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ABSTRACT This paper introduces a two-dimensional 
alternating Turing machine (2-ATM) which is an ex- 
tension of an alternating Turing machine to two- 
dimensions. This paper also introduces a three-way 
two-dimensional alternating Turing machine (TR2-ATM 
) which is an alternating version of a three-way 
two-dimensional Turing machine. We first investiga- 
te a relationship between the accepting powers of 
space-bounded 2-ATM's (or TR2-ATM's) and ordinary 
space-bounded two-d~sional Turing machines (or 
three-way two-d~sional Turing machines). We then 
introduce a siaple, natural complexity measure for 
2-ATM's (or TR2-ATM's), called "leaf-size", and 
provides a spectrum of cc~plexity classes based on 
leaf-size bounded cc~putations. We finally investi- 
gate the recognizability of connected patterns by 
2-ATM's (or TR2-ATM's). 

i. Introduction 

During the past ten years, many autc~ata on a two- 

dimensional tape have been introduced, and several 

properties of them have been given [1-9]. Recently, 

(one-dimensional) alternating Turing machines were 

introduced in [i0] as a generalization of nondeter- 

ministic Turing machines and as a mechanis~n to mo- 

del parallel ccaputation. In papers [11-15], seve- 

ral investigations of alternating machines have 

been continued. It seems to us, however, that there 

are many problems about alternating machines to be 

solved in the future. 

This paper intmoduces a two-dimensional alternati- 

ng Turing machine (2-ATM) which is an alternating 

version of a two-dimensional Turing machine (TM) [ 

3,6,7]. That is, a 2-ATM is a TM whose states are 
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partitioned into "existential" and "universal" sta- 

tes, like one-dimensional alternating Turing mach- 

ines. This paper also introduces a three-way two- 

dimensional alternating Turing machine (TR2-ATM) 

which is an alternating version of three-way two- 

dimensional Turing machine (TRTM) [7]. The main 

purpose of this paper is to get the deeper under- 

standing of two-dimensional Turing machines throu- 

gh the investigations about these new machines. 

Section 2 gives terminology and notation necessary 

for this paper. It is well-known [i0,ii] that (one 

dimensional) alternating finite automata are equi- 

valent to ordinary finite autc~nata. It is ~known 

[i0,ii], however, whether or not (one-dimensional) 

space-bounded alternating Turing machines are more 

powerful than non-alternating versions correspon- 

ding to those machines. Section 3 investigates a 

relationship between the accepting powers of space- 

bounded 2-ATM's (TR2-ATM's) and space-bounded ~4's 

(TRTM's), and shows that for some space-bounded 

classes, 2-A~4's (TR2-ATM's) are more powerful 

than TM's (TRTM's). Section 4 introduces a simple, 

natural con~plexity measure for 2-A~4's (or TR2-ATM 

's), called "leaf-size". The "leaf-size" used by 

a 2-ATM (or TR2-A~4) on a given input is the num- 

ber of leaves of its accepting ccn~putation tree 

with fewest leaves. Leaf-size is a useful abstrac- 

tion which provides a spectrum of cor~olexity cla- 

sses intermediate between nondeterminism and full 

alternation. The same section first provides a 

spect~an of eonplexity classes of TR2-ATM's, and 

then provides a relationship between the accepting 

powers of leaf-size bounded 2-ATM's and TR2-ATM's. 

In Section 5, we investigate recognizability of 

connected patterns by a 2-ATM (or TR2-ATM). 
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2. Preliminaries 

Definition 2. i. Let Z be a finite set of symbols. 

A two-dimensional tape over Z is a two-dimensional 

rectangular array of elements of Z. 

The set of all tw~dimensional tapes over Z is de- 

noted by Z(2). Given a tape x in Z(2), we let £1(x) 

be the number of rows of x and £2 (x) be the number 

of colunms of x. If i~i~£ l(x) and l&j~£ 2 (x), we let 

x(i,j) denote the symbol in x with coordinates (i,j) 

• Furthermore, we define x[(i,j),(i'.j')], only when 

l~i~i' ~£i (x) and l~j~j ' ~£2 (x), as the two-d~sio- 

nal tape z satisfying the following: 

(i) £I (z)=i'-i+l and £2 (z)=j'-j+l; 

(ii) for each k,r (l~k~£ l(z) ,l&r~£ 2 (z)), 

z (k,r) =x (k+i-l,r+j-l). 

This paper assumes that the reader is familiar with 

fundamental knowledges about two-dimensional Turing 

machines [6,7]• We now introduce a two-dimensional 

alternating Turing machine, which can be considered 

as a natural extension of an alternating Turing ma- 

chine [10,11,12] to two-dimensions. (We also ass~ne 

that the reader is familiar with fundamental know- 

ledges about one-dimensional alternating automata.) 

Definition 2.2. A two-dimensional alternatinq Tu- 

ring machine (2-ATM) is a seven-tuple 

M= (Q,q0,U,F, Z, F, 6) 

where 

(i) Q is a finite set of states, 

(2) q0GQ is the initial state, 

(3) UCQ is the set of universal states, 

(4) F_qQ is the set of accepting states, 

(5) Z is a finite input alphabet (#~Z is the bou- 

ndary symbol) , 

(6) F is a finite storage tape alphabet (BGF is 

the blank symbol), 

(7) 6 ~_(Q x (Z U{#}) X F) X (Q × (F - {B}) X {left,right 

,up,down,no move} × {left,right,no move}) is the 

next move relation. 

A state q in Q-U is said to be existential. As 

shown in Fig•l, the machine M has a read-only (rec- 

tangular) input tape with boundary synbols "#" and 

one semi-infinite storage tape, initially blank. Of 

course, M has a finite control, an input tape head 

and a storage tape head. A position is assigned to 

each cell of the read-only input tape and to each 

cell of the storage tape, as shown in Fig. l. A step 

position (0,0) 

(1,0). 

(0,i) (i,1) (o,n+l) 

"# ! ..... # 

• # all a12 ..... aln # 

# a21 a22 ..... a2n # I 

# aml am2 • 
(reAl,0), ~ # # # 

m,n : arbitrary positive 
integers FF ~ 

.... i amn" ~ ~'(m,n) 
• I # "(m~-i ,n+l) 

I read-only input tape 

I 
position 1 

position 2 Storage tape 

Fig. i. Tw~-dimensional alternating Turinq machine.. 

of M consists of reading one symbol frcm each tape, 

writing a symbol on the storage tape, moving the 

input and storage heads in specified directions, 

and entering a new state, in accordance with the 

next move relation 6. Note that the machine cannot 

write the blank symbol. If the input head falls off 

the input tape, or if the storage head falls off 

the storage tape (by moving left), then the machine 

M can make no more move. 

