Check for
Updates

PANDA:

A Pascal Network Data Base Management System

André Frank

Institute of Geodesy and Photogrammetry

Swiss Federal Institute of Technology (ETH)

Zurich, Switzerland

1. Introduction

PANDA is a set of database programmes entirely
written in Pascal and especially suited for small
(micro) computer systems; it was developed with
interactive application and computer graphics in
mind.

PANDA is based on the network approach to data
management, as it is proposed by CODASYL |CODASYL
71|. PANDA is therefore similar to commercially
available systems on main frames such as e.g. DBMS
from Digital Equipment Corp. The programmes inter-
face of PANDA was specially adapted to the use with-
in Pascal programmes. Its use seems much easier for
the programmer than the CODASYL proposal.

PANDA is small enough to be used on small sys-
tems. The code for a Motorola 6809 micro-processor
is about 15 kbytes. PANDA, especially its buffer
management, is further adapted to small computer
systems.

PANDA 1is, however, not a system for the fast
organization of data with 1ittle strucuture and
does not feature an interactive query language or
a report generator. PANDA is a tool for the pro-
grammer to facilitate the structuring of complicated
data, not a utility for the end user.

2. Goals of PANDA

We wrote PANDA in order to facilitate the
programming task of a group of researchers, work-
ing at geometric modelling including sophisticated
graphical representation. The data structure we
encountered seemed complex enough to use a complete
database management system.

Through our experience with a CODASYL type
DBMS (DBMS-10 from DEC) on similar problems we found

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-083-4/82/008/0073 $00.75

73

that programming with such a system in COBOL is
more difficult than using Pascal without this aid.
We intended therefore to combine the advantages of
the DBMS with the Pascal programming language.

In order to be able to transfer our pro-
grammes to small systems we needed a compact and
easily transportable DBMS. We decided therefore to
write it as far as possible in Pascal and make it
as simple as possible.

Finally, we had to consider performance; we
need efficient methods for data access in order to
draw pictures directly from the stored data in the
database. The goal was to be able to dispense
completely with additional in programm data storage.

3. Reasons for the network data model

Most DBMS on small computers are based on
the relational data model |Lewis 81|. The re-
lational data model is based on a few simple con-
cepts and theoretically well understood. [Codd 81|
It has been used for some implementations on main-
frames {INGRES, ORACLE, SQL) but generally the
requirements on hardware are great and performance
sometimes a problem.

The network model was designed in the late
'60s considering more the hardware requirements
than mathematical clarity. For data with complex
structure and for treatments which rely heavily
on this structure the network data model leads to
probably easier implementations and higher per-
formance |Frank. 82].

An example: We consider two data elements,
the one describing an employee and the other a
departement:

employee

emp-nr, name, dep-nr

department
dep-nr, dep-name

If we are interested in knowing the name of
the department the employee works in, then the
most common implementation of the relational data
model Tooks for a department with the same dep-nr
as is registered in the employee's record using a
B*-tree EKnuth 73|, giving two or more accesses to
disk. The network implementation stores with the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800069.802168&domain=pdf&date_stamp=1982-08-02

employee record a pointer to the department and
needs therefore only one access to disk. It is
well known that the number of disk accesses are
the most important factor influencing the perfor-
mance of a DBMS.

4. Pascal as a programming language for a DBMS

The intention from the very beginning was to
write PANDA completely in Standard Pascal [Jensen
74|. 0f course commands for random accessing of
files must be present, either as an extension to
Pascal (as many Pascal compilers feature now-
adays) or as calls to some functions written in
another language.

A DBMS entirely written in Pascal would be
a very valuable asset in order to be able to trans-
fer programmes to different hardware. We inten-
tionally renounced from any changes in the Pascal
compiler in order to maintain portability and we
were ready to pay some price for this advantage.

In order to be able to treat the different
record types as they appear to the application
programmer in the same way within PANDA, they must
be declared as variant parts of an element record.
This has the disadvantage that all records require
equal amount of space, which means waste of space
if some are smaller than others, but simplifies
the whole data management extremely - the most
trivial algorithm for buffer management may be
used. This makes programmes shorter and running
faster.

5. Influence of Pascal as an application
programmer's language

The application programmer's interface pro-
posed by CODASYL is suited for the embedding of
the data manipulation language (DML) within COBOL
(as an extension of the COBOL compiler).

It is well known, that this interface is not
very easy to use for the application programmer.
Reconsideration of the interface for a DBMS to be
used in Pascal is therefore necessary.

A1l data manipulation language calls are
functions which are evaluated as 'true' if they
have been carried out completely - otherwise they
are evaluated as 'false' and return in a field an
exception code. This seems a syntactically easy
solution,

" Data manipulation language statements usually
return a record requested but in network databases
(sometimes called 'navigational’ |Bachmann 73])
they are often position dependent and need some
input to indicate the actual position in the data
base, e.g. 'find next' needs input of the actual
position in the set. This led in CODASYL to the
two concepts of user working area where data are
exchanged between the programme and the data base
and the cursors which maintain position information
for later data manipulation commands. Apparent
problems of programmers using these concepts made
us Took for an idea easier to unterstand. The

74

solution in PANDA tries to unify these two con-
cepts in the element record which has a double
function:

- it contains, in the variant part, the
actual data of the user programme,

- it is an indicator of an actual position
in the data base space.

This double function is convenient for the
user: whenever something is needed he passes an
element record and, depending on the call, either
the data part is used or it is interpreted as a
position. This makes the 'current' registers and
the complex rules of updating them in the CODA-
SYL proposal superfluous. As TYPE declarations
for the data in the data base are automatically
inserted in the programme, the programmer may
declare as many element records as he needs in a
procudure.

