordinary computable (par-
tial recursive) functions over the natural numbers.
In this paper, we will confine our attention com-
putable domains.

Assume that we are given the computable domains
D1,Dy with corresponding bases Bj,By. A computable
mapping £ € Dy + D2 is a recursively enumerable
binary relation f & B}XBy such that:

(1) 1) £19;
(2) xfyAxfy'=xf labiy,y'} ;
(3) xfyAaxs<sx'"andy'sy=x"fy',

Every computable mapping £ € D; + D7 determines a
corresponding computable function f: Dy -+ D
defined by

£(x) = lub{y'eB; | Ix'eB] x' £ y'} .

The function f is computable in the sense that
given an arbitrary element d € D)} (represented by a
description of the recursively enumerable subset of
B) approximating d), we can effectively gemerate (a
description of) the recursively enumerable subset
of B, approximating f£(d).

There is a one-one correspondence between com-
putable mappings (relations) over BjxBs and comput-
able functions over Dj+Dz. A particularly appeal-
ing property of Scott's theory of data domains is
that the set of computable mappings (functions)
between computable domains is a computable domain
in its own right.
more detail below.

We will discuss this issue in

2.2. Sample Data Domains

Many common data domains such as the natural
numbers and ordinary (industrious) lists are degen-
erate in the sense that they contain no limit
points; in these domains the basis set is the
entire domain. For example, let Nat be defined as
the set

{1, 0, 1, 2, ...}
under the partial ordering Xy,¢ defined by
XSNag ¥ S XSy V xX=1.,

Nat is a computable domain with basis Nat., Simi-
larly, let Bool, the domain of Boolean truth
values, be defined as the set

{1, txue, false}

under the partial ordering Sp,,] defined by

X Spool ¥ < X Ty Vx =l

An example of a more interesting data domain is
Pe, the power set of the natural numbers under the
partial ordering ordering & (set inclusion). The
finite (basis) elements of Pe are precisely the
finite sets of natural numbers. P& obviously is
not computable because the set of finite sets
approximating an arbitrary element of Pe is not
necessarily recursively enumerable. On the other
hand, the recursively enumerable elements of Pa

form a computable subdomain of Ps.

2.3. Simple Domaia Coastructions

In specifying data domains, it is oftem con-
venient to construct composite domaine from simpler
ones. There are two fundamental mechanisms for
constructing composite domains: the Cartesian pro-
duct construction and the computable mapping con-
struction. We will discuss several other domain
constructors later in the paper, but they are all

based on these two mechanisms.

Given computable domains Dj,Dy with bases
BjsBgs the Cartesian product D)xDy is the comput-

able domain generated by the basis set

{(%,y) | xeBy, yeBy}

under the partial ordering $p) xD, defined by
(x1.51) SD1XD2 (x2.y2) = xllexz A ylsnzyz .
The bottom element of D)xDy is (Lp;sip,).

The second fundamental domain constructor is
the formation of the space of computable mappings.
Given the computable domains Dy,Dy with correspond-
ing bases B).Bj, the domain of computable mappings
D} >> Dy is the domain determined by the basis set
congisting of the finite computable mappings under
the partial ordering generated by set inclusion,
i.e. fjsfy; < ficf,.
computable functions f: D} -+ Dz also forms a

The corresponding set of

domain, but we will focus on computable mappings
instead since they are more intuitive from a compu-
tational viewpoint.

2,4. Retractions om the Universal Domaina

A fairly rich collection of domains cam be con-
structed by starting with a few very simple primi-
tive domains (such as N and B) and constructing
more complex domains using the Cartesian product
and computable mapping constructions. However, it
is easy to devise domains such as infinite carte-
sian products of primitive domains that are beyond
the scope of this simple scheme.
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Scott has developed a much more comprehensive
approach to the problem of domain construction
based on the concept of a universal domain. A
universal domain U is a computable data domain
such that that every data domain D (as defined
above) is isomorphic to a subdomain® of U. More-
over, if D is computable, both the projection func-
tion Pp mapping D into W and the inverse projec-
tion function are computable.

Since every domain D has an isomorphic image
within the universal domain, Scott proposes defin-
ing data domains directly as subspaces of the
universal domain. To simplify this endeavor, Scott
suggests using computable retractions on the
universal domain to identify subdomains. A retrag-
tion on U is a function a: U -+ U such that acs =
a. Given that a is computable, the range of a
(image of U under ap) specifies a subdomain of W.
Moreover, if D is a computable domain then there is
a computable retraction ap: U + U such that the
range of ap is the isomorphic image of D in ‘U.
Hence, there is a one-one correspondence between
computable subdomains of U and computable. retrac-
tions over U,

There are many different possible choices for
the universal domain. For our purposes, the par-
ticular choice is unimportant. All we need is an
arbitrary universal domain U determined by the
basis Up with the primitive rectractions Rpgo)s
Rge and R, , identifying the subdomains Bool
(Boolean truth values), UxU, and U>>U, and the
following operations (which are definable in terms
of the primitive operations provided by the univer-
sal domain):

true, false € Bool

def: W + Bool

cond: 3ool + (U + (U + ©))
amd: Bool + (Bool + Bool)
or: Bool + (Bool + Bool)
por: Bool + (Bool -+ Bool)
mot: Bool + Bool

pair: U+ (U + U x U))
proj1:s U xU + U

proj: ¥ x¥ + ¥

apply: ¥>>8 + (¥ + ¥)