Definition 2.3• A configuration of a 2-ATM M=(Q,q0 

,U,F,Z,F,~) is a pair of an element of Z(2) and an 

element of 

C M = QX(F- {B})* X (N U{0})2K N, 

where N denotes the set of all positive integers. 

The first cc~ponent of a configuration c = (x, (q,~ 

, (i,j),k)) represents the input to M. The second 

conponent (q,c~,(i,j),k) ~ (£C M) of e represents t/-Le 

state of the finite control, the nonblank contents 

of the storage tape, the input head position, and 

the storage head position. An ele~nent of C M is ca- 

lled a "semi-configuration of M". If q is the state 

associated with configuration c, then c is said to 

be a universal (existential, accepting) configura- 

tion if q is a universal (existential, accepting) 

state. The initial configuration of M on input x is 

IM(X) = (x, (q0,1, (i,i) ,i)), where I is the null 

string. (A configuration represents an instantane- 

ous description of M at some point in a cc~puta- 

tion. ) . . 
$We note that 0si~£1(x) +l, 0~JiZ2(x)+l, 

+i, where for any string w, [w I denotes 

of w (with I~I = 0). 

and i~I~I 

the length 
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Definition 2.4. Given M=(Q,q0,U,F,Z,F,6), we write 

c ~c' and say c' is a successor of c if configura- 

tion c' follows frcrn configuration c in one step, 

according to the transition rules 6. The relation 

~- is not necessarily single valued, since d is not 

. A cc~outation path of M on x is a sequence c0~-c 1 

~- ... F- c n (n>_0), where c o = ~(x). A camputation 

tee of M is a finite, nonempty labeled tree with 

the properties 

(i) each node ~ of the tree is labeled with a con- 

figuration, £ (~), 

(2) if z is an internal node (a non-leaf) of the 

tree, £(z) is universal and {c ] Z(~)~-c}={c I ..... 

Ck}, then z has exactly k children Pl' .... Pk such 

that £(pi ) = ci, 

(3) if z is an internal node of the tree and Z(z) 

is existential, then ~ has exactly one child 0 such 

that ~(~)~- £(p). 

An accepting (xmputation tree of M on an input x 

is a ccni0utation tree whose root is labeled with 

IM(X) and whose leaves are all labeled with accep- 

ting configurations. We say that M accepts x if 

there is an accepting cc~putation tree of M on x. 

Define T(M) = {x~Z (2) I M accepts x}. 

We next introduce a three-way two-dimensional alt- 

ernating Turing machine which can be considered as 

an alternating version of a three-way two-dimensio- 

nal Turing machine [7]. 

Definition 2.5. A three-way two-dimensional alter- 

nating Turing machine (TR2-ATM) is a 2-ATM M = (Q, 

q0,U,F,E,F,d) such that ~(QX(EU{#}) xF) M (Q x 

(F - {B}) X {left,right,down,no move} X {left,right, 

no move}). (That is, a TR2-A~ is a 2-ATM whose 

input head cannot move up. ) 

In this paper, we shall concentrate on investiga- 

ting the properties of 2-ATM's and TR2-ATM's whose 

input tapes are restricted to square ones and whose 

storage tapes are bounded (in length) to use. Let 

L(m) :N÷R be a function with one variable m, where 

R denotes the set of all non-negative real numbers. 

With each 2-ATM (or TR2-ATM) M we associate a space 

cc~plexity function SPACE which takes configuratio- 

ns to natural numbers. That is, for each configura- 

tion c = (x,(q,e,(i,j),k)), let SPACE(c) = JeI. We 

say that M is L (m) space-bounded if for all m and 

for all x with £i (x)=£2 (x)=m, if x is accepted by M 

then there is an accepting cc~putation tree of M on 

input x such that for each node ~ of the tree, SPA 

CE(Z(~)) ~L(m) ~. By 2-Aq~S(L(m)) (TR2-AT~(L(m))), 

we denote an L(m) space-bounded 2-ATM (TR2-ATM) 

whose input tapes are restricted to square ones. 

Define ~[2-ATMS(L(m))] = {T I T=T(M) for some 2-A~ s 

(L(m)) M}, Z[TR2-AT~(L(m)) ] = {T J T=T(M) for some 

TR2-ATM s (L (m)) M}. By using the well-known techni- 

que, it is easily proved that for any constant k~0, 

~[2-nT~(k)] = ~2-A~MS(0)] and ~[TR2-AT~(k)] = 

Z[TR2-A~(0) ]. We especially denote a 2-ATe(0) 

TR2-ATM s (0)) by 2-AFA s (TR2-AFA s) . A 2-AFA s (TR2- 

AFA s) can be considered as an alternating version 

of a two-dimensional finite automaton [1,2,5] ( 

three-way two-di~ensional finite automaton [1,7]) 

whose input tapes are restricted to square ones. 

Deterministic and nondeterministic two-dimensional 

Turing machines (three-way two-dimensional Turing 

machines) [6,7] are special cases of 2-ATM's (TR2- 

ATM's). For example, a nondeterministic two-dimen- 

sional Turing machine is a 2-ATM which has no uni- 

versal state, and a deterministic two-dimensional 

Turing machine is a 2-ATM whose configurations each 

have at most one successor. As in [7], by ~(L(m)) 

(DT~ (L (m)), T~ (L (m)), DT~ (L (m)) ) we denote 

an L (m) space-bounded ~ nondeterministic two-dimen- 

sional Turing machine (deterministic two-dimensio- 

nal Turing machine, nondeterministic three-way two- 

dimensional Turing machine, deterministic three-way 

two-dimensional Turing machine) with square input 

tapes. (See [7] for definitions of these machines. ) 

Furthermore, by 2-NA s (TR2-NA s) w~ denote a nonde- 

terministic two-dimensional finite autc~aton (non- 

deterndnistic three-way two-dimensional finite au- 

tomaton) with square input tapes. (See [2,7] for 

definitions of these machines.) Let ~[TM s(L(m))] = 

{T I T=T(M) for some T~(L(m)) M}. Z[D~ s(L(m))], 

Z[2-NAS], etc. are defined similarly. 

