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Abstract 

A convincing proof of the decidability of reachability in vector addition systems 

is presented. No drastically new ideas beyond those in Sacerdote and Tenney, and Mayr 

are made use of. The complicated tree constructions in the earlier proofs are completely 

eliminated. 

I. Introduction 

There already exist two proofs for the decidability of reachability in vector addi- 

tion systems [4,5,6]. The two approaches have many common features. For example, even 

though the central concept of 'cones' of [5,6] does not appear explicitly in [4], it seems 

to have played an equally important role in [4] too. (The surprisingly complicated and 

unconvincing cone construction of [5,6] can be reduced to a trivial construction.) I will 

discuss these similarities in the final version. In fact it turns out that no signifi- 

cantly new ideas beyond those of [5,6] are needed to solve this problem. The complicated 

tree constructions of [4,5,6] can be completely disposed of. I vie~¢ the tree constructions 

as convenient tools to test some simple properties of the systems. However, in [4,5,6] 

certain complicated trees are first constructed and the proof of decidability is built on 

top of these. 

The rest of this section is devoted to pointing out some elementary properties. The 

main results are presented in the next two sections. Let Z and N be the set of inte- 

gers and the set of nonnegative integers, respectively. For every n-tuple x , let ~. (x) 
1 

be the value of the i th component of x . For every m > 0 , let m be the vector of all 

m's . The usual componentwise addition, + , and comparison, > , are assumed for vectors. 

For any vector x , -x=0-x . 

We assume familiarity with semilinear sets, Presburger formulas and their elementary 

properties [i]. The following somewhat specialized, but t@ivial, properties are also use- 

ful. A linear set with constant c and periods pl,...,pk is denoted by L(C;Pl,...,pk). 

Lemma i: Let L be a semilinear set, and let A be a subset of {l,2,...,n}. If L does 

not satisfy the property that for every m > 1 there exists an x £ L s.t. for every j £ A, 
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~. (x) > m , then there exists a constant c such that when L is expressed as a union of 
3 -- k th 

linear sets u L. , for every L. there exists a j e A s.t. the j component of every 
i=l l 1 

period of L i has value 0 (the jth component of the sum of the periods of L i has zero 

value ) . 

Let 1 < i I < i 2 < ... < i k <_ n and S : {il,i 2 ..... ik}. For any x s Z n, 

x(S) ( (x) (x),. ~ (x)). For any L c N n, let L(S) = {x(S) l x e L} 
= ~±i ' ~i2 " " ' ik 

Lemma 2 : 

(a) For any semilinear set L and any set of coordinates S, L(S) is a semilinear set. 
(b) If L is a linear set, then L(S) is also a linear set. 
(c) If L is a linear set with one period, then L(S) can be expressed with one period 

also. If L is L(e;p), then L(S) can be given by L(c(s) ;p(S)) . 

Thus the projection of a semilinear set into a subset, {i I .... ,i k} , of coordinates 

results in a semilinear set. 

Lemma 3: Let L be a semilinear set, and S a subset of its coordinates. If L has the 

property that 

(a) for every x s L and every j % S , ~j(x) has a fixed value, and 

(b) for every m > 1 there exists an x e L s.t. for every j e S , ~:(x) > m , 
-- J th 

then L has a linear subset L(c;p) where the j component of p is nonzero iff 

jsS . 

We also need a few concepts from graph theory. Consider a graph (directed and 

possibly having parallel arcs) in which all the arcs are labeled distinctly. Let these 

labels be tl,t2,...,t k . Throughout, we allow nodes without any in- and out-arcs. Such 

nodes are isolated nodes. 

, N k The folding of any (directed) path, p of G is a k-tuple z e such that ~. (z) 
l 

equals the number of occurrences of £ i in the path. Let this folding be denoted by 

~(p) Given a k-tuple z ~ N k , a start node ql ' and an end node q2 ' the unfolding 

of z is any path from ql to q2 whose folding is z . For some combinations of z , 

ql and q2 ' an unfolding might not exist. Note also that unfolding is not a functional 

map. 

For every z sN k and every node q of G , let the in-degree of q w.r.t, z be 

~i(z). This is denoted by in(q,z) The out-degree of q w.r.t, z 
t i is an ±n-arc of q 

is similarly defined as [ ~i(z) , and is denoted by out(q,z) 
t. is an out-arc of q i 

In Lemmas 4 to 7, G is any graph and ql,q 2 and q are any nodes of G . 

Lemma 4: Let G be a strongly connected graph. For any k-tuple z > i , an unfolding of 

z from ql to ql exists iff for every q , in(q,z) = out(q,z) 

Proof: Obvious extension of the standard proofs for the existence of Euler trails (or 

walks) in directed graphs [2]. 

Lemma 5: In G , let z be the folding of any path from ql to q2 Then 

(i) for every q { {ql,q2 } , in(q,z) =out(q,z) , and 

(ii) if ql=q2 then in(ql,z)=out(ql,z ) , and 

if ql~q2 then (out(ql,z) : in(ql,Z)+l and 

in(q2,z) = out (q2 , z) +l) 

Lemma 6: In G , let z I and z 2 be the foldings of two paths from ql to q2 

z I -z 2_>[ , then for every non-isolated q , there exists an unfolding of z I -z 2 

q to q . 

If 

from 
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Proof: We leave it to the reader to prove that existence of z I and z 2 with 

z I- z 2 ~[ implies that all the non-isolated nodes are strongly connected. Now apply 

Lemma 5 to z I and z 2 and deduce that for every node q , in(q,z I - z 2) = out(q,z I - z 2) . 

Finally apply Lemma 4. 

Lemma 7: In G , let z I be the folding of a path from ql to ql ' and let z 2 be 

the folding of a path from q2 to q2 ' such that for some i 0 , i0z I - z 2 ~[ . Then for 

any non-isolated q , there exists an unfolding of i0z I - z 2 from q to q . 

