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A variety of models have been proposed for the 
study of synchronous parallel computation. We 
review these models and study further some proto- 
type problems. We distinguish two classes of models, 
fixed connection networks and models based on a 
shared memory. Routing is the prototype problem for 
the networks. In oarticular, routing provides the 
basis for simulating the more powerful shared 
memory models. We show that a simple but important 
class of deterministic strategies (oblivious rout- 
ing) is necessarily inefficient with respect to 
worst case analysis. Routing can be viewed as a 
special case of sorting and the existence of a 
deterministic O(logn) routing or sorting algorithm 
for an n processor fixed connection network remains 
open. IIowever, if we consider the more powerful 
class of shared memory models, we are "almost" able 
to achieve such an efficient sort via Valiant's 
parallel merging algorithm. Within a spectrum of 
models, we show that log log n - log log r is 
asymptotically optimal for rn processors to merge 
two sorted lists of n elements. 

I. Introduction: What is a reasonable model? 

A number of relatively diverse problems are 
often referred to under the topic of "parallel 
computation". The viewpoint of this paper is that 
of a "tightly coupled", synchronized (by a global 
clock) collection of parallel processors, working 
together to solve a terminating computational 
problem. Such parallel 9rocessors already exist 
and are used to solve time consuming problems in 
a wide variety of areas including computational 
physics, weather forecasting, etc. The current 
state of hardware capabilities will facilitate 
the use of such parallel nrocessors to many more 
applications. 
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Within this viewnoint, Preparata and Vuillemin 

[ 79 ] distinguish two broad categories. Namely, 
we can differentiate between those models that are 
based on a fixed connection network of processors 
and those that are based on the existence of global 
or shared memory. In the former case, we assume 
that only graph theoretically adjacent processors 
can communicate in a given step, and we usually 
assume that the network is reasonably sparse; as 
examples, consider the shuffle-exchange network 
(Stone [ 71]) and its development into the Ultra- 
commuter of Schwartz [80], the array or mesh 
connected processors such as the Illiac IV, the 
cube-connected cycles of Preparata and Vuillemin 
[79 ], or the more basic n-dimensional hypercube 
studied in Valiant and Brebner [ 81]. As examples 
of models based on shared memories, there are the 
PRAC of Lev, Pippenger and Valiant [ 81], the PRAM 
of Fortune and Wyllie [ 78 ], the unnamed parallel 
model of Shiloach and Vishkin [ 80 ], and the 
SIMDAG of Goldschlager [78 ]. Essentially these 
models differ in whether or not they allow fetch 
and write conflicts, and if allowed, how write con- 
flicts are resolved. 

From a hard, are point of view, fixed connect- 
ion models seem more reasonable and, indeed, the 
global memory-processor interconnection would pro- 
bably be realized in practice by a fixed connection 
network (see Schwartz [80 ]). Furthermore, for a 
number of important problems (e.g., FFT, bitonic 
merge, etc.) either the shuffle-exchange or the 
cube connected cycles provide optimal hosts for 
well known algorithms. On the other hand, many 
problems require only infrequent and irregular 
processor conm~unication, and in any case the shared 
memory frame,fork seems to provide a more convenient 
environment for constructing algorithms. Finally, 
in defense of the PR~I, it is plausible to assume 
that some braodcast facilities could be made avail- 

able. 

The problem of sorting, and the related nro- 
blem of routinK are prototype problems, due both to 
their intrinsic significance and their role in 
processor communication. Since merging is a (the) 
key subroutine in many sorting strategies, we are 
interested in merging and sorting with respect to 
both the fixed connection and shared memory models. 
For a fixed connection network such as the n- 
dimensional cube, the complexity of merging has 
been resolved by the fundamental log n algorithms 
of Batcher (see Knuth [72 ] for a discussion of odd- 
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even and bitonic merge). The lower bound in this 
regard is immediate because log n is the graph theo- 
retic diameter. In this paper, we concentrate on 
routing in networks and the complexity of merging 
(with application to sorting) on shared memory 
machines. 