3. A Relationship__between Alternatin 9 and Non- 
alternating Machines 

It is shown [i0,ii] that (one-dimensional) alter- 

nating finite autcmata are equivalent to ordinary 

SRigorously, "~L(m)" should be replaced with "_<[L( 

m)]", where [r] moans the smallest integer greater 

than or equal to r. Below we omit [ ], if no confu- 

sion occurs. 

~In [7], the term "L(m) tape-bounded" is used ins- 

tead of the term "L(m) space-bounded". 
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finite automata. It is unknown [i0,ii], however, 

whether or not (one-dimensional) alternating space 

bounded Turing machines are more powerful than non- 

alternating versions. 

We first show that for some space-bounded classes, 

2-ATM's (TR2-ATM's) are more powerful than ~4's ( 

TRIM's). We give several preliminaries to get the 

desired result• For each ~_2 and each l<_n<_m-l, a 

(m,n)-chunk is a pattern (over {0,1}) as shown in 

Fig.2, ~nere Xle {0,i} (2), x2E{0} (2), Zl(Xl)=m_l ' 

£2(Xl)=n, £1(x2)=m, and Z2(x2)=m-n. Let M be a ~Ms( 

~). Note that if the numbers of states and storage 

tape symbols of M are s and t, respectively, then 

the number of possible storage states ~ of M is s£t £ 

• Let {0,i} be the input alphabet of M, and # be 

the boundary symbol of M. For any (m,n)-chunk x, we 

denote by x(#) the pattern (obtained frc~n x by su- 

rrounding x by #'s) as shown in Fig. 3. Below, we 

assume without loss of generality that M enters or 

exits the pattern x(#) only at the face designated 

by the bold line in Fig. 3. Thus, the number of the 

entrance points to x(#) (or the exit points frcm 

x(#)) for M is n+3. We suppose that these entrance 

points (or exit points) are numbered 1,2 .... ,n+3 in 

an appropriate way. Let P = {1,2 ..... n+3} be the 

set of these entrance points (or exit points). Let 

C = {ql,q2,... ,qu } be the set of possible storage 

states of M, where u = s£t £. For each i eP and each 

qGC, let M(i,q ) (x(#)) be a subset of P~CU{L} 

which is defined as follows (L is a new symbol): 

(i) (j,p) G M(i,q ) (x(#)) 

4~when M enters the pattern x(#) in storage state 

q and at point i, it may eventually exit x(#) 

in storage state p and at point j. 

(2) LEM(i,q ) (x(#)) 

4~when M enters the pattern x(#) in storage state 

q and at point i, it may not exit x(#) at all. 

Let x, y be any two different (m,n)-chunks. We say 

that x and y are M-equivalent if for any (i,q)~ P 

XC, M(i,q ) (x(#)) = M(i,q ) (y(#)). Thus, M cannot 

distinguish between two (m,n)-chunks which are M- 

equivalent. Clearly, M-equivalence is an equivalen- 

~For any two-dimensional Turing machine M, we defi- 

ne the storage state of M to be a cc~nbination of 

the (i) state of the finite control, (2) contents 

of the storage tape, and (3) position of the stora- 

ge tape head within the nonblank portion of storage 

tape. 

m 

~- n ~,~-'-- m-n 

m 

] 

• , , • • . . . .  

I ~ 1  . . . . .  I 

Fig. 2. Fig. 3. 

T 
m 

i 
ce relation on (m,n)-chunks, and we get the follow- 

ing le~ma. 

Lemma 3.1. Let M be a TM s(~). There are at most 

(2 (n+3) u+l) (n+3) u 

M-equivalence classes of (m,n)-chunks, where u = 

sZt ~, s is the number of states of the finite con- 

trol of M, and t is t/~Le number of storage tape 

symbols of M. 

Proof. The proof is similar to that of Lemma 2.1 

in [6]• Q.E.D. 

We are now ready to prove the following le~na. 

Lem~a 3.2. Let Tl={X&{0,1}(2)[~mh2[~l(X)=£2(x)=m 

& 3i (l&i~m-l) Ix[ (i,l), (i,m) ]=x[ (m,l), (m,m) ] ] ] }. 

Then 

(i) TiG Z[TR2-AFA s ] (thus, ~ Z[2-AFA s] ) ; 

(2) Ti~ z[~S(L(m))] for any L(m):N÷R such that 

lim[L (m)/log m] =0 .$ 

Proof. The set T 1 is accepted by a TR2-AFA s M whi- 

ch acts as follows. Given an input x (~i (x)=i2 (x)= 

m>_2), M existentially (i.e., in existential states 

) chooses some row, say the i-th row, of x. Then M 

universally (i.e., in universal states) tries to 

check that for each j (l~j~m) x(i,j)=x(m,j). That 

is, on the i-th row and the j-th col~n of x (l&j& 

m), M enters a universal state to choose one of 

two further actions. One action is to pick up the 

symbol x(i,j), to move down with the symbol stored 

in the finite control, to cc~pare the stored symbol 

with the symbol x(m,j), and to enter an accepting 

state if both symbols are identical. (It will be 

needless to say how M can pick up the symbol 

x(m,j) .) The other action is to continue moving ri- 

ght one tape cell (in order to pick up the next 

symbol x(i,j+l) and compare it with the slarbol x(m, 

j+l) ). It will be obvious that T(M)=T I. This cc~p- 

letes the proof of part (i) of the lemma. 

~Below, let the base of logarithms be 2. 
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Suppose that there is a T~ (L (m)) M accepting Ti, 

where lim[L (m)/log m] =0. Let s and t be the numbers 

of states (of the finite control) and storage tape 

symbols of M, respectively. We assume without loss 

of generality that M starts on the lower left-hand 

corner of the input, and that when M accepts an 

input x in Ti, it halts on the lower left-hand co- 

rner of x (these assunptions are concerned with the 

shape of chunks described above) , and that M never 

falls off an input out of the beundary symbol #. 

For each n>l, let 

V(n)={xE{0,1}(2) I £1(x)=i2(x)=2n+l & x[(l,l), 

(2n+l,n) ] e {0,i} (2) & x[ (l,n+l) , (2n+l,2n+l) ] 

e{0} (2) } 

and 

Y(n)={y~{0,1}(2) I £1(Y)=i & Z2(Y)=n}" 

Clearly, [Y(n)I=2 n (where for any set A, [A I deno- 

tes the n~nber of elements of A), and so we let Y (n) 

={yl,y 2 ..... Y2n}. For each n_>l, let R(n)={row(x) ] 

xEV(n) }, where for each x in V(n), row(x)={y.E Y(n) 
• J n 

I x[(i,l),(i,n)] is yj for sc~e i (l_<l~Zl(X)-l=2)} 

• Clearly, 

JR(n) [= (21n) (22n) +(22 nn) + =22n-I. 

