
PANDA:

A Pascal Network Data Base Management System

Andr# Frank

Ins t i tu te of Geodesy and Photogrammetry

Swiss Federal Ins t i tu te of Technology ETH)

Zurich, Switzerland

I. Introduction

PANDA is a set of database programmes en t i re l y
wr i t ten in Pascal and especia l ly suited for small
(micro) computer systems; i t was developed with
in teract ive appl icat ion and computer graphics in
mind.

PANDA is based on the network approach to data
management, as i t is proposed by CODASYL ICODASYL
711 . PANDA is therefore s imi lar to commercially
avai lable systems on main frames such as e.g. DBMS
from Dig i ta l Equipment Corp. The programmes in ter -
face of PANDA was specia l ly adapted to the use with-
in Pascal programmes. I ts use seems much easier for
the programmer than the CODASYL proposal.

PANDA is small enough to be used on small sys-
tems. The code for a Motorola 6809 micro-processor
is about 15 kbytes. PANDA, especia l ly i ts buffer
management, is fur ther adapted to small computer
systems.

PANDA is, however, not a system for the fast
organization of data with l i t t l e strucuture and
does not feature an in teract ive query language or
a report generator. PANDA is a tool for the pro-
grammer to f a c i l i t a t e the structur ing of complicated
data, not a u t i l i t y for the end user.

2. Goals of PANDA

We wrote PANDA in order to f a c i l i t a t e the
programming task of a group of researchers, work-
ing at geometric modelling including sophisticated
graphical representation. The data structure we
encountered seemed complex enough to use a complete
database management system.

Through our experience with a CODASYL type
DBMS (DBMS-IO from DEC) on s imi lar problems we found

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM0-89791-083-4/82/008/0073 $00.75
73

that programming with such a system in COBOL is
more d i f f i c u l t than using Pascal without this aid.
We intended therefore to combine the advantages of
the DBMS with the Pascal programming language.

In order to be able to transfer our pro-
grammes to small systems we needed a compact and
easi ly transportable DBMS. We decided therefore to
wr i te i t as far as possible in Pascal and make i t
as simple as possible.

F ina l l y , we had to consider performance; we
need e f f i c i en t methods for data access in order to
draw pictures d i rec t l y from the stored data in the
database. The goal was to be able to dispense
completely with addi t ional in programm data storage.

3. Reasons for the network data model

Most DBMS on small computers are based on
the re la t iona l data model ILewis 811 . The re-
la t iona l data model is based on a few simple con-
cepts and theore t i ca l l y well understood. ICodd 811
I t has been used for some implementations on main-
frames (INGRES, ORACLE, SQL) but general ly the
requirements on hardware are great and performance
sometimes a problem.

The network model was designed in the late
'60s considering more the hardware requirements
than mathematical c l a r i t y . For data with complex
structure and for treatments which re ly heavi ly
on this structure the network data model leads to
probably easier implementations and higher per-
formance IFrank 821.

An example: We consider two data elements,
the one describing an employee and the other a
departement:

employee department

emp-nr, name, dep-nr dep-nr, dep-name

I f we are interested in knowing the name of
the department the employee works in, then the
most common implementation of the re la t iona l data
model looks for a department with the same dep-nr
as is registered in the employee's record using a
B*-tree |Knuth 731, giving two or more accesses to
disk. The network implementation stores with the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800069.802168&domain=pdf&date_stamp=1982-08-02

employee record a po in te r to the department and
needs the re fo re only one access to d isk . I t is
wel l known tha t the number of d isk accesses are
the most impor tant f ac to r i n f l uenc ing the p e r f o r -
mance of a DBMS.

4. Pascal as a programming language fo r a DBMS

The i n ten t i on from the very beginning was to
w r i t e PANDA complete ly in Standard Pascal IJensen
741 . Of course commands fo r random accessing of
f i l e s must be present , e i t h e r as an extension to
Pascal (as many Pascal compi lers fea tu re now-
adays) or as c a l l s to some func t ions w r i t t e n in
another language.

A DBMS e n t i r e l y w r i t t e n in Pascal would be
a very va luab le asset in order to be able to t rans-
f e r programmes to d i f f e r e n t hardware. We in ten-
t i o n a l l y renounced from any changes in the Pascal
compi ler in order to mainta in p o r t a b i l i t y and we
were ready to pay some pr ice fo r t h i s advantage.