II. Routing in Networks 

The problem of routing packets in a network 
arises in a number of situations. For applications 
in parallel computer architecture we are concerned 
with special networks such as a d-dimensional 
hypercube or a shuffle exchange interconnection. 
In this setting O(log n) global strategies are 

known as well as O(log2n) local strategies. 

For our purposes, a network is a diagraph <V,E> 
where the set of nodes V are thought of as pro- 
cessors, and (i,j)eE denotes tile ability of pro- 
cessor i to send one packet or message to processor 
j in a given time step. A packet is simply an 
<origin,destination> pair or, more generally, 
<origin,destlnation,bookkeeping information>. 

A set of packets are initially placed on their 
origins, and they must be routed in parallel to 

their destinations; bookkeeping information can be 
provided by any processor along the route traver- 
sed by the packet. The prototype question in this 
setting is that of full permutation routing, in 
which we must design a strategy for delivering N 
packets in an N node network, when ~: {origin} + 
[destinations} is a permutation of the node labels 
{i,2,...,N}. Other routing problems, in particular 
partial routing where ~ is i-i, but there may be 
less than N packets, are also of immediate interest. 

There are three positive routing results 
which provide the motivation for this paper. 

i. Batcher's (see Knuth [ 72 ]) O(log2N) sorting 
network algorithm (say, based on the bitonic merge) 
can be implemented as a routing strategy on various 
sparse networks, such as the shuffle exchange 
(Stone [71 ]), the n-dimensional cube (Valiant 
and Brebner [81 ]), or the cube connected cycles 
(Preparata and Vuillemin [ 79 ]). This constitutes 
a local or distributed strategy, in that each pro- 
cessor p decides locally on its next action using 
only the packets at p. We also note that Batcber's 
bound is a worse case bound, holding for any and 

indeed all initial permutations of the packets. 

2. Valiant and Brebner [81 ] construct an O(log N) 
Monte Carlo local routing strategy for the n-cube. 
In a Monte Carlo strategy, processors can make 
random choices in deciding where to send a given 
packet. Valiant's strategy achieves O(log N) in 
the sense that for every permutation, with high 
probability (e.g. ~i-N c) all packets will reach 
that destination in ~(l+c) log N steps. Valiant's 
analysis can also be used to show that for a random 
input placement, the "naive strategy" on the n-cube 
terminates in O(log N) steps with high probability 
(here, the probability is on the space of possible 
inputs). 

3. The Slepian-Benes-Clos permutation network 
(see Lev, Pippenger and Valiant [ 81 ]) can be im- 
plemented as a global worst case O(log N) routing 

scheme (on any of the above mentioned sparse net- 
works). Here, a pair of processors at a given 
time step simulate a switch of the permutation 
network; as such, the actions of any processor 
depend on the entire permutation. 

We note that each of these strategies can be 
modified to handle partial routing. (This is 
immediate except for the strategy derived from 
Batcher's algorithm.) The obvious question remains 
as to whether or not there exists a local, worst 
case, O(log N) routing strategy. 

The Relation Between Fixed Connection and Global 
Memory Models 

Before proceeding to discuss routing algorithms 
for fixed connection networks, we want to briefly 
relate such parallel machines with parallel models 
based on a global memory. Indeed, this relation is 
yet another motivation for the importance of the 
routing problem. The importance of the routing 
problem is also emphasized in the paper of Galil 
and Paul [81 ] who consider simulations between 
various parallel models. We mention only a few 
global memory models: 

i. PRAC (Lev, Pippenger and Valiant) - Simultane- 

ous read or write (of same cell) is not allow- 
ed. 

2. PRAM (Fortune and Wyllie) - Simultaneous 
fetches are allowed but no simultaneous writes. 

3. WRAM - WRAM denotes a variety of models that 
allow simultaneous reads and (certain) writes, 
but differ in how such write conflicts are to 
be resolved. 

a) (Shiloach and Vishkin) a simultaneous write 
is allowed only if all processors are try- 
ing to write the same thing, otherwise the 
computation is not legal. 

b) An arbitrary processor is allowed to write. 

c) (Goldschlager) the lowest numbered process- 
or is allowed to write. 