A vector addition system with states (VASS), as in [3], is an fsa or a directed 

graph in which the label of each arc is an n-tuple of integers. For uniformity of descrip- 

tion, we allow the fsa to have states without any in- and out-arcs (isolated states An 

example VASS is given below. Note that q4 is an isolated state. A configuration 

.(-3,-I) t ~ 2,-4) tl/ 

/ h 

t 2 ~ - ........ ~/~ ~'/" 

, ..... 3 q) (-3,4) 

of the VASS is given by (q,x) where q is a state and x is a point in Z n . Given 

an initial configuration (ql,x) , a path from ql in the fsa induces an obvious sequence 

of configuratons. We informally denote this sequence of configurations or the correspond- 

ing sequence of points in Z n as a path. In the above example for the initial configura- 

tion (ql, (7,7)) and the path qltl+ t~ to t. ql_~+ql__~q2_~+q 3 , the corresponding sequences of 

configurations and points are (ql, (7,7)) (ql, (8,9)) (ql, (5,13)) (q2, (2,12)) (q3, (4,8)) and 

(7,7)(8,9)(5,13)(2,12)(4,8), respectively. When the intent is clear, we sacrifice some 

precision for clarity. For example, we might say that point (8,9) is on the above path. 

In a VASS, (q2,y) is r-reachable from (ql,x) iff there is a path, p , from (ql,x) 

to (q2,y) We also write this as (q2,y) s r(ql,x) or (q2,y) ~ r(ql,x) by path p . 

The corresponding path is an r-path. Observe that an r-path can possibly pass through 

points in Z n . The configuration (q2,y) is R-reachable from the configuration (ql,x) 

iff there is a path from (ql,x) to (q2,y) s.t. for every configuration (q',v) on the 

path, v ~ N n . We also denote this by (q2,y) £ R(ql,x) The corresponding path is an 

R-path. Note that every R-path must lie completely in the positive orthant. Let A be a 

subset of the coordinates. The configuration (q2,y) is semi R-reachable or SR-reachable 

w.r.t. A from the configuration (ql,x) iff there is a path from (ql,x) to (q2,y) 

s.t. for every configuration (q',v) on the path and for every i s A , ~i(v) ~ 0 . We 

also denote this by (q2,y) e SR(ql,x) w.r.t. A . The corresponding path is an SR-path 

w.r.t. A . Note that when A is the empty set, the SR concept coincides with the r 

concept, and when A is the set of all n coordinates, the SR concept coincides with the 

R concept. Now we can state the reachability problem. 

ReachabilitY Problem: Design an algorithm to test for every ql,x,q2,y whether (q2,y) 

R(ql,x) or not. 
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(b2) (q2,Y+A2) s Rrev(q2,y) , and 

(c) (q2,A2-AI) g r(q2,0) , 

then 

(q2,y) g R(ql,x) 

(Note that (a) states that (q2,y) is reachable from (ql,x) by some path in Z n , (b) 

states that from (ql,x) there exists a path in the positive orthant which increases all 

the coordinates of x , and similarly (q2,y) can be reached from another point with all 

coordinates bigger, and (c) specifies certain spanning properties of G . 

Proof: Let the r-path from (ql,x) to (q2,y) be p (condition (a) assures its exis- 

tence). Then the R-reachability of (q2,y) from (ql,x) can be represented by the 

following schematic path. Note that the subpaths with A 1 and -A 2 shifts are R-paths, 

and the subpaths with A2-A 1 shifts are r-paths. Select the minimum j such that paths 

j times 

Ai/ 
/ 

. /  
(ql ,x) 

(ql,x+JAl) 

A~/ /~ . \  P 

(q2,Y+JAl) 

,B~. A 2- A1 
, /  C~.A\2-A1 j times 

A2-A 1 

D "~ (q2,y+JA2) 

iA 2 
]_ 

. .--': A 2 
l /  
" (q2,y) 

j times 

p , BC and DE lie in the positive orthant. (As j increases, every coordinate value 

of A,B and E increases. Consequently such a j exists). By Lemma 9, the complete 

path from B to E is in the positive orthant. Thus the complete path is an R-path. 

The schematic path shown earlier is very similar to the schematic path in page ii 

of [6] and also the proof of Theorem 2.6 in [5]. I want to emphasize this similarity to 

indicate that the basic idea in [5,6] is sound. In the rest of the paper we generalize 

this result and solve the reachability problem. The next result is our first variant of 

Theorem i. 

Theorem 2: In a VASS, G , for every ql,x,q2,y if there exist AI,A 2 ~ [ s.t. 

(a) (q2,y) E r(ql,x) , 

(bl) (ql,X+Al) g R(ql,x) , 

(b2) (q2,Y+A2) e Rrev(q2,y) , and 

(c') (ql,9) is r-reachable from (ql,0) by a path p s.t. ~(p) ~ i , 

then (q2,y) s R(ql,x) 

Proof: It is sufficient to show that the above conditions imply condition (c) of Theoreml. 

Application of Lemma 8 to condition (bl) leads to (ql,Al) g r(ql,0) Similarly 
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For a VASS, G , let its reverse, denoted Grev , be obtained by reversing the arcs in the 

fsa and then replacing every label x by -x . The r , R and SR reachabilities of G 
rev 

are denoted by rre v , Rre v and SRre v , respectively. 

Lemma 8: In any VASS, G , if 

In particular, (q2,Y-X) s r(ql,0) 

Proof: 

If 

by v . 

Lemma 9: 

(q2,y) ~ r(ql,x) , then for every A , (q2,Y+A) ~ r(ql,X+A). 