In order to be able to t r e a t the d i f f e r e n t
record types as they appear to the app l i ca t i on
programmer in the same way w i t h i n PANDA, they must
be declared as va r i an t par ts of an element record.
This has the disadvantage tha t a l l records requ i re
equal amount of space, which means waste of space
i f some are smal ler than o thers , but s i m p l i f i e s
the whole data management ext remely - the most
t r i v i a l a lgo r i thm fo r bu f fe r management may be
used. This makes programmes shor te r and running
f a s t e r .

5. In f luence of Pascal as an app l i ca t i on
programmer's language

The a p p l i c a t i o n programmer's i n te r f ace pro-
posed by CODASYL is su i ted f o r the embedding of
the data manipu la t ion language (DML) w i th in COBOL
(as an extension of the COBOL compi le r) .

I t is we l l known, tha t t h i s i n te r face is not
very easy to use f o r the app l i ca t i on programmer.
Reconsiderat ion of the i n te r face fo r a DBMS to be
used in Pascal is t he re fo re necessary.

A l l data manipu la t ion language c a l l s are
func t ions which are evaluated as ' t r u e ' i f they
have been ca r r i ed out complete ly - otherwise they
are evaluated as ' f a l s e ' and re tu rn in a f i e l d an
except ion code. This seems a s y n t a c t i c a l l y easy
so l u t i on .

Data manipu la t ion language statements usua l l y
re tu rn a record requested but in network databases
(sometimes ca l l ed ' n a v i g a t i o n a l ' iBachmann 731)
they are o f ten pos i t i on dependent and need some
input to i nd i ca te the actual pos i t i on in the data
base, e,g. ' f i n d next ' needs input of the actual
pos i t i on in the set . This led in CODASYL to the
two concepts of ~ser working area where data are
exchanged between the programme and the data base
and the cursors which mainta in pos i t i on in fo rmat ion
f o r l a t e r data manipu la t ion commands. Apparent
problems of programmers using these concepts made
us look f o r an idea eas ie r to unterstand. The

74

so lu t i on in PANDA t r i e s to un i f y these two con-
cepts in the element record which has a double
func t i on :

- i t con ta ins , in the va r i an t pa r t , the
actual data of the user programme,

- i t is an i n d i c a t o r of an actual pos i t i on
in the data base space.

This double func t ion is convenient f o r the
user: whenever something is needed he passes an
element record and, depending on the c a l l , e i t h e r
the data par t is used or i t is i n t e r p r e t e d as a
p o s i t i o n . This makes the ' c u r r e n t ' r e g i s t e r s and
the complex ru les of updat ing them in the CODA-
SYL proposal super f luous. As TYPE dec la ra t i ons
fo r the data in the data base are au toma t i ca l l y
inser ted in the programme, the programmer may
dec lare as many element records as he needs in a
procudure.

Comparisons of code w r i t t e n w i th a CODASYL
DML and PANDA show tha t PANDA needs cons iderab ly
less code (I / 3 in a rep resen ta t i ve example).

6. Buf fer management

Performance of a DBMS is p r i m a r i l y dependent
on d isk accesses (using at l eas t 30 msec each). To
minimize physical d isk accesses a l l DBMS mainta in
some par t of the database not on ly in the f i l e s
but also in the main memory (b u f f e r) . The manage-
ment of t h i s bu f fe r is c ruc ia l to performance. The
goal must be tha t as o f ten as poss ib le a record
needed can be found in t h i s bu f fe r and no phys ica l
access to d isk is necessary.

In a graph ica l a p p l i c a t i o n very o f ten a
p i c tu re has to be redrawn: more or less the same
data is used again. A c lever bu f fe r management
could avoid add i t i ona l d isk I / 0 .

Most known DBMS's d i v i de the data f i l e in
pages. Pages are the un i ts tha t are brought in
bu f fe r , kept there and f i n a l l y copied back to
the f i l e , most ly using a ' l e a s t r e c e n t l y used
s t r a t e g y ' . Un fo r tuna te l y , pages are r e l a t i v e l y
large (I kbytes as a minimum) so on ly a few may
be kept in bu f f e r at any t ime. Very o f ten a page
contains on ly one or few records useful f o r the
task at hand - so in much space on ly few useful
data are s tored.

PANDA the re fo re is based on a complete ly
d i f f e r e n t idea. The bu f f e r contains element
records, not pages IKaehler 811 .

A record is brought in when needed and only
t h i s reco rd ' s space is used. Consequently, the
bu f f e r space can be f i l l e d out complete ly w i th
useful data; more records can be kept in bu f fe r
and fewer accesses to d isk are necessary. In the
graphic a p p l i c a t i o n we developed PANDA f o r , we
expect to keep one complete p i c t u r e in bu f fe r and
to be able to redraw a p i c t u re w i thou t any access
to d isk ,

This type of bu f fe r management f a c i l i t a t e s

the rea l i sa t ion of the transaction.concept.