For the purpose of comparison with an n-node and m- 
edge fixed connection network, we assume the global 
memory models have n processors and m memory cells. 
It is then obvious that even the weakest of the 
above models, the FP~C, can efficiently simulate 
a fixed connection network by dedicating a memory 
location for each directed edge of the network. 
Conversely, letting n=m, Lev, PiDpenger and 
Valiant [ 81 ] observe that a fixed connection net- 
work capable of (partial) routing in r(n) time, 
can simulate one step of a PRAC in time O(r(n)). 
With some extra care, one can also simulate one 
step of a PRAM or WRAM in time O(r(n)). 'The idea 
is roughly as follows: 

a) Sort the read requests into consecutive loca- 
tions; that is, sort pairs <request for memory 
located in i, by processor j> by i and then j. We 
note that other authors (see Schwartz [ 80 ] for the 
Ultracomputer) have indicated that sorting can 
often be used to implement partial routing which is 
all that is required here. The omitted details are 
not difficult. 
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b) Fan in all requests for a location i to a 
specified processor. This is done in such a way 
that a given processor only has to remember to 
which neighbors the requested information must be 
returned. This step will also be depend on the net- 

work and will take either O(log n) or O(log2n) time. 

c) In the specified processors do a memory fetch 
(~1.e. this is another partial sort). 

d) The requested information (the memory con- 
tents) is distributed back to requesting processors 
by the specified processor. 

A Routing Lower Bound for a Special Case 

It turns out to be surprisingly difficult to 
analyze reasonably simple strategies. We are able 
to show, however, that a very simple class of 
strategies, including the "naive strategy", cannot 
work well in the worst case, this being the case 
for a wide class of networks. Specifically, we 
study oblivious strategies where the route of any 
packet is completely determined by the <origin, 
destination> of the packet. Oblivious strategies 
are almost, but not quite, local by definition; we 
might still determine when a processor sends a 
packet along an edge by global means. We can 
motivate the use of oblivious strategies by call- 
ing attention to the processor-memory inter- 
connection network of the NYU-Ultracomputer (see 
Got[lieb, Lubachevsky and Rudolph [82]), which 
requires an oblivious strategy for their memory 
arbitration scheme. 

Theorem I In any network having in-degree d, the 

time required in the worst case by any oblivious 

routing strategy is ~(~n/d3/2). 

We first prove the lower bound for a more 
restricted class of protocols, namely, those where 
the next step in the route of a packet depends only 
on its present location and its final destination. 
For this class the set of routes for a packet 
heading for a given destination forms a tree. To 
see this observe that at any vertex there is e 
unique edge that the packet will take. Following 
the sequence of edges from any vertex must lead to 
the final destination. 

If we superimpose the n trees determined by 
the n possible destinations for packets, each 
vertex is on n trees. This suggests that we 
might be able to route n packets through a vertex. 
Since at most d packets can leave the vertex at 
any given time this would imply a delay of n/d. 
The difficulty is that in order to force a packet 
headed for a given destination to go through ver- 
tex v we must initially start the packet on a 
vertex that is a descendent of v in the particular 
destination tree. But there may be only a small 
number of such descendents of v and if many trees 
have the same set there will not be enough descen- 
dents to start each packet at a distinct vertex. 
This motivates the following technical lemma 
(proven by induction on n): 

Lemma Let Td,k(n) be the minimum number of ver- 

tices with k, ke2, or more descendents in any n 
vertex tree with maximum degree d, de2. Then 

n-k+l 
Td,k(n) ~ l+(d-l)(k-1) e 

In each destination tree mark those vertices 
that have at least k descendents. Let k = n~. 
In the network assign a count to each vertex indi- 
cating the number of destination trees in which the 
vertex is marked. Since at least n/dk vertices 
are marked in each tree, the sum of the counts must 

be at least n2/dk. Therefore, the avera~_count 
(over all vertices) is at least n/dk = enid which 
implies there is at least one vertex v 0 which has 

at least n~ descendents in each of n~ descen- 
dent trees. For each of these descendent trees we 
can place the corresponding packet at some vertex 
of the network so that it will pass through vertex 
v 0. Thus ~7d packets will go through v 0. Since 

v 0 is of degree at most d, it requires time at 

least equal to "/n/d 3. In particular, any routing 
procedure for an n-cube where the route of a packet 
depends only on the destination requires time at 