Note that B={pl for same x in V(n), p is the pattern 

obtained from x by cutting the part x[ (2n+l,l) , (2n+ 

l,n)] off} is the set of all (2n+l,n)-chunks. Since 

M can use at most L(2n+l) cells of the storage tape 

when M reads a tape in V(n), frcm lemma 3.1, there 

are at most 
E (n) = (2 (n+3) u [n] +I) (n+3) u In] 

M-equivalence classes of (2n+l,n)-chunks, where 

u [n] =sL (2n+l) t L (2n+l). We denote these M-equiva- 

lence classes by CI, C 2 ..... CE(n). Since lim[L(m)/ 

log m]=0 (by assunption), lim[L(2n+l)/iog (2n+l)]=0, 
n~o 

and so lim[L(2n+l)/n]=0. By using this fact, it fo- 
n~o 

llows that for large n, JR(n) [> E(n) . For such n, 

there must be scrce Q, Q' (QgQ') in R(n) and scme C. 1 
(l_<i_<E(n)) such that the following statement holds. 

"There exist two tapes x, y in V(n) such that 

(i) for soma row p in Q but not in Q', 

x[ (2n+l,l), (2n+l,n) ]=y[ (2n+l,l), (2n+l,n) ]=p, 

(ii) row(x)=Q and row(y)=Q', and 

(iii) both Px and py are in Ci, where px(Py) is 

the (2n+l,n)-chunk obtained from x (from y) by 

cutting the part x[ (2n+l,l), (2n+l,n) ] (the part 

y[(2n+l,1), (2n+l,n) ]) off " 

As is easily seen, x is in T I, and so x is accepted 

by M. It follows that y is also accepted by M, whi- 

ch is a contradiction. (Note that y is not in T I. ) 

This cfm~oletes the proof of (2) of the le~ma. 
Q.E.D. 

Furthermore, we need the following two lemmas. 

Lemma 3.3. Let T2={xe{0,1}(2) l ~m_>2[£1(x)=Z2(x)= 

m & x[(l,l),(l,m)]=x[(2,1),(2,m)]]}. Then 

(i) T2E~[TR2-AFA s] ; 

(2) T2# Z[T~(L(m)) ] for any L(m) :N+R such that 

lira [L (m)/m] =0. 

Proof. (i): The proof is similar to that of (i) of 

Lea 3.2. (The details are left to the reader. ) 

(2): The proof is given in the proof of (2) of 

Lemma 3.1 in [7]. Q.E.D. 

Lena 3.4. Let T3={xe{0,1}(2) l 3m>-l[~l(X)=~2(x)= 

2m & x[ (i,i), (m,2m) ]=x[ (m+l,l), (2m,2m) ] ] }. Then 

(i) T3E ~[TR2-AT~(iog m) ] ; 

(2) T3~ Z[TRT~(L(m)) ] for any L(m):N÷R such that 

lira [L (m)/m 2 ] =0. 
n~ 
Proof. (i): The set T 3 is accepted by a TR2-A~S( 

log m) M which, given an input x (Zl(X)=£2(x)=2m,m 

>i), simply checks by using universal states that 

for each i, j (l_<i~m, l<_j_<2m) x(i,j) = x(m+i,j). 

The details of the action of M are again left to 

the reader. 

(2): The proof is given in the proof of (2) of 

Le~na 3.2 in [7]. Q.E.D. 

Frcrn Le~nas 3.2 through 3.4, we can get the follo- 

wing theorem. 

Theorem 3.1. (i) ~[TMS(L(m))]~[2-AT~(L(m))] for 

any L(m):N÷R such that lim [L (m) /log m]=0. (2)~[TR 

T~ (L (m)) ] ~ ~[TR2-A~ s (L (mY) ] for any L (m) :N + R 

such that (i) lim [L (m) /m] =0 or (ii) L(m)>log m and 
taro 

lira [L (m)/m 2 ] =0. 
r~o 
Corollary 3.1. (i) Z[TR2-NA s] ~[TR2-AFAS]. 

(2) ~2-NA s] ~ ~2-AFAS]. 

Below, we shall be concerned with the problem of 

how much space is necessary and sufficient for de- 

terministic three-way two-dim~nsional Turing machi- 

nes to simulate TR2-AFA s's and 2-AFAS's. 

Le~ma 3.5. Let T4={x~{0,1,2}(2) I 9m~l[£1(x)=~2(x) 

:2m & 3i(15i$m)[x(i+m,l)=2 & ¥(r,s)(~(i+m,l))[x(r,s 

) &{0,1}] & x[(i,2),(i,2m)]~x[(i+m,2),(i+m,2m)]]]}. 
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Then 

(i) T4e Z[TR2-AFA s] (thus, e~[2-AFAS]) ; 

(2) T4~ ~[D~TMS(L(m)) ] for any L(m) :N÷R such that 

lira [L (m)/m 2 ] =0. 
m+oo 

Proof. (i) : The set T 4 is accepted by a TR2-AFA s M 

which acts as follows. Given an input x (£i(x)=£ 2 (x) 

=2m, m~l), on the upper left-hand corner of x, M en- 

ters a universal state to choose one of two further 

actions: 

One action is to check that there exists exactly 

one "2" only on the leftmost coltm~ of x. (Clearly, 

this check can be done deterministically. ) If this 

check is successful, M enters an accepting state. 

~.The other action is to existentially choose some 

i,j (l_<i~2m, 2<j<2m), to pick up the symbol x(i,j), 

and to store it in the finite control. Then M enters 

a universal state to choose one of two further acti- 

ons: 

(a) One action is to move right until it reaches 

the right boundary symbol #. Then M continues to 

move its input head H one cell down for every two 

left moves of H. M then enters an accepting state 

if H meets the symbol "2" (on the leftnDst coltma~). 