§: (U>>U) + (U>>0 ~ U>>0)
K: U » (U>>0)

that obey the following axioms:

def(y) = &

x2L = def(x)=true
cond(true)(x)(y) = x
cond{false)(x)(y) = y

45 eubset S of the domain D with basis B is a
subdomain of D iff i) LeD, ii) SnB is closed under
the lub operation on finite comsistent (in D) sub-
sets, and iii) 8 is a domain under the ordering sy
with the basis set SnB.

cond(L)(x)(y) = L
amd(x)(y) = cond(x)(y)(false)
oxr(x)(y) = cond(x)(truwe)(y)
xZtrue A yZtrwe = por(x,y)=or(x,y)
x=trwe V y=truwe => por(x,y)strue
not(x) = cond(x)(false)(true)
Rx{x)=x = pair(projj(x))(projo(x}) = x
projj(pair(x)(y)) = x
projo(pair(x)(y)) = y
Ry »(£)=f =

apply(f,x) = lub{yeUp | 3 uelUp usx A u £ y}
apply(s(x))(y)(z) =

apply(apply(x)(z)) (apply(y)(z))
apply (K(x))(y) = x

With the exception of pox., S, and B, these
operations are generalizations of familiar opera-
tions from lazy LISP (where car, cdr, and cons
projls projz, and pair). The
declared domain for each operation is its intended
domain of usage. Each operation 1is actually
defined over the entire universal domain U; domain
declarations are enforced by projecting argument
outside the declared domain onto the
declared domain (using the retractiom Rp) Note that
since each operation f listed above is computable,
there is a corresponding computable mapping mapg
such that

correspond to

values

apply(mapg) = £ .

The S and K operations can be used to construct
an arbitrary computable mapping, including the com-
putable mapping mapy corresponding to the least
fixed point operator Y defined by

Y: 9>>8 + U = hu. (Mx. apply(u)(apply(x)(x)))
(\x. apply(u)(apply(x.x))) .

It is well known [Barendregt 77] that any closed
texrm (no free variables) in the (untyped) ) cal-
culus can be expressed as a composition of the
operations S and K. As a notational convenience, we
will use explicit \-abstraction instead composi-
tions of S and K, but on a formal level these
abstractions are simply abbreviations for the
corresponding compositions of S and K.

In the remainder of the paper, we will also use
the standard infix abbreviations for Boolean opera-
tions:

if x them y else z = cond(x)(y)(z)

xand y m amnd(x)(y)
xory wm or(x)(y)
x por y = por(x)(y).

3. The Construction of Laxy Spaces

In constructing a composite domain (such as a
Cartesian product or discriminated union) from com-
ponent spaces, we must decide how to form the 1
element of the composite space, i.e. determine
which constructed objects are identified with the

undefined composite object. This  decision
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implicitly determines whether the composite space
corresponds to lazy or non-lazy computations.

Let D) and D; be arbitrary computable sub-
domains of our universal space U with correspond-
ing retractions R] and Ry mapping U -+ U. Using
the Cartesian pairing functiom pair: U -+ U + UxU,
wve can form a surprisingly wide variety of simple
composite domains using the following domain con-
structions,

l. Ordinary product. DyxDy = {<x,y> | xeDj,

yeDy}. The corresponding primitive operations are:

Px: D} + (D3 + D3xD3) = Xx. \y. pair{(x)(y)
fstx: DyxDy + D) = Az. projj(z)
sndx: DyxDy + Dy = hz. proja(z)
Rx: W + DyxDy =
Mxe Px(Rp(fstx(x)))(Ry(sndx(x)))

2. Coalesced product.
yeDz, x%4, y#L} u {1},
operations are:

DjeD; = {<x,y> | =xeDj,
The corresponding primitive

Pg: D; + (Dy + Dj8Dy =
Az. dy. if def(x) amd def(y) them pair(x)(y)
else 1L
fstg: D@Dy + D} = Az. projj(z)
sndg: D1®Dy + Dy = \z. projy(z)
Re: U + Dja@D; = lx. Pe(Rjiiste(x)))(Ry(sndg(x)))

3. Separated product. Dyx;Dy = {<trme,<x,y>> |
x€D),» yeDz}. The corresponding primitive opera-
tions are:

Px,: D} + (Dz + Dyx; Dy =

x. \y. pair(trme)(pair(x)(y))
£ty : Dyx;Dy + D1 = hz. projy(proja(z))
sndy, : D)x,Dp + Dy = hz. proja(projz(z))
Ry, ¢ U + Dyx;D; =

x. Px, (R (fstx, (x))))(Ry(sndx (x))))