3/2 
least ~n/(log n) 

The above proof can be modified to apply to 
oblivious routing schemes. Consider a single 
destination. We no longer have a tree since the 
route of a packet depends on the source as well as 
the destination. We modify the lemma to say that 
there must be at least Yd,k(n) vertices having at 

least k paths through them. The inductive hypo- 
thesis is that in any directed graph with maximum 
fan-in d, with n loop-free directed paths to a 
designated vertex, at least Td,k(n) vertices must 

be on at least k paths. 

An Oblivious Routing Algorithm For An n-cube 

The question remaining is how tight is the 
lower bound. The answer depends on the actual 
structure of the network. One important parameter 
in addition to the degree is the diameter of the 
graph. Clearly if the diameter of the graph is n 
we cannot hope for a O(/~) algorithm. However, 
even for some O(log n) diameter graphs with degree 
2 we cannot achieve an O(~n) algorithm since there 
may be an isthmus or other type of bottleneck. 
However, for many structures there are oblivious 
routing algorithms that are close to this lower 
bound. We exhibit one for the hypercube. Lang 
[76 ! has previously given an O(~Tn) oblivious rout- 
ing algorithm for the shuffle-exchange network. 

Future Work 

Another restriction on routing is minimality. 
A minimal routing scheme forbids transmitting along 
an edge if it increases the distance of the packet 
from its destination. Thus every packet must 

follow a shortest path. For minimal routing 
schemes it is an interesting open problem whether 
there is a local (or even a global) routing scheme 

that is O(logrn) for any r. For regular networks 
such as the n-cube we know of no minimal scheme 
better than O(/nT~g n). 

The primary question is whether there is a 
local routing algorithm for say an n-cube that is 
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better than O(log2n). In particular, does the 
following algorithm or some variant of it, route 
an arbitrary permutation in O(log n). Consider 
some vertex. At a given stage as many as d packets, 
where d is the dimension of the cube, will arrive. 
As many as possible will be sent closer to their 
destinations. The remaining packets will be ship- 
ped to vertices of distance one greater. Since 
packets are not allowed to build up at a vertex the 
effect is to enlarge bottlenecks to several ver- 
tices and hence to allow more packets to get to 
their destinations in a given time. Although the 
algorithm appears promising we have not been able 
to formally analyze its behaviour. 

We note that the above strategy avoids queues. 

It is also an interesting question to study the 
class of strategies which do not use queues (like 
Batcher). 

III. Merging and Sorting on Shared Memory Models 

AHierarchy of Models 

The shared memory models usually studied all 
possess a global memory, each cell of which can be 
read or written by any processor. For the purpose 
of constructing algorithms, one usually assumes a 
single instruction stream; that is, one program is 
executed by all processors. However, when the pro- 
cessor number itself is used to control the sequen- 
cing of steps, and some ability to synchronize con- 
trol is introduced, then the effect is that of a 
multiple instruction stream. The processors are 
assumed to have some local memory and each pro- 
cessor can execute basic primitive operations such 
as ~,=,# comparisons and integer +,-,x,÷ and L/-J 
arithmetic operations in a single step. The 
following models have already been noted in part 
II: PRAC, PRAM, WRAM. 

Other variants are clearly possible. We are 
concerned with the merging and sorting problems 
of elements from an arbitrary linear order (i.e. 
the schematic or structured approach). In this 
context, a "most powerful" parallel model (analo- 
gous to the comparison tree for sequential computa- 
tion) has been studied by Valiant. The parallel 
co~utation tree idealizes k-processor parallelism 

by a 3k-tree where each node is labelled by a set 
of k {<,=,>} comparisons and the branches are 

labelled by each of the 3 k possible outcomes. It 
should be clear that for the problems of concern, 
parallel computation trees can simulate any reason- 
able parallel model and, in particular, can simu- 
late all of the aforementioned shared memory 
models. 