(b) The other action is to existentially choose 

one of the following two actions, each time H 

meets a symbol which differs from the symbol x(i, 

j) stored in the finite control: 

(i) One action is to continue moving down along 

the j-th colt~n, seeking for another symbol di- 

fferent fr~n x(i,j). (In this case, M will not 

enter an accepting state on the way. ) 

(ii) The other action is to move H to the left, 

and to check whether H meets the symbol 2. If 

so, M enters an accepting state. 

It will be obvious that M accepts the set T 4. 

(2): The proof is given in the proof of (2) of 

Le~na 3.5 in [9]. Q.E.D. 

Let M be a 2-AFA s, and s be the number of states 

of M. Given an input x with £i (x)=£2 (x)=m, the num- 

ber of possible configurations of M is s(m+2) 2 , 

which is bounded by cnn 2 for some constant c. Frcnn 

this, it is easily seen that if the input x is acce- 

pted by M, then there is an accepting computation 

tee of M on x whose computation paths frcmn root to 

leaves each are of length at most cm 2. From this 

observation, it is easily asce~ained that we can 

ccnstract, by using the sate idea as in the proof of 

Theorem 3.2 in [i0], a DTMS(m 2) M' which, given an 

input with £i (x) =£2 (x) =m, generates every possible 
2 

cc~putation path (of M on x) of length at most c~ 

in a systematic way, and checks whether there is an 

accepting computation tree of M on x. This inplies 

that ~2-AFAS]cZ[DTMS(m 2) ]. In [7], it is shown 

that ~[D~S (m 2) ]=~DT~ (m 2) ]. Therefore, we can 

get the following lemma. 

Lemma 3.6. (i) ~[TR2-AFA s] ~_~DTRTMS(m2)]. 

(2) Z[ 2-AFAS ] ~_ ~DT~S (m2) ]. 

From Lena~as 3.5 and 3.6, we can get the following 

theorem. 

2 
Theorem 3.2. m space is necessary and sufficient 

for DTRTM s ' s to simulate TR2-AFA s ' s and 2-AFA s ' s. 

Remark 3.1. By using the same idea as in Remark 2. 

2 of [ii], we can easily show that for any L(m)l 

log m (m>_l) , ~[TR2-ATM s (L (m)) ] =~[2-AT~ (L (m)) ]. 

4. Leaf-Size Bounded Alternation 

In this section, we shall present a simple, natu- 

ral complexity measure for TR2-ATM's (or 2-ATM's), 

called "leaf-size". (Recently [15], K.N.King intro- 

duced the safe cor~olexity measure as "leaf-size" 

independently. In [15], the term "branching" is 

adopted instead of the term "leaf-size". ) Basically 

, the "leaf-size" used by a TR2-ATM (or 2-ATM) on a 

given input is the number of leaves of its accept- 

ing ccn~putation tree with fewest leaves. Leaf-size, 

in a sense, reflects the minimal number of proce- 

ssors which run in parallel in accepting a given 

input. One motivation for introducing leaf-size 

bounded computations below is to provide a restric- 

tion of a TR2-ATM (or 2-ATM) which is intermediate 

in power between nondeterministic and (full) alter- 

nating cc~sputations. A model of intermediate power 

can prove very useful in classifying problems and 

sharpening our intuitions about the relationships 

between various ccn~plexity classes. (The "tree-size 

bounded" in [12], in a sense, takes into account 

both time and the number of processors. ) 

Definition 4. i. Let Z (m) :N ÷ R be a function with 

one variable m. For each tree t, let LEAF(t) denote 

the leaf-size (i.e., the number of leaves of t). We 

say that a TR2-AT~ (2-ATM s) M is Z (m) leaf-size 

bounded if for all m and for all x with £i (x)=£2 (x) 

=m, if x is accepted by M then there is an accept- 
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ing computation tree t of M on x such that LEAF(t)~ 

Z (m) . 

By TR2-AT~ (L (m), Z (m)) (2-AT~ (L (m), Z (m)) ), we de- 

note a Z(m) leaf-size bounded TR2-AT~(L(m)) (2-ATM s 

(L(m))). That is, for example, a TR2-ATMS(L(m),Z(m)) 

is a simultaneously L (m) space- and Z (m) leaf-size 

bounded TR2-ATM s. Let TR2-AFA s (Z (m)) (2-AFA s (Z (m)) ) 

denote a Z (m) leaf-size bounded TR2-AFA s (2-AFAS). 

Define ~[TR2-ATM s (L (m), Z (m)) ] ={T ] T=T (M) for scrne 

TR2-A~ s (L (m), Z (m)) M}. ~[2-ATM s (L (m), Z (m)) ], Z[TR2- 

AFAS(Z(m) ) ], etc. are defined similarly. 

4. I. Leaf-Size Bounded TR2-ATM s ' s 

We first provide a spectrum of ccmplexity classes 

of TR2-AT~'s, based on simultaneously space- and 

leaf-size bounded computations. 

Ienma 4.1. For each k>l, let T[k]={x ~{0,i} (2) I ~m 

>k [£i (x) =£2 (x) =m & (there exist exactly k 1 ' s on 

the first row of x) & x[(l,l),(l,m)]=x[(2,1),(2,m)] 

]}. Then 

(i) T[k]e ~TR2-AFAS(k) ] ; 

(2) T[k+l]~ ~TR2-A~S (L (m) ,k) ] for any L(m) :N÷R 

such that lira [L (m)/log m] =0. 

Proof. The proof of (i) is omitted here. Suppose 

that there is a TR2-ATMS(L(m),k) M (with lim[L(m)/ 

log m]=0) accepting T[k+l]. We asst~re wi~out loss 

of generality that M enters an accepting state only 

on the bottcnn boundary symbol #. Let r and s be the 

n~bers of states (of the finite control) and sto- 

rage tape symbols of M, respectively. For each 

accenting ccr~putation tree t of M, let SC(t) be a 

"multi-set" of semi-configurations of M defined as 

follows (see Definition 2.3 for semi-configurations 

): 
SC(t)={(q,e,(i,j),i') I c=(x,(q,e,(i,j),i')) is 

a node label of t, and c is a configuration 

of M just after the point where the input 

head left the first row of x}, 

w~ere x is the input associated with t. For each 

input x, let ACT(x) be the set of all accepting 

cc~putation trees of M on x whose leaf-sizes are at 

most k. Furthermore, for each m_>k+l, let 

V(m)={xeT[k+l]I £1(x) =£2 (x) =m & x[(3,1),(m,m)] 
~{0} (2) } 

and for each x in V(m) let C(x)={SC(t) I tEACT(x) }. 