4. Coalesced sum, D}®D; = {<trme.x> | xeD), x*L}
u {<false,y> | yeDy, y%i} v {L}. The correspond-
ing primitive operations are:
InLg: D} + D)®Dy =
Ax. if def(x) them pair(trme)(x) else 1
Inkg: Dy + Dj@D, =
dx, if def(x) them pair{(false)(x) else 1
OutLg: D1®Dy + D) = \z. proja(z)
OutRg: D1®Dy + Dy = \z. proja(z)
IsLg: D1®D; + Bool = hz. projj(z)
IsRg: D)®D; + Bool = \z. met projj(z)
Rg: U + Dj@D, =
Ax. if Islg(x)) them IanL(py(R)(Outlg(x))
else InRg(R,(OutRe(x))

5. Separated sum. Dj+D; = {<trwe,x> | xeDj} v
{<false,y> | yeD3} u {1} The corresponding primi-
tive operations are:

InLys D3 + D1+Dy = Ax. pair(tree)(x)
InRy: Dy + D1+Dy = lx. pair{false)(y)
OutLy: Dy+Dy + D) = Xz, proja(z)
OutRy: D)+Dy + Do = Az, projy(z)
IsLy: Dy+Dg + Bool = Az. projy(z)
I8Ry: Dj+Dy + Bool = hz. met projj(z)
Ry: W + DDy =

Jx. if IsL, them InL,(Rj(OutL,(x)))

else InRy(Ry(OutR(x)))

6. Lifted domain. D; = {<trmwe,x> | xeD} u {1}.
Let Rp be the retraction corresponding to D. The
Primitive operations corresponding to D; are:

lift: D + D, = lx. pair(truwe)(x)
drop: D; + D = \z. proja(z)
R : @+ ¥ = )x, lift(R}{drop(x)))

In constructing domain products and unions,
there are three plausible ways to handle composite
objects containing an undefined component:

1. A composite object (an ordered pair) containing
an undefined component may be identified with the
undefined object in the comstructed domain.
Coalesced products (@) and sums (®) obey this con-
vention.

2. A constructed object containing at least omne
defined component may be distinguished from the
bottom element of the composite domain. In this
case, two such objects are equal only if all of
their corresponding components are equal. Ordinary

Cartesian products (x) obey this convention.

3. A composite object may always be distinguished
from the bottom element of the constructed domain.
In this case, the bottom element is outside the
range of the constructor function corresponding to
the composite domain. Separated products (x,),
separated sums (+), and lifted domains (,) all obey
this convention.

Each of these three different approaches to
constructing composite data objects corresponds to
a different evaluation protocol (sometimes called a
fcomputation rule®™ [Manna 74]) for evaluating
applications of constructor functions to argument
expressions, The first scheme corresponds to con-
ventional "call-by-value™ evaluation: evaluate all
argument expressions before forming the composite
object. The second scheme corresponds to dovetail-
ing the evaluation of all argument expressions
until one of them converges, and forming a compo-
site lazy object (where the arguments other than
the onme that converged remain unevaluated). The
third scheme corresponds to forming a composite
lazy object without evaluating any of the argument
expressions.
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In a lazy composite object, unevaluated argu~
wents are evaluated only when the corresponding
selector function (e.g. car and cdr in lazy LISP)
is applied to the composite object. If such an
application does not occur in the course of execut-
ing a program, the corresponding argument is never
evaluated.

The 1lifting operator ; provides an explicit
mechanism for constructing a dowain of "suspended"™
or “unevaluated™ elements corresponding to a given
domain D, Note that the composition of the lifted
domain construction with the ordinary product con-
struction is identical to the separated product
construction, i.e.

Dyx,Dg = D]-J.xnzl .

Similarly, the separated sum construction can be
defined in terms of the appropriate composition of
the lifting operator with the coalesced sum con-
struction:

+ = [ ) .
Dy*Dz = Dy ®Dy

Consequently, without loss of generality, we can
confine our attention when it is convenient to the
four domain construction mechanisms: x (ordinary
product), ® (coaleaced product), ® (coalesced sum),
and ; (lifting operator).

4, A Taxzomomy of Lists

The variety of mechanisms available for con-

structing lazy spaces suggests that there may be

several different lazy spaces that correspond to an
ordinary (industrious) recursive data domain (such
as lists) -- each with subtly different properties.
In fact, the number of semantically distinct possi-
bilities is surprisingly large. We will illustrate
this phenomenon by studying list domains in detail.
In particular, we are interested in determining and
classifying the possible variations on the data
industrious domain definition

(0) List = Atom @ (List @ List)

corresponding to the retraction

Rrisgt =
Y(Mf. du.
if IsLg(u) them Iulg(Ra¢on(Outlg(u))
else

InRg(Pg(fatg(OutRg(u))) (sndg(OutRg(u)))))

where Atom is a given flat subdomain of W. In the
process, we would like to identify which value
space corresponds to the implementation-oriented
semantics presented in the literature [Hendersom
and Morris76, Friedman and Wise76]. Our investiga-
tion will demonstrate that that apparently innocu-
ous variations in the definition of recursive data

domains have profound semantic consequences. For
the sake of simplicity, we will the domain Nat (the
domain of natural numbers) as the Atom domain in
all of our examples,

The obvious syntactic variations on industrious
List domain defined above replace ® by + or @ by x
or x;. They are:

(1) List = Nat + (List x List)