Simply shift the starting point, keeping the old path. 

p is a path from 0 to v , then p has the :'effect" of shifting any point 

We denote this effect by shift(p) ; i.e. shift(p) = v . 

In a VASS, G , let (ql,Al) e r(ql,0) by a path p . Consider a sequence of 

configurations (ql,x) , (ql,X+Al) , (ql,X+2Al) , ... , (ql,X+kAl) where path p is 

applied from (ql,x+iAl) to (ql,x+(i+l)Al) for i = 0 ..... k-i . If the two paths 

(ql,X)_P÷(ql,X+Dl) and (ql, (x + (k-l)Al)) p~(ql,X+kAl) are R-paths, then the complete 

path is an R-path. 

Proof: Observe that for every 1 < i < n and 1 < j < k-i , ~i(x+JAl) is in between ~i(x) 

and ~i(x+kAl) 

Lemma 10: In any VASS , G , and for any initital configuration 

hold: 

(a) 

(b) 

(ql,x) , the following 

it can be effectively decided whether there exists a A ~i s.t. (ql,X+A) e R(ql,x), 

and 

if there does not exist any A~i satisfying (ql,X+A) E R(ql,x) , then a 

constant c s.t. every point R-reachable from (ql,x) has some coordinate 

value < c can be effectively computed. 

Proof: A trivial tree construction establishes this lemma. 

The next lemma is a simple generalization of Lemma i0. 

Lemma ll: In any VASS, G , for any set of coordinates A and any initial configuration 

(ql,x) , the following hold: 

(a) it can be effectively decided whether there exists a A s Z n , s.t. for every 

j s A , ~j (A) ~ 1 , and (ql,X+A) ~ SR(ql,x) w.r.t. A , and 

(b) if there does not exist any A satisfying (a), then a constant c s.t. every 

point SR-reachable w.r.t. A from (ql,x) has i th component value ~ c for some 

i in A can be effectively computed. 

Proof: Suppress the coordinates which are not in A from the labels of all the arcs of 

G and also from x and y , and then apply Lemma i0. 

II. A Result on VASS 

The following two theorems form the bridge between the approaches of [4,5,6] and the 

proof given here. They do not form a part of the main approach, and the anxious reader is 

advised to go directly to Theorem 3. Theorem 4 is the main result that will be applied in 

the next section. In all these theorems ql and q2 are any states of G , and x and 

y are in N n 

Theorem I: In a VASS , G , for every ql,x,q2,y if there exist Ai,A 2 ~ ~ s.t. 

(a) (q2,y) ~ r(ql,x) , 

(bl) (ql,X+Al) e R(ql,X) 
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condition (b2) implies (q2,A2) s rrev(q2,0) , which further implies (q2,-A2) ~ r(q2,0) . 

Let Pl be an r-path from (ql,O) to (ql,Al) , and let P2 be an r-path from (q2,0) 

to (q2,-A2) Choose the minimum i 0 s.t. 

i 0 ~(p) ~ ~(pl)+~(p2)+i (this can be done since ~(p) ~ i) Then application of 

Lemma 7 twice (i 0 z(p)-~(pl)~i and (i0~(p)-~(pl))-~(p2) ~[) , results in the existence 

of a path from q2 to q2 (q2 is non-isolated due to b2) whose folding is i 0 ~(p) - 

(~(pl) + ~(p2 )) Hence there exists an r-path from (q2,0) to (q2,A2-A I) (Note 

that shift(p) = 0 , shift(Pl) = A 1 , and shift(P2) =-A2 ) Thus condition (c) of Theorem 1 

holds. 

In this theorem, condition (c') gives a spanning property of the VASS. In the 

spirit of [5,6], it can be interpreted as that if any vector v is in the "positive spad' 

then -v is also in the positive span. 

The next theorem is an important generalization of Theorem 2. 

Theorem 3: In a VASS, for every ql,x,q2,y and Ax,Ay ~ 0 , if there exist Ai,A 2 s Z n 

and ml,m 2 _> 0 , s.t. 

(a) for every i~l , ~i(Ax) : 0 ~-> ~i(Al) h 1 , and 

~i(AY) = 0 ----> zi(A2) ~ 1 , 

(b) (q2,y) E r(ql,x) , 

(c) (ql,x+mlAX+Al) s R(ql,x+mlAx) , and 

(q2,Y+m2AY+A2) s Rrev(q2,Y+m2AY) , and 

(d) (ql,AY) is r-reachable from (ql,AX) by a path p s.t. ~(p) ~ i , 

then 

(3Jo) ( VJ ~ Jo ) (q2,Y+jAy) s R(ql,x+jAx)) 

Note that if 

Proof: 

below. 

(d') (q2,Ay-Ax) e r(q2,0) , and 

(e) there exists an integer m > 1 s.t. 

max + A 1 ~ i # 

may + A2 ~ i , and 

(q2,m(Ay-Ax)+A2-A1) E r(q2,0) 

Ax=£y=0 , then this result degenerates into Theorem 2. 

First we prove that the above conditions imply the condition (d') and (e) given 

(q2 is non- 

for every B' > B: 

By Lemma 8, (d) implies that (ql,Ay-Ax) e r(ql,O) by path p . Since p makes use of 

every arc, p goes through every non-isolated state. Remove a prefix of p that corres- 

ponds to a subpath from ql to q2 and append it as the suffix of p 

isolated due to (c)) This establishes (d') . 

Since Ax, Ay > 0 , (a) implies that there exists a B s N s.t. 

B'Ax+A 1 > [ , and 

B'Ay+A 2 __> [ . 