Let M denote any of these models. We will be 

concerned with T M (n,m,p) and T M (n,p), the 
merge sort 

minimum number of parallel steps to merge two sorted 
lists of n and m elements (respectively, to sort n 
arbitrary elements) using p processors. Typically, 

n=m, and p=O(n) or O(n log~n). Clearly, for any 
problem we have 

T PRAC e T PRAM e T WRAM 

TParallel computation tree 

Our main contribution is to establish the follow- 
ing two theorems: 

Theorem 2 Let M denote the parallel computation 

tree model. Then T M (n,n,n log~n) = 
merge 

~(log log n) for all e. 

Theorem 3 T PRAM (n,n,n) = O(log log n). 
merge 

We use Valiant's algorithm, which already 
establishes the bound for the parallel comparison 
tree, but following Valiant [75 ], Preparata [78 ] 
and Shiloach and Vishkin [ 80 ], remark that a 
"processor allocation" problem must be solved to 
realize Valiant's algorithm on the PRAM model. 
Hence, the problem of merging is now resolved by 
the above results on all of the above shared memory 
models except the PRAC (for which we have the log n 
upper bound of the Batcher merge). For the PRAC, 
it is not difficult to show that ~( lo~g n) is a 
lower bound for insertion (and hence merging); 
recently, Snir [ 82] has announced an ~(log n) 
lower bound, thus resolving the problem. 

With regard to sorting, we have the following 
direct corollaries. 

Corollary 1 TPRAM(n,n) = O(log n log log n). 

Corollary 2 TPRAM(n,n log n) = O(log n). 

Clearly, Corollary 1 follows from a standard 
merge sort, whereas Corollary 2 is a restatement of 
Preparata's [78 ] result, which can now be stated 
for PRAM's using Theorem 2. Corollaries 1 and 2 
should be compared with the Shiloach and Vishkin 

2 n 
upper bound of O(log log(p/n) + log n) for sorting 

on their version of a WRAM with p processors. With 
regard to lower bounds for sorting, Haagvist and 
Hell [81 ] prove that in terms of the parallel 
computation tree, time less than or equal to k 

implies ~(n l+I/k) . processors are required. Cook 
and ~ork [ 82] show that ~(log n) steps on a PRAM 
are required for the Boolean OR no matter how many 
processors are available. It follows that ~(log n) 
steps on a PRAM are required for the MAX and sort- 
ing. For O(n) processors, ~(log n) is a trivial 
lower bound resulting from the sequential lower 
bound of Q(n log n). Among the open questions for 
parallel sorting are the following: the number of 
processors for O(log n) time sorting on a PRAC 
(Preparata [78 ] achieves O(k log n) time with 
l+i/k 

n processors); whether it is possible to sort 
in time O(log n) with only n processors on a PRAM 
or WRAM; whether it is possible to sort in time 
0(i) on a WRAM using less than an exponential in n 
number of processors. Recently, Stockmeyer and 
Vishkin [ 82] have shown how to simulate a WRAM 
(in particular, the SIMDAG) by an unbounded fan-in 
AND/OR circuit with only a constant delay factor. 
By this simulation and some appropriate reduci- 
bilities, Stockmeyer and Vishkin are able to use 
the beautiful lower bound of Furst, Saxe and Sipser 
[81 ] to show that a WRAM cannot sort in O(I) time 
using only a polynomial in n number of processors. 
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An Q(log io$ n) Lower Bound for Merging on Valiant's 

Model - Sketch of Proof 

Since only 2n-i comparisons are necessary to 
sequentially merge two n lists, conceivably in a 
parallel model they could be merged in time 0(i) 
with n processors. However, we shall show that 
this is not possible. 

Consider the process of merging two sorted 

lists al,...,a n and bl,...,b n with n processors. 