(2) List = Nat + (List @ List),
(3) List = Nat ® (List x List)
(4) List = Nat @ (List x; List)

(5) List = Nat + (List x; List)

We will subsequently consider other possible varia-
tions that involve the explicit use of the , opera-
tor,

As a gross categorization, we can classify list
spaces on the basis of whether they accommodate
infinite lists. The ordinary industrious space (0)
does not, but all of the lazy variants (1)-(5) do.
For example, the list expression

(0) Y(\u. InRg(Pg(InLg(2))(u)))

denotes the undefined element of the industrious
domain (0) while the corresponding expressions

(1) YQOw. InRy(Px(InL,(2))(u)))
(2) Y(\u. InR,(Pg(InL,(2))(u)))
(3) Y(O\u. InRg{(Px(InLg(2))(u)))
(4) Y()u. InRo(le(InL.(Z))(u)))
(5) Y(\u, InR4(Px, (InL4(2))(u)))

in the domains (1)-(5) respectively, all denote the
infinite linear list of 2's -- a fact which can be
easily checked from our definitionms,

Within the class of domains that support infin-
ite objects, we can analyze what kind of infinite
and undefined objected that lists may contain. By
using this form of analysis, we can determine that
the first four spaces (1)-(4) have fundamentally
different semantics and that space (5) is indistin-
guishable from space (1), unless we consider compu-
tations that return paired lists (objects in the
space Listx,List) instead of lists.

In space (1), lists can contain both undefined
lists and undefined atoms. In space (2), lists can
contain undefined atoms but not undefined 1lists.
In space (3), lists can contain undefined lists but
not undefined atoms. Space (4) is similar to space
(3) except that it distinguishes the list comsist-
ing of two undefined lists from the undefined list.
Space (5) 'is isomorphic to space (1), but the
corresponding compoment spaces Listx List and
ListxList are not.

By inspecting a few simple examples, we can
easily prove that all five spaces are semantically
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(corresponding computations will yield
In space (1), we can define

distinct
different answers).

(a) the infinite list containing no atoms;

(b) the infinite sequence containing wundefined
lists (1) alternating with zeros; and

(c) the list consisting of the undefined atom
as follows:

(a) Y(lu. InR4(Px(u)(u))), and

(b) YQOw. InRy(Px(L)(InRy(Px(InL4(0))}(u))})))
(c¢) InLi(Ydu. u).

However, in all the other spaces except (5) at
least one of the corresponding lists does not
exist., In space (2), expression (b) (with Pg sub-
stituted for Px) denotes the degenerate expression
InRy(1); lists may not contain undefined lists. In
space (3), both expression (a) (substituting InRg
for InR,) and expression (c) (substituting Inlg for
Inl:) denote the undefined list .; every defined
list must contain a defined atom. In space (4),
expression (c) (substituting InLg for InlL,) denotes
the undefined list L3 lists not contain undefined
atoms although undefined lists are permitted. Note
that no two of the spaces (1), (2), (3), and (4)
are isomorphic; the notion of finite element (list)
is fundamentally different in each case.

The final lazy space presented above (5) is
identical to (1) except that it contains a redun-
dant level of delayed evaluation in paired lists.
Hence, the meaning of the expression

OutR..,(InR..,(Px(J...L)))

in space (1) is Py(l,1) = L while the corresponding
computation in (5) (substituting Px, for Px) yields
PxL(L.L) # 1, Obviously, the semantic difference
between these two spaces is slight since it
requires a computation over the corresponding
paired list space to demonstrate any difference in
behavior between the two spaces.

With the aid of the ; operator, we can define
an even wider class of lazy list spaces. First, we
can define pairing operators that are lazy in only
one argument (unlike Py, le). Second, we can
delay the evaluation of atoms without delaying the
evaluation of paired lists. Finally, we can add
redundant levels of delayed evaluation in the for-
mation of either atomic lists or paired lists
analogous to the extra level that appears in paired
lists in space (5). Since every space in this last
class of lazy domains is isomorphic to a space out-
side the class (assuming we ignore affiliated com-
ponent spaces), we will not discuss it any further,

To facilitate classifying the extra spaces, we
redefine the five lazy list spaces that we have

already examined in terms in terms of the ; opera-
tor, ordinary cartesiam product (x), and the the
coalesced sum and product (@ and @):

(1) List = Nat, ® (List x List),
(2) List = Nat; @ (List @ List),
(3) List = Nat & (List x List)

(4) List = Nat @ (List x List),

(5) List = Nat; @ (List x List), .

When the domain definitions are expressed in this
simplified form, the close relationship between
space (5) and space (1) is evident.

The remaining interesting variations on lazy
ligts are:

(6) List = Nat @ (List, @ List)
(7) List = Nat @ (List @ List,)
(8) List = Nat; @ (List; @ List)
(9) List = Nat; @ (List @ List,)
(10) List = Nat; ® (List @ List) .

n

Variations (6), (7), (8), (9) all delay the evalua-
tion of only one argument of a paired list. As a
result, spaces (6) and (8) allow infinitely deep
lists but not infinitely long ones while spaces (7)
and (9) do the opposite, Spaces (6) and (7) prohi-
bit undefined atoms while spaces (8) and (9) accom-
modate them. Finally, lazy space (10) does not
accommodate infinite lists or undefined sublists
within lists, but atoms may be undefined.