Application of Lemma 8 to (c) results in 

(ql,Al) s r(ql,0) , and 

(q2,-A2) ~ r(q2,0) . 
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Let Pl be an r-path from (ql,0) to (ql,£1) , and let P2 be an r-path from (q2,0) 

to (q2,-£2) Let y be the minimum value ~ 1 s.t. y~(p) ~ ~(pl)+~(p2)+l (this is 

feasible since ~(P) h [) For any y' ~ y , y' ~(p) _> ~(pl)+~(p2)+[ Application of 

Lemma 7 twice (y'~(p)-~(pl) ~ [ , and (y'~(p)-~(pl)-~(p2) ~ i) results in the existence 

of a path from q2 to q2 whose folding is y'~(p) - (Z(pl)+z(p2)) . Finally y'shift(p)- 

(shift(Pl)+shift(P2)) = y' (Ay-£x)+A2-A 1 . Then choose ~ = max{~,y} , S'=~ , and 8'=~ , 

establishing (e) 

Now we shall make use of conditions (b), (c), (d') and (e) to prove the theorem. 

Let an r-path from (ql,x) to (q2,y) be P3 " The R-reachability of (q2,y+j£y) 

from (ql,x+j£x) can be represented by the following schematic path (m=max{ml,m2}) 

Ai/A . . . . . . .  

A 1 
S ,x+jAx) 

• V "  

Ay_Ax G ~ j-~ L--~] t i m e s  

y+j y+t j  2) 
~ 'ZA 2 

s ~  

T  /q2,y+J y/ times 

Note that when j increases by a step of e , all the components of A,B,E and H 

increase (This for E follows easily from the first two conditions of (e) . For A,B and H 

a littlel~l more justificationl~ I is needed. As an example, for A , observe that x+jAx+l~ IAi=~ 

x+L~ J (~A2+Ai)+(j-~L~J)Ax) In addition, if j-m is a multiple of ~ and if j 

increases by any step in between 1 and e , then no component of A,B,E andH decreases, 

since Ax, Ay ~ 0 (caution: £x+A 1 and Ay+£ 2 can possibly have negative components). 

Now keep j-m as a multiple of ~ and increase it in steps of e until the paths P3 ' 

BC , DE , EF and GH are entirely in the positive orthant. Let the minimum value of j 

when this happens be J0 For that choice of j , by Lemma 9, paths BE and EH are in the 

positive orthant. From the above observations, for every J h J0 every component of 

A,B,E and H is greater than or equal to the corresponding component of J0 Hence for 

every J ~ J0 ' the corresponding path is an R-path. 

The next theorem is a minor generalization of Theorem 3, and forms the heart of 

the decision procedure. 

Theorem 4: In a VASS, G , for every ql,x,q2,y and Ax,Ay ~ 0 , if there exists 

Ai,£ 2 g Z n , A _c {1,2,...,n} and m l,m 2 _> 0 s.t. 
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(a) for every 

has value 0 , and 

for every j ~ A , ~j (Ax) = 0 ==> ~j (A I) ~ 1 , and 

~j (Ay) = 0 => ~j (A 2) ~ 1 , 

(b) (q2,y) s r(ql,x) 

(c) (ql,x+mlAX+Al) s R(ql,x+mlAX) , and 

(q2,Y+m2AY+A2) ~ Rrev(q2,Y+m2AY) , and 

(d) (ql,AY) is r-reachable from (ql,AX) by a path p 

then 

(~J0) (VJ ~ J0 ) ((q2,Y+jAy) ~ R(ql,x+jAx)) 

j s A , the jth component of the label of every arc of G 

s.t. ~(p) > i , 

th 
Proof: For every j s A , the j component of the label of every arc has value 0 , 

which implies that for any path in G the jth component will not change. Thus from (b) 

we can infer that for every j s A , ~j(x) = ~j(y) Condition (d) implies that for 

every j s A , ~j(Ax) = zj(Ay) Hence for every i ~ 0 and every j s A , zj(x+iAx) = 

~j(y+iAy) Now from the labels of all the arcs of G and also from all the vectors 

involved suppress the coordinates in A and apply Theorem 3. Any R-path so obtained 

from (ql,x+iAx) to (q2,Y+iAy) is also an R-path for the original G (In this state- 

ment, reference to x+iAx and y+iAy is technically incorrect, since after the coordi- 

nates of A are suppressed the new vectors are n-IA i dimensional. However the intent 

is clear, and we will not indulge in unnecessary new notation). 

In the next section, we will introduce a more general model of VASS's, known as 

GVASS. We will then give a decision procedure for solving its reachability problem. 

3. Generalized VASS (GVASS) 

Consider the following chain of n-dimensional VASS's. Every G. is a VASS and 
l 

G 1 G 2 G i G s 

x ((\~) ...... ? --; . . . . .  ) < -~ ..... ) , y 

, . '\< / 

ql ql' q2"~'-- q2' qi ' qi' qs ..... qs' 

! 

there is one arc from ql to qi+l ' for i=l,...,s-i . Every r-path from (ql,x) to 
i 

(qS,y) goes through the arc (qi_l,qi) , for i=2 ..... s , exactly once. When the 

r-path reaches qi for the first time, the corresponding n-dimensional point is denoted 

as the ~nput point of G i ; similarly, when the path reaches ql for the last time, the 

• For G 1 the input point corresponding n-dimensional point is the output point of G 1 

is x , and for G s the output point is Y . Note that an r-path from (ql,x) to 
(' 
qs,y) need not have the input and output points of every G i in the positive orthant. 

From now on we shall be interested only in r-paths which have all the intermediate input 

and output points in the positive orthant. With the help of Presburger formulation, it 
! 

can be shown that whether there exists such an r-path from (ql,x) to (qs,y) can be 

effectively decided. 