An atomic transaction is a bundle of oper-
ations of which e i ther a l l or none are carried out.
This is a very important concept to maintain data
base in teg r i t y : e i ther a change in data is made
completely or not at a l l - no intermediate states
are ever v i s ib le to the user ILampson 811 .

In PANDA only the data in the buffer is
changed during a transaction. At the end of the
transact ion, in one action, e i ther a l l the changes
in the buffer are copied in the f i l e or the trans-
action is abandoned and the changes in the buffer
are thrown away. This is s imi lar to the shadow
page mechanism IReuter 811 but much simpler and
faster .

7. Data descript ion

The data descript ion in PANDA could be more
comfortable. The appl icat ion programme is requested
to prepare some simple Pascal procedures for in-
clusion in the PANDA source. The PANDA system con-
tains a preprocessor (also wr i t ten in Pascal) for
inclusion of f i l e s in a Pascal source f i l e . Some
of the f i l e s are also used for inclusion in the
appl icat ion programmes.

After the data descript ion is made, the PANDA
routines can be compiled (i f the Pascal compiler
supports separate compilat ion). This is advan-
tageous compared with the usual approach in DBMS
whereby the routines are compiled beforehand and
the adaptation to the task at hand is through data
values. The compilation with the data declarat ion
makes possible the inclusion of some appl icat ion
dependent values in the executable code.

8. Data manipulation

PANDA features commands for data manipulation,
mostly s imi lar to the CODASYL proposal, although
the combination of cursor and user working area
reduces the number of commands. Here only a short
overview:

environment:

I n i t i a l i s e the PANDA system
terminate the PANDA system
end transaction (commit)
abort transaction

f ind a record in the data base

f ind next in set
f ind owner in set
f ind element based on given data values

(global)
f ind element within set, based on given

data values

update the data base

store new record
- modify data values

(includes possible changes in posit ion to
maintain set order)

- delete record
- insert a record in a set
- remove a record from a set

9. What can PANDA be used for

In a great number of appl icat ions the data
structure and the procedures to maintain th is
structure claim a great part of the programmer's
to ta l e f fo r t . This seems true for such d i f fe r ing
problems as programmes for f inanc ia l analysis and
other accounting problems, compilers, geometric
modelling and graphics.

In a l l these cases we can iden t i f y data
elements which occur in unknown number and which
are related to each other:

- departments containing employees
- houses iden t i f i ed by addresses (street ,

house number) but also fur ther defined
by co-ordinate values for the i r corners.

In a l l these cases programming may benef i t
from the data structur ing that can be defined
before coding starts and which is afterwards en-
forced for a l l programmers. Furthermore a l l the
routines for maintaining the data are already
wr i t ten, including the management of buffers in
order to keep always the data most needed in
the main memory.

Furthermore the PANDA code is well struc-
tured. I t is easy to adapt i t to an appl icat ion 's
special needs.

75

L i terature

Bachman 73

CODASYL 71

Codd 811

IFrank 821

Jensen 731

IKaehler 811

IKnuth 731

ILampson 81

ILewis 811

IReuter 811

Bachman, W.C., The programmer as a
navigator, ACM Comm. 1973

CODASYL Data Base Task Groupe
(DBTG) Report, Apri l 1971

Codd E.F., Relat ional Database:
A Practical Foundation for Pro-
duc t i v i t y , ACM Comm., Vol. 25,
No. 2, p. 109, Febr. 1982

Frank A., PANDA, Bericht, I ns t i t u t
fur Geod~sie und Photogrammetrie,
ETH ZUrich, 1982

Jensen K., Wirth N., Pascal, User
Manual and Report, Springer Verlag
1974

Kaehler T., Vi r tual Memory for an
Object-Oriented Language, BYTE,
Vol. 6. No. 8, p. 378, Aug. 1981

Knuth D., The art of computer
programming, Vol. 3, Sorting and
Searching, Addison Wesley 1973

Lampson B.W., Paul M., Siegert H.J.
(Eds.) Distr ibuted Systems -
Architecture and Implementation,
Springer-Verlag 1981

Lewis, Proceedings of the SIGSMALL-
SIGMOD conference 1981

Reuter A., Fehlerbehandlung in Da-
tenbanksystemen (Datenbank-Recovery),
Hauser Verlag, MUnchen 1981.