At this point, the question arises: which deno-
tational definition of lazy lists corresponds to
the standard implementation-oriented definition
given in the literature [Friedman and Wise76]? The
answer is (4), where we interpret

(1) cons(x, y) as InRg(Lift(Px(x)(y))),
(2) car(x) as fstx(Drop{OutRg(x))),
(3) cdr(x) as sndx(Drop(OutRg(x))), and
(4) atomic constants a as InLg(a).

The situation is somewhat more complicated in
the case of the semantics presented in [Henderson
and Morris76]. Their semantic definition describes
a space isomorphic to (1), but the syntax of their
language prohibits the construction of undefined
atoms. Hence, they could used space (4) instead
without affecting the semantics of their lazy LISP
dialect.

5. Axiomatizimg Lazy Data Domaias

Since there are significant differences between
various formulations of lazy data domains, it is
important to develop clear, comprehensive axiomatic
definitions for the alternatives. Naively, we might
attempt to formally specify a lazy space like

List = Atom + List x List
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(given an axiomatization for Atom) by devising a
list of equations such as those presented in sec-
tion 3 and designating the lazy space as the
corresponding initial algebra (or alternatively the
corresponding final algebra). From our previous
discussion, it seems reasonable to conjecture that
this task will be deceptively difficult given the
variety of lazy spaces available. In fact, it is
impossible. No recursively enumerable set of equa-
tions can specify a non-trivial lazy space as
either the initial or final algebra corresponding
to the specification. We will formally prove this
fact after we establish a few important properties
of lazy spaces.

Unlike ordinary data domains, lazy spaces have
infinite strictly ascending chains of objects dg <
d} € d3 £ ... (where S denotes the approximation
relation introduced in Section 3) where each object
d; is comstructed in exactly the same way ae dj,4)
except that d; uses 1 to approximate substructures
of dj+). In ordinary industrious data domains (such
as LISP S-expressions), the undefined object 1 can-
not be embedded inside constructed objects, which
precludes the existence of infinite ascending
chains of successively more complete approxima-
tions.

This apparently small change in the definition
of data constructors (e.g. the LISP "cons™ opera-
tion) radically alters the structure of the data
domain. Ordinary structural induction, for exam-
ple, no longer holds, because lazy ap;ices contain
the limit elements of infinite ascending chains --
which cannot be constructed from primitive con-
stants (e.g. atoms) in a finite number of steps.
In short, the fundamental difference between lazy
and industrious domains is that lazy spaces contain
limit points while industrious spaces do not.

Since lazy spaces include limit points, we can
construct domain with a more interesting topologi-
cal structure using lazy domain constructors (such
as X) than their industrious counterparts (such as
@). An important illustration of this phenomenon
is the following observation: the lazy data domain

trivseq = (triv x trivseq)

is isomorphic to Scott's Pe model for the untyped
lambda calculus under the mapping o defined by:

a(x) = {i | xj~true}

where x; denotes the ith element of x = <xp, X,
ceer Xje ees 2. Furthermore, the primitive opera-

tions of Pe
0 ¢kp,
succ: P, + P,
pred: P, + P,

cond: B, + (P, + (P, + P,))
K: By, + (B, >> By)

§: Py, + (B, >> (B, >> B,))
apply: (By >> Py)xP, + B,

are all definable by first order recursion equa-
tions (recursive definitions) expressed in terms of
the constants trwe and 1, and the binary functions
pexr and smd on trxiv, and the constructor and
selector functions for trivseseq: cons (Py)
hd(fstyx), and t1 (sndx). The definitions appear in
the Appendix.

In addition, the computable mappings (elements of
Py> >Py) maPguccs WaPpreds WaPconde WaPKs and mapg
corresponding to the primitive functions succ,
pred, cond, K, and S are all definable by ground
terms in the same first order theory; we can simply
use the same scheme for translating )\ abstraction
used in the definition of § and K in the Appem-
dix. The details are left to the reader.

Since Pe# together with the operations S,K €
Pe> >Pe¢ and apply: Pe>>Pe x Pe + Pe forms a
model for the (untyped) lambda calculus (excluding
n-reduction), the lazy space trivseq with the
corresponding operations also constitutes a model
for the untyped lambda calculus. Lazy spaces pro-
vide a simple mechanism for treating higher order
objects (functions) exactly like ordinary ones.
Moreover, any first-order characterization of lazy
spaces will indirectly provide a first-order theory
of the lambda calculus and higher order objects.

We have now developed sufficient machinery to
prove the theorem establishing the inadequacy of
algebraic specification as a formalism for specify-
ing lazy spaces:

Theoxrem: Neither initial algebra specifications
nox final algebra specifications (consisting of a
recursively enumerable set of equations) can define
lazy spaces.

Proof: We will prove the theorem for the specific
lazy space trivseq, but it is clear that
trivseq can be implemented (using an inverse
homomorphism) within any non-trivial lazy space.