We further tighten the concept of an r-path as follows. We place the additional 

constraint that for every G i certain specified coordinates of its input and output 

points must have fixed specified values. To make this precise, we introduce a new symbol 

, as in [4], which stands for "don't care" or simply " > 0" For each G. we impose 
, V' l , 

2 constraints: an input constraint, V i and an output constraint, i , where Vi,V i 
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( ! 
(Nu{~}) n An r-path from (ql,x) to qs,y) is said to satisfy the input constraint 

th 
of G i if for every j with Hj (V i) e N the j component of the. thinput point of G.i 

has the value Hj (V i) , and for every j with ~lj (V i) = ~ the 3 component of the input 

point of G i has a value > 0 . That is, non-~'s specify exact values, and ~'s are 

don't cares. The oath satisfies the output constraint of G. if for every j with 
' , th i , 

Hj (V i) e N the 3 component, of the.outputth point of G.l has the value llj (V i) , and 

for every j with Hj (V i) = ~ the 3 component of the output point of G i has a 

value _> 0 . Let us denote any r-path which satisfies the input and output constraints 
u 

for all G. 's as a cr-path. We express this by (qs,y) ~ cr(ql,x) Note that when a 
i % 

cr-path is inside a G. , the corresponding points can have negative components. 
1 , ! 

A CR-~at h from (ql,x) to (qs,y) is a cr-path from (ql,x) to (qs,y) , and, in 

addition, no intermediate point can have a negative component. We express this by 

(qs,y) ~ CR(ql,x) Note that a CR-path is a cr-path and also an R-path.* Then in any 

cr-path from (ql,x) to (qs,y) , the jth component of the input and the output points 

of G. must be the same. This holds since any path in G. does not change the jth com- 
l th l 

ponent. In addition, when the path is inside G i the j component of every point on 

this subpath is positive (in fact equal to the jth component of the input point which is 
• th 

the same as the 3 component of the output point). 

The above chain of VASS's with the input and output constraints and the rigid set 

specified for each G i is a generalized VASS, denoted by GVASS. 
( ' 

The reachability problem for a GVASS is to test whether qs,y) e CR(ql,x) for 
! 

every given ql,X,qs and y . 

Observe that when s = 1 , the GVASS becomes a VASS. Consequently decidability of 

reachability for GVASS's implies decidability of reachability for VASS's. In this section 

we give an effective procedure for the reachability problem for GVASS's. Throughout, G 

refers to the GVASS shown above. 

Let the total number of arcs in Gi,...,G s be k , where each G. has k. arcs 
, 1 1 

(k = [k i). Any cr-path from (ql,x) to (qs,y) can be mapped into a (2so+k)- tuple, 

with the following interpretation. 

iist n block j [ 2nd n block ] [2s th n block I I k block I 

input point of G 1 output point of G 1 output point of G s arcs 
" ,v 

x y 

For i= l,...,s , the (2i-i) th n block specifies the input point of G i ; for i=l,...,s, 

the 2i th n block specifies the output point of G. ; the last k block specifies the 
i 

number of times each arc in Gi,...,G s is used in the path. Let us denote this "extended 

folding" by H e . Let 

! 

L G = {He(P ) IP is a cr-path from (ql,x) to (qs,y) } 

It can be easily shown, with the help of Presburger formulation, that L G is an effec- 

tively computable semilinear set. If we project L G into the 2n+k i dimensional sub- 

space corresponding to the input (n components), and output (n components) points and the 

arcs (k i components) of G i , then the resulting set is semilinear (Lemma 2a), and this 

set gives the extended foldings of subpaths in G i Let this projection be denoted by 

LG[i] 

"path inside a G I. " refers to the subpath every one of whose states is in G.l 

* Some definitions were accidentally omitted; they are given on the bottom of p. 281. 
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In V. , replace_ every ~ component by 0 , and let the new vector be denoted by 
1 ! t 

v i ; similarly v i is obtained from V i by replacing every ~ by 0 Now we define a 

very crucial property of GVASS's. 
! 

The GVASS, G , with initial configuration (ql,x) and final configuration (qs,y) 

satisfies property 9 iff the following conditions are satisfied: 

( ' 
81: for every m ~ 1 , there exists a cr-path from (ql,x) to qs,y) s.t. 

(a) every arc in every G. is used at least m times, and 
1 

(b) for every i and j , if j % S i then the jth component of the input 
' .th 

point of G i has a value ~ m , and if j % S i then the ] component 

of the output point of G i has a value ~ m , and 
! 02: for every i , there.exist Ai,A i _c Z n s.t. for every j ~ S.-R.l l ' zj(Ai) _> 1 

and for every j s S.l-R.l ' ~ (Ai') _> i , and 

(a) (qi,vi+hi) c SR(qi,v i) w.r.t. Si-R i in G i , and 
! l ! I ! 

(b) (qi,vi+Ai) s SRrev(qi,vi) w.r.t. S[-R. in G 1 1 1 

(Informally condition 01(b) states that every unconstrained input or output coordinate 

of every G i must have a value ~ m . Condition 82 states that for every G i in the 

subspace of its constrained, but nonrigid, input coordinates, all the components of its 

input constraint vector can be simultaneously increased by an R-path; and in the subspace 

of its constrained, but nonrigid, output coordinates, all the components of its output 

constraint vector can be simultaneously increased by an R-path in Girev). 
! 

Theorem 5: In the GVASS, G , there is a CR-path from (ql,x) to (qs,y) if G satis- 

fies property 8 . 
! 

Proof: Recall that L G = {ze(p) Ip is a cr-path from (ql,x) to (qs,y) } is a semi- 

linear set. Since G satisfies property e , for every m , L G contains an element 

whose components corresponding to every unconstrained coordinate and every arc have 

values ~ m (from 81). Thus by Lemma 3, L G contains a linear subset of the form 

L(c;p) , denoted L G , where p has nonzero components corresponding to every uncon- 

strained coordinate and every arc, and zero components corresponding to every constrained ^ ^ 
coordinate. Project L G into G i ; i.e. consider LG[i] Every element of LG[i] . is 

in N2n+ki and is the extended folding of a subpath of a cr-path from . (ql,x)to !qs,y). ^ • . 
By Lemma (2c), LG[i] is a linear set and can be written as L((xl,yl,Zl) ; (AXi,Ayi,AZl)). 