(Clearly, each tape x in V(m) is accepted by M, and 

so it follows, since we assumed that M enters an 

accepting state only on the bottcsn boundary symbol 

#, that for each x in V(m) C(x) is not empty.) Then 

the following proposition must hold. 

Proposition 4.1. For any two different tapes x, y 

~V(m), C(x)~C(y) = 96 (enpty set). 

[For otherwise, suppose that C(x)~ C(y) ~ ~. Then 

there exist accepting computation trees t and t' in 

ACT(x) and ACT(y), respectively, such that SC(t) = 

SC(t'). We consider the tape z (with £1(z)=£2(z)=m) 

satisfying the following two conditions: 

(i) z[ (i,I), (l,m) ]=x[ (i,i), (l,m) ] ; 

(ii) z[(2,1),(m,m)]=y[(2,1),(m,m)]. 

Recalling that for any accepting computation tree t~ 

of M SC(~ is a "multi-set", it is easily seen that 

one can construct, from the trees t and t', an ac- 

cepting computation tree of M on z whose leaf-size 

is at most k. Thus, it follows that z is in T(M). 

This contradicts the fact that z is not in T[k+l].] 

Let p (m) be the number of possible semi-configura- 

tions of M just after the input head left the first 

rows of tapes in V(m). Then 

p (m) <_ r (m+2) L (m) s L (m). 

Since for each x in V(m) and for each t in ACT(x) 

LEAF(t) is at most k, it follows that for each x in 

V(m) and for each t in ACf(x) 

tSC(t) [ <_k. 

Therefore, letting S(m)={SC(t) I t~ACT(x) for sane 

x in V(m)}, it follows that for some constants c 

and c', 

IS(m) f <_cp(m) k 

< c' m~ (m) kskL (m) 

m 
As is easily seen, IV(m)l=(k~l). Since lim[L(m)/ 

log m]=0, we have IS(m) I < IV(m) i for large m. The- 

refore, it follows that for large m there must be 

different tapes x, y in V(m) such that C(x)•C(y) 

~6. This contradicts Proposition 4.1, and thus the 

part (2) of the lemma holds. Q.E.D. 

From Lenmm 4. i, we can get the lfollowing theorem. 

Theorem 4.1. For any L(m) :N÷R such that lim[L(m)/ 
moo 

log m] =0 and for any integer k~l, 

~TR2-AT~ (L (m) ,k)]~ ~TR2-A~ (L (m) ,k+l) ]. 

Corollary 4. i. For any integer k_>l, 

Z[TR2-AFA s (k) ]~ ~TR2-AFA s (k+l) ]. 

As shown in the next theorem, if L (m) _> log m, then 

a situation which differs from Theorem 4.1 emerges. 
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(The proof is omitted here. ) 

Theorem 4.2. For any L(m)> log m (re>l) and for any 

integer k>l, Z[TR2-AT~ (n(m) ,k) ]= ~[TR2-A~ s (L(m) ,i 

) ]= ~[T~T~ (L(m)) ]. 

We need the following three definitions for the 

next theor~n. 

Definition 4.2. A function L(m):N÷R is fully spa- 

ce constructible if there is a one-dimensional de- 

terministic Turing machine M which, when given a 

string of length m, halts after its read-write head 

has visited exactly [L (m)] tape cells of the sorage 

tape, where M has a read-only input tape with end 

markers and one semi-infinite storage tape [16]. 

Definition 4.3. A function Z(m):N ÷R is log-space 

countable if there is a one-dimensional determinis- 

tic Turing machine M which, when given a string of 

length m, halts after its read-write head has wri- 

tten down the k-adic notation of the number [Z (m)], 

for some k~2, by using at most [log m +i] cells of 

the storage tape, where M has again a read-only in- 

put tape with end markers and one semi-infinite 

storage tape. 

Definition 4.4. Let x be a two-dimensional tape 

with Zl(X)=£2(x)=m. As shown in Fig.4(a), let each 

tape cell of x be numbered 1,2,...,m 2 from top to 

bettcm and from left to right on the same row. Then 

, for each l&i~j{m z, let x<<i,j>> be the segment of 

x enclosed by the heavy solid line as shown in Fig. 

4 (b). 

Theorem 4.3. Let L(m):N+R, Zi(m):N÷R , and Z2(m) 

:N ÷ R be any functions such that 

(i) L(m) ! log m (r~hl), 

(ii) L(m) is fully space-constructible, 

(iii) Z2(m) is log-space countable, 

(iv) [L(m)] [Z 2(m)] Sm2/2 (~_i), 

m+l' 
I M I  

X 

m 

~2m 

m (m-l) +i" -- m 2 

Fig. 4 (a) . The numbering of tape 
cells of x. 

1!2 

m 

x<<i,j>> 

Fig. 4 (b). Illustration of 
x<<i, j>>. 

(V) Z l(m) <_Z 2(m) (m>_l), and 

(vi) l~[Zl(m)/Z2(m) ]=0. Then 

Z[TR2-AT~ (L (m), Z 1 (m)) ] ~ ~TR2-AT~ (L (m), Z 2 (m)) ]. 

Proof. Let T[L,Z 2 ] be the following set depending 

on the functions L(m) and Z 2 (m) in the theorem. 

T[L,Z2]={x &{0,1} (2) I Bm->l[£1(x)=i2(x)=2m & x<<l, 
[L (2m) ] [Z 2 (2m) ] >>=x<<2m2+l, 2m2+ [L (2m) ] [Z 2 (2m) l>> 

]}. 

(Note that, from the condition (iv) in the theorem 

, this set can be well defined.) The set T[L,Z 2] 

is accepted by a TR2-AT~ (L (m) , Z 2 (m)) M which acts 

as follows. Suppose that an input x with £i (x)=£2 ( 

x)=2m (m~l) is presented to M. While moving on the 

first row of x, M first Earks off exactly [L(2m) ] 

cells of the storage tape by using the n~nber 2m 

of colt~ns. While again moving on the first row, M 

then writes down the k-adic notation (for scme k_>2 

) of the number [Z 2(2m)] on one track of the stora- 

ge tape by using the number 2m of coltmms. (These 

actions are possible because of conditions (i), (ii) 

, and (iii) in the theorem.) After that, M univer- 

sally tries to check that, for each l_<i<_[Z2(2m) ], 

x<< (i-l) [L(2m) ]+l,i [L(2m) ] >>=x<<2m2+ (i-l) [L(2m) ]+i 

,~Z+i[L(2m)]>>. That is, on the cell numbered 

(i-l) [L(2m) ]+i of x (l~i~[Z2(2m) ]), M enters a uni- 

versal state to choose one of two further actions. 