The initial algebra corresponding to a recur-
sively enumerable set of equations A is the set of
equivalence classes of ground terms under the rela-~
tion MustEqual, where MustEqual(x,y) is true iff
x=y is derivable from A by first order deduction,
Hence the equality relation on ground terms is
recursively enumerable. Yet the equality relation
for a trivseq is obviously not recursively enu-
merable; otherwise, we could recursively enumerate
the set of all pairs of equivalent programs (using
the untyped )\-calculus as our programming language)
-~ a set which is obviously not recursively
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enumerable.

Similarly, the final algebra corresponding to a
set of equations A (assuming the final algebra
exists) is the set of equivalence classes under the
relation CannotEqual where CannotEqual(x,y) is true
iff x%y is derivable from A u {trmezZfalse} by
first order deduction. Note that if A has no final
algebra, then CannotEqual is not an equivalence
relation. For a final algebra, the inequality
relation is obviously recursively enumerable, but
again the inequality relation for trivseq clearly
is not. Otherwise, we could recursively enumerate
the set of all pairs of inequivalent programs
(cdtteaponding to unequal partial recursive func-
tions), a set which is obviously mnot recursively
enumerable.

Q-E.D.

Since lazy spaces are so similar in structure
to Pms. an obvious approach is to use a least fixed
point logic similar to Edinburgh LCF that con-
veniently expresses the properties of Pg. (See
[Giles78] for an LCF axiomatization of lazy lists.)
However, we would prefer not to abandon first-order
logic for two reasons. First, first-order systems
(such as first-order Peano arithmetic) based on
structural induction provide a simple, elegant
characterization of ordinary data spaces. The
highly successful Boyer-Moore LISP Verifier
[Boyer75,79] is based on such a first-order system.
We would like to extend this approach to handle
lazy lists as well. Second, the completeness
theorem for first order logic provides a invaluable
tool for analyzing the deductive power of any
theory. If a first order theory is too weak to
establish a particular theorem, there must be a
non-standard model in which that theorem is false.
In higher order logics, on the other hand, a theory
may be too weak to prove an important theorem, yet
there may be no model that refutes it.

6. A First-Order Theory of Lazy Spaces

The chief obstacle to extending ordinary
first-order structural induction theories to lazy
spaces is that conventional structural induction is
applicable only to sets without limit points, yet
lazy spaces under the (proper) substructure order-
ing < include limit points. If we develop a candi-
date axiomatization containing

(1) implications between equations relating the
prinitive domain operations (comstructors,
selectors, characteristic functions, cond,
computable equality);

(2) inequations asserting that the Boolean truth
values trwe, false, and the undefined

object L are all distinct;

(3) axioms describing the substructure ordering c
(a predicate), the approximation ordering <,
and the characteristic predicate Isfin for
finite objects (mgubers of the domain's
basis); and

(4) the structural induction scheme

Ve [V (x'ax = 6(x')) = 8(x)] = Vz o(z);

then the specified domain contains only the finite
objects of the lazy space.’ The structural induc-
tion scheme (4) has the effect of bauning the
infinite objects from the domain. In fact, we can
prove that

Vx IsFin(x)
by structural induction.

As a result, recursive definitions over the
domain may not have least fixed points because
directed sets do not necessarily have least upper
bounds. For example, if we consider a domain con-
sisting the finite objects in trivseq, the function
definition

f(x) = cons(true,f(x))
is contradictory, because we can prove by struc-
tural induction that

YV x,y x#cons(y,x)

including x = 1!

If we replace induction scheme (4) by an induc-
tion axiom scheme restricted to finite objects:

(4') Vx [IsFin(x) = [vx'[x'cx = 6(x')] = o(x)i]
= [Vz IsFin(z) = e(z)] ,

then the lazy space is a model for our axiomatiza-
tion, but so is the subspace containing only finite
objects. In such a theory, we could not prove any
interesting statements about infinite objects.

6.1. A Satisfactory Axiomatizatioas

The solution to the problem is to augment the
axiomatization consisting of (1), (2), (3), and
(4') above by two additiomal schemes asserting
that:

(5) every definable directed set has 2 least upper
bound and

(6) every term t(x) is continuous in the variable
%o

SNon-standard models may contain "infinite ob-
jects™, but their behavior does not resemble that
of lazy data objects.
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Let 6(u) and t(u)
be an arbitrary formula and term respectively in
the language of the data domain and and let x,y.z
be variables not free in either 8(u) or t(u). Let
Dir{t(u)(6(u)} abbreviate the formuld

Vx,ylo(x)ae(y) = Jzlo(z) A xst(z) A yst(z)]]

They are formalized as follows,

which asserts that {t(u)i@(u))} is a directed set.
Let lub{t(u)le(u)}(v) abbreviate the formula

Ve [(8(x) = t(x)sv) A
Vz{¥x0(x) => t(x)sz) = t(x)sv]

which asserts that v is the least upper bound of
the set {t(u)|6(u)}. Note that u is not free in
either Dir{t(u)le(u)} or 1lub{t(u)]|6(u)}(v) Then
the two necessary schemes are:

(5) (the existence of least upper bounds)

Dir{t(u)le(u)} = v [lubit(u)i6(u)}(v)]

(6) (the continuity of functions)

lub{t(u)i8(u)i(v) =
Iv [1wbix|e(x)}(v) A v=t(u)].

where t(u) and €(u) are an arbitrary term and for-
mula containing no free variable other than u.
This scheme asserts that the function Ju. t(u) is
continuous at the definable point 1lubf{ul6(u)}

assuming it exists.