Where xl,yi,Ax I and Ay i are n-tuples and z i and Az i are ki-tuples. The x's and 

y's correspond to the input and the output points, respectively, of G i The z's cor- 

By Lemma (2c) (period of projection=p(s)) respond to the foldings of subpaths in G i 

we can infer that for every j , 

~3(Axi) > 1 iff j ~ S i , and ~j(Ay i) > 1 iff j { S' , _ -- i and 

Az I ~ i ..... (*) 

In the following we establish that G i satisfies conditions (a) to (d) of Theorem 
, i ' ' = = ' .) 

4 (with ql = qi 'x= xi ' q2 = qi ~ y =Y , Ax= Ax I , Ay = Ay I , A 1 A i ,A2 A i and A= R I 

the j h has value For every j £ R i component, of the label of every arc in G i 

0 . For every j ~ R i , if z](Axl). = 0 , then j e Si-R.l (from *) , which, by condition 

_ . every j R i , , S[ 82 , implies that ~j(A i) > 1 For ~ if ~j(Ay i) = 0 then j s l-Ri 

, , . condition (from *) which by condition 82, implies that ~j(A~) > 0 . Hence for G 1 

(a) of Theorem 4 holds. 
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^ 
From the definition of LG[i]. , it is easily seen that, for every j > 0 , there 

• , ' i .. i 
is. an r-path, in G i from (qi,xl+jAx I) to tqi,y +3ay ) , the.folding of the path being 

• i) 
zl+jAz I For j =0 , the above implies that (qi,y < r(qi,x~) which establishes 

condition (b) of Theorem 4. 
! 

Since there is a cr-path from (ql,x) to (qs,y) with the input and output points 

of G i being x i and yi , respectively (from the fact that (xi,yi,z i) SLG[i]) : we 

can infer (from the definition of a cr-path) that for every j c S i , ~j (V i) = ~j (x l) , 

S' V' and for every j s i ' zj ( i ) = ~j (Yi) 

Due to 82(a), there exists an SR-path, say Pl ' w.r.t. Si-R i in G i from 

(qi,vi) to (qi,vi,+Ai) Since path Pl is entirely in G i , v i > 0 , and for every 
th 

j s R i the j component of every arc in G i has value 0 , we can infer that path Pl 

is an SR-path w.r.t. S i from (qi,vi) to (qi,vi+Ai) From the definition of v i , 

it is easily seen that for every j £ S i , ~j (v i) = ~j (V i) Hence for every j ~ S i , 

~j (v i) =~. (V.) = ~j(x i) . Consequently, path Pl is an SR-path w.r.t. S i in G i 

from " 3 i~ 1 to x I) Since tqi,x ) to (qi,xl+Ai) (shift the starting point of Pl from v i 

Ax I > 0 , and for every, j ~ ~i ' ~j (Ax±). ->- 1 . (from *), there exists an ml, s.t. the 

path Pl from (qi,xl+mlAx ±) .t° (qi,xl+mlAXl+Ai) is an R-path in G i (shift the 

starting point from x I to xl+mlAXl) Making use of 82(b) and following a similar 

argument we can .Drove that there exists an m 2 s.t. there is an R-path in G.l from 
' ' ' ' i i ' 

(qi,Y1+m2AY I) to (qi,y +m2AY +A i) Hence condition (c) of Theorem 4 holds, rev• • 

Recall that for every j > o , there is an r-path in G i from (qi,xl+jAx l) to 
' i . i ' ' 

qi,y +]Ay) the folding of the path being zl+jAz ± Consider two such paths, one for 

j = 0 and the other for j = 1 , and apply Lemma 6. This yields that there is an unfold- 

ing of Az i from (qi,Axi). to (qi,AY i) Since Az i > i (condition *), (qi,Ay i) is 

r-reachable from (qi,Ax l) by a path whose folding is ~ i . This proves condition (d) 

of Theorem 4. Hence for G. , by Theorem 4, 
1 

w . . . .  
(~ j0 ) (Vj _> j0 ) ((qi,Yl+jAy l) e m(qi,xl+jAxl)) 

For every i there is a constant J0 as given by the above statement. Now choose the 

maximum among such constants, as i varies from 1 to s . Let this be J . Then 

( V i) (VjhJ) (qi,y +jAy i) ~ R(qi,xl+jAxl) ) 
! 

For any such j , the above statement specifies a CR-path from (ql,x) to (qs,y) , 

which is schematically shown below. Note that x I = x, Ax I = ~ , yS = Y and £yS = ~) 

R-path , \ /~ R-path,- ,~ arc ,-~ R-path .~ arc qs) ......... > qs) 

I..^ 1 i-.-.̂  I 2-.^ 2 2 .. 2 • J 
x +3sx y +3ny x +3sx y +3ay xS+jAx s yS+jAyS 

=x =y 

Recall that for every i, the linear set L((xi,y i,zi); (dxi,Ayi,Azi)) was obtained by 

projecting {_ into G. . Hence for every j > 0, 
, 1 1 2 2 G s s 11 2 s . 1 i-- 2 2 ^ 
~x ,y ,x ,y ,...,x ,y ,z ,z ,...,z )+3 (Ax ,Ay ,Ax ,Ay .... ,AxS,AyS,Az I Az 2 ,Az s) s L G 

t r... 

Consequently, for every i=l ..... s-i and j _> 0, there is an arc from yi+jAvi 

to xi+l+jAx i+l (in fact this is the arc (ql,qi+l)). Thus the complete path shown above 

is an R-path. 