One action is to pick up and store the segment x<< 

(i-l) [L(2m)]+l,i[L(2m)]>> on scr~e track of the sto- 

rage tape (of course, M uses the cells marked off 

above of the storage tape), to move its input head 

to the cell numbered 2m2+(i-i) [L(2m)]+i of x, to 

ccmpare the segment stored akx)ve with the segment 

x<<2m2+(i-l) [L(2m) ]+l,2m2+i[L(2m) ]>>, and to enter 

an accepting state if both segments are identical. 

The other action is to continue Eoving to the cell 

numbered i[L(2m)]+i (in order to pick up the next 

segment x<<i [L(2m) ]+i, (i+l) [L(2m 

x ) ] >> and compare it with the co- 

rn rresponding segment x<<2m2+i [L ( 

2m) ]+i,2m2+(i+i) [L(2m) ] >>). Note 

that the nt~nber of pairs of seg- 

ments which should be cc~pared 

each other in the future can be 

seen by updating the k-adic no- 

tation of [Z 2 (2m)]. Note also 

that the position-information of 

the input head can be obtained 
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by using one track of length 2m. It will be obvious 

that the input x is in T[L,Z2] if and only if there 

is an accepting cc~putation tree of M on x with 

[Z2(2m)] leaves. Thus T[L,Z2]~ ~TR2-A~MS(L(m),Z2( 

m))]. 

We next show that T[L,Z2] is not in ~[TR2-A~S (L (m) 

,Zl(m))]. Suppose that there is a TR2-AT~(L(m),Zi( 

m)) M accepting T[L,Z2]. We assume without loss of 

generality that M enters an accepting state only on 

the bottc~n boundary symbol #. Let r and s be the 

numbers of states (of the finite control) and sto- 

rage tape symbols of M, respectively. For each ac- 

cepting cc~putation tree t of M, let SC (t) be a 

multi-set of semi-configurations of M defined as 

follows: 

SC(t)={(q,~,(i,j),i')I c=(x,(q,e,(i,j),i')) is 

a node label of t, and c is a configuration of 

M just after the point where the input head 

left the top half of x}, 

where x is the input associated with t. For each x 

with £i (x) =£2 (x) =2m (n~l), let ACT (x) be the set of 

all accepting cc~putation trees of M on x whose 

leaf-sizes are at most Zl(2m). For each real, let 

V(m)={xE {0,112) ] £1(x)=£2(x)=2m & x<<l, [L(2m)]X 

[Z 2 (2m) ] >>=x<<2m2+l, 2m2+ [L (2m) ] [Z 2 (2m) ] >> & x<< 

[L(2m) ] [Z 9 (2m) ]+l,2m2>>=x<<2m2+ [L(2m) ] [Z 2 (2rn) ]+i 

,4m2>> E {0} (2) } 

and for each x in V(m), let C(x)={SC(t) I tEACT(x)} 

• (Clearly, each tape in V(m) is in T[L,Z 2], and so 

it is accepted by M• Thus, it follows, since we as- 

sumed that M enters an accepting state only on the 

bottem boundary symbol #, that for each x in V (m) 

C(x) is not espty. ) Then the following proposition 

must hold. 

Proposition 4.2. For any two different tapes x, y 

in V(m), C(x)nC(y) = ~. 

[For otherwise, suppose that C(x)NC(y) ~ ~. Then 

there exist accepting computation trees t and t' in 

ACT(x) and ACT(y), respectively, such that SC(t) = 

SC(t'). We consider the tape z (with £1(z)=£2(z)= 

2m) satisfying the following two conditions: 

(i) z[(l,l),(m,2m)]=x[(l,l),(m,2m)]; 

(ii) Z [ (m+l,l), (2m,2m) ]=y[ (m+l,l), (2m,2m) ], 

It is easily seen that one can construct, frem the 

trees t and t', an accepting conputation tree of M 

on z whose leaf-size is at most Zl(2m). Thus, it 

follows that z is in T(M). This contradicts the fact 

that z is not in T[L,Z 2].] 

Let p(m) be the number of possible semi-configura- 

tions of M just after the input head left the top 

halves of tapes in V(m). Then 
• L(2m) 

p(m) < r (2m+2)L(2m) s 

Since for each x in V(m) and for each t in ACT(x) 

LEAF(t) is at most Zl(2m), it follows that for each 

x in V(m) and for each t in ACT(x) 

]SC (t) I <_ Zl (2m). 

Therefore, letting S(m)={SC(t) I t ACT(x) for sc~e 

x in V (m)}, it follows that for sc~e constants c 

and c', 

[S (m) ] <_ cp (m) Z1 (2m) 

< C 'm ZI (2m) L (2m) Z1 (2m) sL (2m) Z I (2m). 

As is easily seen, IV(m)I=2 [L(2m)] [Z2(2m)]. Frc~n 

the conditions (i) and (vi) in the theorem, we have 

Is(m) I < IV(m)[ for large m. Therefore, it follows 

that for large m there must be different tapes x, 

y in V(m) such that C(x) NC(y) # 9~. This contradi- 

cts Proposition 4.2, and thus it follows that T[L, 

Z2] ~ ~TR2-AT~(L(m),Zl(m))]. From the condition 

(v) in the theorem, it directly follows that ~TR2- 

AT~ (L (m), Z 1 (m)) ]~ ~[TR2-ATM s (L (m), Z 2 (m)) ]. This 

cc~pletes the proof of the theorem. Q.E.D. 

Remark 4.1• The condition (iv) in Theorem 4.3 can 

be replaced with the following condition (iv) ' : 

(iv) ' For some constant k>0, [L(m) ] [Z 2 (m) ]5km 2 

(m_>l). 

Remark 4.2. We can show that a similar result to 

Theorem 4.2 holds for 2-ATMS's. It is unknown, how- 

ever, whether the similar results to Theorems 4.1 

and 4.3 hold for 2-ATMS's. 

4.2. Leaf-Size Bounded TR2-AT~'s versus 

2-A~ s ' s 

We next investigate a relationship between the ac- 

cepting powers of lesf-size bounded TR2-ATMS's and 

2-AIMS, s. 