At the first step at most n comparisons can be made. 
Partition each list into 2~ blocks of length 

• . orm pairs of blocks, one from each list. 

There are 4n such pairs of blocks. Clearly there 
must be 3n pairs (Ai,Bj) of blocks such that no 

element from the block A. is compared with any 
i 

element from the block B . We shall show that we 
i 3 

can select ~n pairs of blocks 

{(Ai,Bi)} 

such that iz<iZ+l and jZ<jZ+i" for l~%<~n.__ If the 

total order is such that all elements in A. uB. 
i~ JR 

are less than any element in A uB 
~%+i 3£+i 

l~i<~n, then after the first stage we are faced 
1 1 

with ~n subproblems each of size ~n. 

At the second stage the n processors are par- 
1 

tioned somehow among the ~n subproblems. However 

this is done, at least one half of the subproblems 
have assigned to them fewer than twice the average 
available number of processors per subproblem. 

1 -- 
Thus there are ~/n subproblems with at most 4~n 

processors per problem. Intuitively this argument 
suggests that at each stage the size of subproblem 
goes down by a square root and hence log log n 
time is necessary. These ideas are made precise. 

In what follows let G = (AuB,E) be a bipartite 
graph with EcA×B. Further let Ai,A2,... and 

Bi,B2,... be fixed orderings of the vertices in A 

and B, respectively. A matching is said to be 
compatible if for each pair of edges (Ai,B j) and 

(Ag,Bh) in the matching i<g if and only if j<h. 

Lemma Let G = (AuB,E) be a bipartite graph with 

A = Ai,A2,...,A2k and B = Bi,B2,...,B2k and let 

EcAxB have 3k 2 edges. Then G has a compatible 
matching of cardinality at least k. 

Theorem 2' Let T(s,c) be the time necessary to 
solve k, k el, problems of size s with cks processors. 

Then T(s c) is Q(log -~9-$--~-q" 
' log c )" 

Proof On the average we can assign cs processors 
to each problem. At least one half of the problems 
can have no more than twice this number of pro- 
cessors assigned to them. That is, at least k/2 
problems have at most 2cs processors. 

Consider applying 2cs processors to a problem 
of size s. This means that in the first step we 
can make at most 2cs comparisons. Partition the 

1 
lists into 2/2cs blocks each of size ~/s/2c. 

There are 8cs pairs of blocks. Thus there must be 
6cs pairs of blocks with no comparisons between 
elements of the blocks in a pair. Construct a 
bipartite graph whose vertices are the blocks from 
the two lists with an edge between two blocks if 
there are no comparisons between elements of the 
two blocks. By the previous lemma there is a com- 

1 
patible match of size at least ~ 2~cs. This means 

1 -- 
that there are at least ~/2cs problems each of size 

1 
at least ~s/2c that we must still solve. Thus 

T(s,c) ~ i+T(~ s/~c,4c). We show by induction on 

s, that T(s,c) ~ dlog -~-g-~-q for some sufficiently 
log c 

log sc 
small d. Observe that log log c is Q(log log s - 

log log c) which matches Valiant's upper bound of 
2 (log log s - log log c). 

An O(log log n) Upper Bound for Merging on a PRAM - 
Sketch of Algorithm 

We assume the reader is familiar with Valiant's 
(n,m) merging algorithm which merges X and Y with 
#X=n, #Y=m, n~m using n+m processors. Our goal is 
to implement Valiant's algorithm on a PRAM. 

On the completion of stages (a), (b) and (c) 
of Valiant's algorithm we can store each xi[~n ] in 

its appropriate place in the output Z. It then 
remains to merge the L~nJ disjoint pairs of sub- 

lists (Xo,Y0),(Xi,Y I) .... where the X. and Y are 
1 1 

sequences of X and Y respectively. Whereas there 
will clearly be enough processors to carry out 
these independent merges by simultaneous recursive 
calls of the algorithm, it is not clear how to 
inform each processor to which (Xi,Yi) subprogram 

(and in what capacity) it will be assigned. This 
is the main concern in what Shiloach and Vishkin 
[80 ] refer to as the processor allocation problem. 