Comparisons of code written with a CODASYL
DML and PANDA show that PANDA needs considerably
less code (1/3 in a representative example}.

6. Buffer management

Performance of a DBMS is primarily dependent
on disk accesses {using at least 30 msec each). To
minimize physical disk accesses all DBMS maintain
some part of the database not only in the files
but also in the main memory (buffer). The manage-
ment of this buffer is crucial to performance. The
goal must be that as often as possible a record
needed can be found in this buffer and no physical
access to disk is necessary.

In a graphical application very often a
picture has to be redrawn: more or less the same
data is used again. A clever buffer management
could avoid additional disk 1/0.

Most known DBMS's divide the data file in
pages. Pages are the units that are brought in
buffer, kept there and finally copied back to
the file, mostly using a 'least recently used
strategy'. Unfortunately, pages are relatively
large (1 kbytes as a minimum) so only a few may
be kept in buffer at any time. Very often a page
contains only one or few records useful for the
task at hand - so in much space only few useful
data are stored.

PANDA therefore is based on a completely
different idea. The buffer contains element
records, not pages]Kaeh]er 81].

A record is brought in when needed and only
this record's space is used. Consequently, the
buffer space can be filled out completely with
useful data; more records can be kept in buffer
and fewer accesses to disk are necessary. In the
graphic application we developed PANDA for, we
expect to keep one complete picture in buffer and
to be able to redraw a picture without any access
to disk.

This type of buffer management facilitates

the realisation of the transaction concept.

An atomic transaction is a bundle of oper-
ations of which either all or none are carried out.
This is a very important concept to maintain data
base integrity: either a change in data is made
completely or not at all - no intermediate states
are ever visible to the user |Lampson 81].

In PANDA only the data in the buffer is
changed during a transaction. At the end of the
transaction, in one action, either all the changes
in the buffer are copied in the file or the trans-
action is abandoned and the changes in the buffer
are thrown away. This is similar to the shadow
page mechanism |Reuter 81| but much simpler and
faster.

7. Data description

The data description in PANDA could be more
comfortable. The application programme is requested
to prepare some simple Pascal procedures for in-
clusion in the PANDA source. The PANDA system con-
tains a preprocessor {also written in Pascal) for
inclusion of files in a Pascal source file. Some
of the files are also used for inclusion in the
application programmes.

After the data description is made, the PANDA
routines can be compiled (if the Pascal compiler
supports separate compilation). This is advan-
tageous compared with the usual approach in DBMS
whereby the routines are compiled beforehand and
the adaptation to the task at hand is through data
values. The compilation with the data declaration
makes possible the inclusion of some application
dependent values in the executable code.

8. Data manipulation

PANDA features commands for data manipulation,
mostly similar to the CODASYL proposal, although
the combination of cursor and user working area
reduces the number of commands. Here only a short
overview:

environment:

Initialise the PANDA system
terminate the PANDA system
end transaction (commit)
abort transaction

find a record in the data base

find next in set

find owner in set

find element based on given data values
(global}

find element within set, based on given

data values

update the data base

- store new record

- modify data values
(includes possible changes in position to
maintain set order)

75

- delete record
- insert a record in a set
- remove a record from a set

9. What can PANDA be used for

In a great number of applications the data
structure and the procedures to maintain this
structure claim a great part of the programmer's
total effort. This seems true for such differing
problems as programmes for financial analysis and
other accounting problems, compilers, geometric
modelling and graphics.

In all these cases we can identify data
elements which occur in unknown number and which
are related to each other:

- departments containing employees

- houses identified by addresses (street,
house number) but also further defined
by co-ordinate values for their corners.

In all these cases programming may benefit
from the data structuring that can be defined
before coding starts and which is afterwards en-
forced for all programmers. Furthermore all the
routines for maintaining the data are already
written, including the management of buffers in
order to keep always the data most needed in
the main memory.

Furthermore the PANDA code is well struc-
tured. It is easy to adapt it to an application’s
special needs.

Literature

IBachman 73| Bachman, W.C., The programmer as a

navigator, ACM Comm. 1973

CODASYL Data Base Task Groupe
(DBTG) Report, April 1971

Codd E.F., Relational Database:
A Practical Foundation for Pro-
ductivity, ACM Comm., Vol. 25,

No. 2, p. 109, Febr. 1982

Frank A., PANDA, Bericht, Institut
flir Geoddasie und Photogrammetrie,
ETH Zirich, 1982

Jensen K., Wirth N., Pascal, User
Manual and Report, Springer Verlag
1974

Kaehler T., Virtual Memory for an
Object-Oriented Language, BYTE,
Vol. 6. No. 8, p. 378, Aug. 1981

Knuth D., The art of computer
programming, Vol. 3, Sorting and
Searching, Addison Wesley 1973

|CODASYL 71]

|Codd 81]

[Frank 82|

[Jensen 73|

|Kaehler 87|

|[Knuth 73]

|Lampson 81| Lampson B.W., Paul M., Siegert H.J.
{Eds.) Distributed Systems -
Architecture and Implementation,

Springer-Verlag 1981

Lewis, Proceedings of the SIGSMALL-
SIGMOD conference 1981

Reuter A., Fehlerbehandlung in Da-
tenbanksystemen (Datenbank-Recovery),
Hauser Verlag, Minchen 1981.

|Lewis 81|

|[Reuter 81|