We exhibited an infihite number of CR-paths from (ql,x) to (q~,y) , even though it is 

sufficient to exhibit just one path• 

Now we want to show that the conditions of Theorem 5 can be effectively tested. 
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Theorem 6: It is effectively decidable whether a GVASS, G , satisfies property @ . 

Proof: To test for condition (i), compute the semilinear set L G as a finite union of 

linear sets. At least one of these linear sets must have the property that the sum of 

its periods has a nonzero entry corresponding to every unconstrained coordinate and also 

every arc. (It trivially follows from the definition of L G that for every linear sub- 

set of L G , every one of its periods, and hence the sum of its periods, has a 0 value 

corresponding to every constrained coordinate). This can be easily tested. To test for 

property 2, apply Lemma ii to each G i twice (once for G i and another time for G i ). 

Now we shall establish that if G does not satisfy property 0 , then the rev 

"size" of the GVASS can be reduced. For every G i , define its size by a triple (nil,ni2 , 

ni3) where: 

nil = n- number of rigid coordinates of Gi(=n-IRil) , 

ni2 = number of arcs of Gi(=k i) , and 

ni3 = number of unconstrained input and output coordinates of Gi(=2n-ISiI-IS'il) 

The size of G , denoted SS(G) , is given by the multiset of sizes of its Gi's . 

Let '<' refer to the dictionary order among triples; i.e. (al,a2,a3) < (bl,b2,b 3) iff 

((a I < b I) or (a I = b I and a 2 < b 2) or (a I =bl,a 2 =b 2 and a 3 < b3)) In Theorem 7, 

we shall establish that if G does not satisfy property 0 , then we can replace G by 

a finite number of GVASS's, Gi,G 2,..., such that for every i , SS(G i) can be obtained 

from SS(G) by replacing a triple by a finite number of smaller triples, and in addi- 

tion, the CR-reachability of G has a 'yes' answer iff the corresponding problem for 

some G i has a 'yes' answer. This establishes that only a finite number of modifica- 

tions are possible. If the procedure terminates without satisfying property e , the 

size of every G i will be (0,0,0) ; i.e. every coordinate of G i is rigid and G i is 

a single node or many isolated nodes without any arcs. If property @ does not hold, at 
! 

this stage, then it can be reported that there is no CR-path from (ql,x) to (qs,y) 

Theorem 7: If the GVASS, G , does not satisfy property e and if SS(G) contains an 

element different from (0,0,0) , then G can be replaced by a finite number of GVASS's, 

G I,G 2,..., such that 

(i) for every i , SS(G i) can be obtained from SS(G) by replacing a 

triple by a finite number of triples, each of which is less than 

the triple being replaced, and 

(2) the CR-reachability of G has a 'yes' answer iff the CR-reachability 

of some G i has a 'yes' answer. 

Proof: L G is a semilinear set and can be expressed as the union of a finite number of 

linear sets: 

L G = L 1 u L 2 u ... u L~ , where L i = L(ci,Pil,Pi 2 .... ,pit ) 
1 

If L G=empty set, then remove all arcs of G and set all unconstrained coordinates to 0's. 

Condition 01(a) 

If condition 01(a) fails, then we shall replace G by B GVASS's, Gi,...,G B , the 

G l being based on L. When 81(a) fails, by Lemma i, for every i there exists an i0 
1 

is 0 , and this i0 th component corres- s.t. the i0 th component of Pil+Pi2+...+PiYi,_ 

ponds to some arc. Let this arc be e = tq,q ) , and let it be in some G Note also 

that wi0(c i) specifies the number of times arc e in G gets used on each cr-path 

whose extended folding is in L. 
1 
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G 
e 

q q ' 

> 

G -e G -e G -e 

q~ q q'~ q ql . . . .  . q 

copy 1 copy 2 copy 3 

G -e G - e  

-</--,<< 7 
q q' q qa' 

copy a copy a+l 

e . The chain shown above 

has 
The input constraint of copy 1 is V 

The remaining input and output constraints are identical (say = W) 

if j¢R 
~. (w) = { ~} 
] 

~i0(V ) if j' S R 

The first two components of the size of each copy of G -e 

the size of each G -e is less than the size of G 

G -e is obtained from G by simply removing the arc 

a+l c o p i e s  o f  G - e  , a n d  f o r  e a c h  c o p y  l e t  t h e  s e t  o f  r i g i d  c o m p o n e n t s  b e  R 
! 

V and the output constraint of copy a+l is 

as given by: 

After the above transformation, let the new GVASS be 

that: 

are n 1 and n 2-i . Thus 

G i It can be easily shown 

in G there exists a CR-path, from (ql,x) 
i 

to (qs,y) , whose extended folding is in L i 

iff in G i there exists a CR-path from (ql,x) 
! 

to (qs,y) 

Thus the theorem holds in this case. 

Condition el(b) 

If condition 01(b) fails, then we shall replace G by ~ GVASS's, Gi,...,G B , the 

G i being based on L i By Lemma I, for every i there exists an i0 s.t. the i0 th 

component of Pil+...+pi7 is 0 , and the i0 th component corresponds to some uncon- 

i . . Note that ~i0(ci) specifies the strained input or output coordznate zn some G 

required fixed value of that coordinate which had previously the value ~ . Replace that 

in the corresponding constraint vector (input or output) of G by ~i0(ci) , and let 

the resulting GVASS be G i Note that the size of G changes from (c l,C 2,c 3) to 

(Cel'C~2,c~3_ I) Now we can complete the argument as in 81(a). 