Theorem 4.4. For any L(m) :N÷R and Z(m) :N+R such 

that lira [L (m) Z (m)/m] :0 and lira [ Z (m) log m/m] =0, 
m~o 

~[TR2-A~ s (L (m), Z (m)) ] ~ ~[2-A~ s (L (m), Z (m)) ]. 

Proof. We can prove the theorem by showing that 

the set T 2 described in Lemma 3.3 is in ~[2-ATMS(0, 

i) ], but not in ~[TR2-A~M s (L (m) , Z (m)) ]. The details 

are c~nitted here. Q.E.D. 
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Theorem 4.5. For any L(m) :N÷R and Z(m) :N÷R such 

that L(m) >_ log m (m~l) and lim[L(m)Z(m)/mZ]=0, 
m~o 

~[TR2-ATM s (L (m), Z (m)) ] ~ ~2-ATM s (L (m), Z (m)) ]. 

Proof. We can prove the theorem by showing that 

the set T 3 described in Le~ma 3.4 is in ~[2-ATMS( 

log m, i) ], but not in ~TR2-AT~ (L (m), Z (m)) ]. The 

details are c~itted here. Q.E.D. 

Theorem 4.6. If L(m) >m 2 (m~l), then for ap;y Z(m) 

:N÷R, 

~TR2-AT~ (L (m), Z (m)) ] = ~2-ATM s (L (m), Z (m)) ]. 

Proof. The proof is omitted here. Q.E.D. 

5. Recognizability of Connected Pictures 

It is unknown [2] whether a two-dimensional finite 

automaton can accept the set of connected pictures. 

(See [17] for the formal definition of a connected 

pictu~. ) In Theorem 5 .i, we first show that there 

exists a two-dimensional alternating finite auto- 

maton accepting connected pictures. It is shown 

[18] that m space is necessary and sufficient for 

TRTMS's to accept the set of all the square conne- 

cted pictures. In Theorem 5.2, we provide a result 

which may be viewed as a strengthening of that re- 

sult. Let T be the set of all the square connected 
c 

pictures. 

Theorem 5.1. TcE~2-AFAS (m 2) ]. 

Proof. The set T is accepted by a 2-AFAS(m 2) M 
C 

which acts as follows. Given an input x with £i (x) 

=Z 2 (x)=m>_l, M scans the input x frcm top to bottc~n 

and frem left to right on the same row. In the co- 

urse of this scanning, each time M meets the sym- 

bol "I" it enters a universal state to choose one t 

of two further actions: One action is to continue 

moving right or to the next row until M meets the 

next "i". The other action is to existentially 

check whether there exists a (connected) path of 

l's frem the current "i" to the lowermost and ri- 

gh~nost "i" on x, and to enter an accepting state 

if there exists such a path. It is obvious that 

the input x is in T c if and only if there exists 

an accepting cc~putation tree of M on x with at 

most m 2 leaves. Q.E.D. 

Theorem 5.2. For any L(m):N÷R and Z(m):N÷R such 

that lira [L (m) Z (m)/m] =0 and lira [Z (m) log m/m] =0, 

Tc~ ~[TR2-A~ s (L (m), Z (m)) ]. 

Proof. The proof is c~itted here. Q.E.D. 

It is unknown whether or not T 
C 

TR2-AFA s . 

is accepted by a 

REFERENCES 

[i] A.Rosenfeld, Picture languages (Formal models 
for picture recognition), Academic Press, New York, 
1979. 

[2] M.Bi~n and C.Hewitt, AutQmata on a two-dimen- 
sional tape, ] ~;~;~: Synposi~ of Switching and Auto- 
mata Theory, 155-160 (1967). 

[3] K.Morita, H.Umeo, and K.Sugata, Ccmloutational 
cc~plexity of L(m,n) tape-bounded two-dimensional 
tape Turing machines, IECE of Japan Trans. (D), Nov. 
1977, p.982. 

[4] S.Seki, Real-time recognition of two-dimensio- 
nal tapes by cellular autc~ata, Information Sci., 
19, 3, 179-198 (1979). 

[5] K.Inoue and A.Nakamura, Son~ properties of 
two-dimensional on-line tessellation acceptors, 
Information Sci., 13, 95-121 (1977). 

[6] K.Inoue and I.Takanami, A note on closure pro- 
perties of the classes of sets accepted by tape- 
bounded two-dimensional Turing machines, Informa- 
tion Sci., 15, 143-158 (1978). 

[ 7] K. Inoue and I.Takanami, Three-way tape-bounded 
two-dimensional Turing machines, Information Sci., 
17, 195-220 (1979). 

[8] K.Inoue and I.Takanami, Closure properties of 
three-way and four-way tape-bounded two-dimensio- 
nal Turing machines, Information Sci., 18, 247-265 
(1979). 

[9] K.Inoue and I.Takanami, A note on deterministic 
three-way tape-bounded two-dimensional Turing mach- 
ines, Information Sci., 20, 41-55 (1980). 

[i0] A.K.Chandra, D.C.Kozen, and L.J.Stockmeyer, 
Alternation, J.AC~., voi.28, No.i,i14-133 (1981). 

[Ii] R.E.Ladner, R.J.Lipton, and L.J.Stockmeyer, 
Alternating pushdown autc~ata, Proc.19th IEEE Syrup. 
on Foundations of Ccn~0uter Science, Ann Arbor, 
Mich., 1978. 

[12] W.L.Ruzzo, Tree-size bounded alternation, J. 
Cc~out.Syst.Sci., vol.21, 218-235 (1980). 

[13] W.Paul and R.Reischuk, On alternation, Acta 
Informat., vol.14, 243-255 (1980). 

[14] W.Paul and R.Reischuk, On alternation II, Acta 
Informat., 9o1.14, 391-403 (1980). 

[15] K.N.King, Measures of parallelis~ in alterna- 
ting cc~putation trees, Proc.13th Ann.ACM Syrup. on 
Theory of Conputing (1981), 189-201. 

[16] J.D.Hopcroft and J.D.Ullman, Formal languages 
and their relation to autc~nata, Addison-Wesley, 
Reading, Mass., 1969. 

[17] S.M.Selkow, One-pass cc~plexity of digital 
picture properties, J.ACM., vol.19, No.2, 283-295 
(1972). 

[18] Y.Yamamoto, K.Morita, and K.Sugata, Space 
plexity for recognizing connectedness in three-di- 
mensional pictures, IECE of Japan Trans. Section E 
(English), 1981. 

46 