Although there are no blatant sources of incom-
pleteness in this axiomatization & ((1), (2), (3),
(4a), (4b), (5), (6)), it is not obvious that the
system is strong enough to prove all of the impor-
tant properties of particular lazy spaces. For this
reason, it is interesting to compare the power of
our first-order system with the corresponding
theory in LCF, a logic specifically designed to
accommodate ®higher order™ spaces like Ps#., The LCF
theory looks similar except:

1. It includes the typed lambda calculus in the
term syntax for the logic.

2. The induction axiom scheme is fixed point
induction on recursively defined functioms. This
scheme has the form

(L) A Vile(£)=0(r(£))]) = o(Y(Mf.r(£)))

where 8(f) is a formula that admits induction on f.
It is applicable only to admissible formulas, where
admissibility is a complex syntactic test that
analyzes the types of terms within the formula (see
[Gordon77] for a precise defimition). The closest
analog of structural induction in LCF is fixed

6For a non-trivial lazy space (e.g. trivseq)
the axiomatization is obviously not complete by
Godel's first incompleteness theorem.

point induction on the retraction characterizing
the domain of interest.

After studying the two systems, we were
surprised to discover that our system is at least
as strong as LCF both in expressiveness and deduc-
tive power. We can systematically translate LCF
statements into equivalent first order statements,
by converting all lambda expressions into
equivalent expressions formed using the standard S
and K combinators, which are definable in our
first-order system using the comstruction shown in
the Appemdix. Moreover, all of the LCF proof
rules and axioms (expressed in terms of translated
formulas) are derivable in our first-order system.
In particular, we can derive the LCF fixed point
induction scheme for admissible formulas. The
derivation critically relies on the structural
induction scheme for finite objects (4'), the least
upper bound scheme (5), and and the continuity
scheme (6). We call this first order analog of
fixed point induction, lazy induction. The formal
derivation of lazy induction within our system is a
tedious induction on the structure of formulas that
is beyond the scope of this paper, but the basic
idea underlying the proof is imstructive.

The admigsibility test in LCF ensures that
passing to the limit of a directed set (of lazy
data objects) does not change the meanings of sub-
formulas that determine the truth of the entire
formula. The idea behind the derivation is that
the metamathematical justificatiom for fixpoint
induction on a function within a particular admis-
sible formula can be tramslated into a proof im our
first order system consisting of two parts. The
first part utilizes conventional structural induc-
tion to establish that the formula holds for all
finite approximations to the function. The second
part extends the result to the entire function (an
infinite lazy object) by appealing to the defini-
tion of admissibility.

Lazy induction is a particularly useful rule
for reasoning about a lazy data domains when it is
applied to the retraction characterizing the lazy
space. In this case, the premises of the rule are
identical to those of conventional structural
induction. Hence, if a formula is admissible, con-
ventional structural induction establishes the for-
mula holds for all objects, not just finite omes!

6.2. A Sample Program Proof.
Consider the recursive definition
app(x,y) = if atom x them y
else cons{car x,app(cdr x,y))
over the data domain List X List where

List = Atom + ListxList
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car = fsty°OutR,
cdr = sndx°QutR,
cons = InRyoPyx
atom = IsLy .

The following formula
Vx,yoziList app{(x,app(ys»z)) = app(app(xs¥)sz).

is obviously true on the domain of finite objects.
The proof is a trivial induction on the structure
of x. Does the same theorem hold for all lazy
lists? The answer must be yes, because the formula
stating the theorem is admissible! Lazy induction
enables us to prove theorems about lazy spaces
using conventional structural induction.

7. Comclusions amd Future Research

Although implementation-oriented definitions of
lazy evaluation provide some insight into the
behavior of particular computations, they are
inadequate as the basis of a logical theory of lazy
spaces., They also blur subtle but important seman-
tic distinctions between different forms of lazy
evaluation. Our abstract characterization in terms
of domain constructors provides a much clearer pic-
ture of the mathematical properties of lazy spaces
and directly corresponds to a natural formal system

for reasoning about them.

Since lazy spaces have essentially the same
complex structure as Scott's Pe model of the
untyped lambda calculus, they cannot be specified
by restrictive specification methods such as alge-
braic specification. One approach is to axiomatize
lazy spaces within a least fixed point logic such
as LCF. In this paper we have presented a first-
order theory of lazy spaces that we prefer to
higher order formalizations because it relies on
conventional structural induction rather than fixed
point induction as the fundamental axiom scheme.
In our system, the admissibility test for fixed
point induction is simply a sufficient set of con-
ditions for its derivation. Moreover, our system
extends conventional structural induction (as
implemented in the Boyer-Moore LISP Verifier
[Boyer75,79]1) to the context of lazy data domains.
providing programmer with a simple intuitive frame-
work for reasoning about functions that manipulate
lazy data objects.