Condition e2 

Conditions @2(a) and @2(b) can be handled similarly, and we show the transformation 

when ~2(a) fails. Let 82(a) fail for some G Then there does not exist a A s.t. 

for every i s S e- R ~ i(£ ) ~ 1 and (q~,v +A ) s SR(q~,v ) w.r.t. S- R in G 

Thus by Lemma Ii, we can effectively compute a constant c s.t. every point SR-reachable 

w.r.t. S - R a from (q~,v) has i th component value ~ c for some i in S - R 
! 

Since every CR-path from (ql,x) to (qs,y) must satisfy the input constraint of G ° , 

when such a CR-path is inside G e , any point on it must have a component value ~ c 

for some coordinate in S - R We shall treat the reduction as IS -R I cases, one 

_ into at corresponding to each element in S R e In each case we shall modify G e 
! 

m o s t  c+l new G s . In total we generate at most IS R I (c+l) GVASS's. 
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Select any i in S - R 

I 

(i) If zi(V ) = ~ , then replace that ~ by 0,1,2 ..... c each giving a new G , 

which results in c+l new GVASS's. Note that this additional restriction will not 
f 

remove any old CR-path, from (ql,x) to (qs,y) , which satisfies the property that 

when the path is inside G (including its outputs point) its i th coordinate is ~ c 
1 

(ii) Let ~i(V )s~ N . 
! 

Let zi(V ) = a and vi(V ) = b . Note that for any CR-path from (ql,x) to 
t 

(qS,y) , the input and the output points of G have i th component values of a and b , 

respectively. In iddition when the path is inside G , the i th component of the 
th 

corresponding points must lie in between 0 and c. By making use of the i compon- 

ents of the labels of the arcs of G we can construct an fsa which captures all paths 

from a to b with intermediate values in between 0 and c. If we take the cross- 

product of G and this fsa, the new VASS, G , has the additional constraint that the 

i th component of each of its intermediate point 3 is in between 0 and c . At this 

stage, if the i th components of the labels of all the arcs of Gi are replaced by O's 
th 

the paths inside G will not be affect@d but at the output point the i component will 

have a value a instead of b This can be corrected by an arc, whose label is a vec- 

tor of all O's , except that its i th component is b-a . Even though this is a suffi- 

cient description, we precisely describe the procedure below and show that the size 

decreases in the transformation. 

Let G have g states. Then create g(c+l) states, the label of each state 

being a pair (q,~) where q is a state of G and 0 ~ ~ ~ c There exists an arc 
t 

labeled u from (q,~) to (q ,~') iff in G there is an arc labeled u from q to 

q' and ~' = ~+~. (u) Let the input and the output states of G be (q~,a) and 

(qe,b)) , respectively. Now in G replace the i th component of the label of every arc 

by 0 and add an arc, v , to a new state from 

G The constraints of 

! 

(q~,b) as shown below, 

~ ~  . . . . . . . .  (~ 

/ 

and H are given by. 
] 0 otherwise 

Input constraint of G = V , output constraint of G = V , set of rigid coordi- 
! ! 

nates of G R u{i} , input constraint of H = V , output constraint of H = V , and 

set of rigid coordinates of H = R u{i} , where V is given by ~j(V) = { a if j = i 
! 

~j (V i) otherwise. 

Note that the first component of the sizes of G and H is nil-i , which is 

• and H is less than the size of G less than nil Hence the size of each of G 

After the replacement of G by G and H let the GVASS be G i . It is easily seen 
~ .th 

that there exists a CR-path in G s.t. when the path is inside G the 1 coordinate of 

every point is < c iff there exists a CR-path in G i Thus the theorem holds 

The next theorem gives the termination condition. 

Theorem 8: For the GVASS, G, if every member of its size set is (0,0,0) and if G 
! 

does not satisfy property ~I , then there is no CR-path from (ql,x) to (qs,y) 
! 

Proof: Note that £here are no arcs within any G i If for some Gi,qi~qi then there 
! t 

is no directed path from ql to qs ' hence there is no CR-path from (ql,x) to (qs,y). 

Otherwise, excluding the isolate~i nodes, G is as shown below• 

2 8 0  



G 1 G 2 G 3 G 4 Gs_ 1 G s 

For such a GVASS, property 8 degenerates into existence of a cr-path from (ql,x) to 
! 

(qs,y) Also note that in such a GVASS every cr-path is a CR-path. 

Now we can outline the decision procedure for the reachability problem of GVASS's. 

L: Test whether the GVASS satisfies property 8 

i~ property 0 holds then report 'yes' and halt 

else 

if the size set has a member ~(0,0,0) then reduce 

the problem size, and goto L 

else report 'no' and halt. 

IV. Conclusions: 

We are able to establish the decidability of reachability by making use of known 

simple observations. It is particularly gratifying that the simple idea embodied in 

Theorem 1 can be used to solve the general problem. At about the time [5] was announced, 

I was able to establish the decidability of reachability in 4 dimensions. The result 

became outdated even before I could work out the details, due to [3] and [5]. However 

what intrigued me most was that my approach was based on a special form of Theorem i. 

By such a theorem, I was able to reduce the dimensionality by 1 , but I was forced to 

fall back on a technique analogous to that of [7]. What was lacking was the inductive 

step, which [5] claimed to have developed. Even though [5] does not explicitly consider 

the extension of VAS's to VASS's as in here and also in [3,4] , it does make 

use of chains of VAS's in a manner not too different from the technique here. In fact, 

after going through our proof one should not have any difficulty in reformulating this 

technique for chians of VAS's. 
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For Gi, let S i = {j I ~j(V i) @ w}, and S i {J I ~j(V i) ~ ~} The coordinates in S i and S~ 
1 

are the constrained input and output coordinates respectively of G i. A subset, Ri, of 

S I. N S I! is denoted as the set of rigid__ coordinates, and has the following significance. For 

every j e R i, the j'th component of the label of every arc in C i ~~ust h{ve value O. 
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