Since
extensional

computable functions have a natural

representation as lazily evaluated
graphs (mappings), our first-order formalization of
lazy spaces accommodates function spaces as well.
However, we must overcome one major obstacle to
make our treatment of functiomns intuitively acces-
sible to programmers: our reliance on combinators
rather than lambda expressions to denote computable
mappings. In response to this issue, we are
currently developing a collection of combinators

that closely correspond to conventional lambda

notation.
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9. Apperdix: Embedding Pe im trivseq

For the sake of clarity, all of the recursive
definitions in this appendix obey the following
syntactic conventious.

1. The names of triv operations (functions that
return values of type triv) are capitalized; the
names of trivseq operations (functions that
return values of type trivseq) other than S and K
are mot.

2, Variables ranging over trivseq that are
intended to denote arbitrary sets in Pe are capi-
talized. Variables ranging over trivseq that are
intended to demote individual natural numbers (sin-
gleton sets) are not. No variables range over
triv.

3. Each triw operation is anmotated with comment
(a string of the form # ...) specifying the object
in txiv that the operation computes.

4. Each trivseq operation is annotated with a
comment specifying the the abstract object in Pe
corresponding to the element of trivseq that the
operation computes.

Recursive definitions for all the primitive
operations of Pe (0, pred, succ, cond, S, K,
apply) appear below.

0 = cons(true,l) # {0}
succ(X) = cona{iL,X) # {utl | u € a(X)}
pred(X) = t1 X # {u | utl € a(X)}

cond(X,Y,2) =
# {ueal(¥)|0 € a(X)} v {v € a(¥)Id w wtl € a(X)}
cons([hd X amd hd Y] por [Def tl X amd hd Z],
cond(X. tl Ya tl Z))

# let <uyv> = [(u+v)(utv+1}1/2 + u
pair(U,V) = # {<uy,v> | Ju € a(U),v € a(V)}
plus(halve(times(plus(U,V),
plus(plus(U,V),succ(@))))),
U)

fst(2) = £5t1(0,2) # {u | Jv <u,v> € a(2)}

fatl(i,z) = # {u-i | v <u,v> € a(2)}
cons{Check2(i,0,2),£fstl(succ(i),2))

Check2(i, j»2) = # 3 k2j <i,k> € a(2)
Consist(pair(i,j),2) por Check2(i,succ(j),2)

Consist(X,Y) = #3iiealX)Aiceal(l)
hd X amd hd Y por Consist(tl X,tl Y)

snd(X) = snd1(0,2) # {v | Ju <u,v> € a(2)}

sndl{j,2) = # {v-j | Ju <u,v> € a(2)}
cons(Check1(0,j»2),sndl(succ(j)s2))

Checkl(i,j,2) = # 3 k2i <k,j> ¢ a(2)
Consist (pair(i,j),2) por Checkl(succ(i),js2)

plus(X,Y) = # {utv | u e a(X) A v € a(Y)}
cons(hd X amd hd ¥,
cons([hd t1l X amd hd Y] pox
[hd X and hd t1 Y],
plus(tl X, t1 ¥)))

times(X,Y) = # {urv | v e a(X) Av e a(Y)}
cons([Def X amd hd Y] por [hd X amd Def Y],
plus(tl X, times(X, tl Y)))
Def(X) = hd x por Def tl X # Ju € a(X)
top = cons(tree,top) # {i}
K(X) = pair(top,filter(X)) # {<u,v> | v € a(X)}

# let ej\ay denote the finite set in P#

# corresponding to code i

filter(X) = filterl(X,0) # {i | ejea(X)}

filterl(X,i) = ¥ {j-i | ej=(X)}
cons(Approx(i,X), fxlterl(x.succ(x)))

Approx(i,X) =
hd i pox
[({odd i amd hd X] por odd tl i) amd
Approx(halve(i),tl X)]

# ejeu(X)

0dd(X) = hd tl x por odd tl t1 X # 3i 2i+l € a(X)
halve(X) = # {i12i € a(X)} v {jl2j+la(X)}
cons(hd X por hd tl X, halve tl tl X)

82(X,Y,2) = apply(apply(Xs2),apply(Y,2))
s1(X,Y) = abstr2(%,Y,0) # \z. 82(X,Y,2)
abstr2(X,Y,i) =
# {<uv>-i | v € a(s2(X,Y,a"1(ey)))}
cons (Approx(snd i,s2(X,Y,fst 1)),
abstr2(X,Y,succ(i)))
S(X) = abstrl(X,0) # )\Y. 8l(X,Y)

abstrl(X,i) = # {<u,v>-i | v € a(s1(X,a"1(ey))}
cons(Approx(snd i,sl(X,fst i)),
abstrl(X,succ(i)))
apply(F,X) = # {v | Ju <u,v>eF A e, X}
snd(applyl(0,F,X))
applyl(l.F.X) =

# {p | 3p2i A peF A egge(p)=X)
(cons(Test(1.X.F).app1yf23ucc(1).F.X)))
Test(psXsF) = # peF A efgq
Consist(p,F) amd Approxe%st(p) X)
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