We desire a recursive procedure 

MERGE(i,ni,J,mi,k ) which merges xi,xi+l,...,x.+ 
i ni-i 

and yj,...,YJ+mi_l into 

zi+j_l,...,zi+j+n +m _ 2 using at most n.+ml i pro- 
1 1 

cessors beginning at processor number Pk" Such a 

merge will be simultaneously invoked by processors 

pk,Pk+l,...,Pk+ni+mi_ I. The initial call is 

MERGE (l,n, l,m, i). 

We will now indicate how processors reassign 
themselves before recursively invoking the merge 
routine. For simplicity, assume that we have just 
completed steps (a), (b), (c) of MERGE(i,n,i,m,i). 
We can assume that we have determined for each i, 

O~i~L~nJ-I that y3i. <xiF~n]~yji+l and that we have 

constructed a table J 
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I 0 Jl J2 "'" J~n-i m 

accessible by all processors. A given processor p 
must determine its role in the next iteration of 
the algorithm. 

Lemma Suppose (X0,YO),...,(Xr_i,Yr_ I) have been 

assigned processors, and Xr_ 1 = ( .... Xr/~_ I) and 

Yr-i = ( .... Yf)" There exists a function ~ such 

that no more than ¢(r,n,f) processors have been 
assigned. Indeed, @(r,n,f) = r~n+f. 

The actual assignment of a processor to a 
(Xk,Yk) subproblem proceeds in two stages (note 

that we cannot simply do a sequential binary search 
in J because this would require log~n steps): 

Stage i): Processors are assigned for those (Xk,Y k) 

with #Yk ~ m/~n (and hence no more than 

/n+m/~n = (n+m)/~n processors need be 
assigned to this task since #X. = ~n-i 

i 
for all i. 

Stage 2): Processors are assigned to the remaining 

(Xk,Yk). 
Stage 1 - For each k, 0~k~-l, we assign (n+m)/~ 

processors to look at both the k and the k+l st entry 
of the table J. If Jk+l-Jk~m/~n, then these pro- 

cessors inform (by posting the information in an 
appropriate place of global memory) processors 
numbered ~(k,n,Jk)+l ..... ~(k+l,n,Jk+ I) that they 

are assigned to (Xk,Yk). We then wait until the 

completion of Stage 2 before invoking merge on 
(Xk,Y k) since all processors are needed for Stage 2. 

Stage 2 - The processors are divided into 
(n+m)/~n blocks, each block containing /n process- 
ors. Each of the ~n processors in a block are try- 
ing to determine to which Xk,Y k these ~n pro- 

cessors will be assigned. Let p. be the first 
3£ 

processor of block £. The k th processor of block 
looks at the Jk and Jk+l in table J and determines 

(via the function @) whether or not processor pjz 

would be assigned to this subproblem. Now each 

processor p in the £th block can determine (again 
via table J and ~) which of the following hold: 

i) p is assigned to (~,Yk), the subproblem 

assigned to p j  . 

ii) p is assigned to (Xk,,Yk,), the subproblem 

assigned to 
PJ£+i" 

iii) p has already been assigned in Stage I. 

We claim that if neither i) and ii) hold, then iii) 
must hold since clearly less than (n+m)/~n 

processors have been assigned to the same task as p. 

Finally, we note that the base case (n=l, m 
arbitrary), where most of the data movement takes 
place, is easily performed with m+l processors. 

Kruskal [82 ] has recently unified (and 
improved) Valiant's merging algorithms to yield 
the following upper bound: p processors can do an 

(n,m) merge in time n+m + 1.893 log log n + 
P 

O(log(~)).Letting n=m, it follows that n/log logn 
l 

processors are sufficient to achieve an (n,n) merge 
in time O(log log n). Clearly, this is now 
asymptotically optimal since 2n-I comparisons are 
needed sequentially. The claim is that this 
improvement can also be implemented on a PRAM. 
Finally then, this permits corresponding improve- 
ments in Corollaries 1 and 2 (e.g. T(n,n) = 
O(log n log log n/log log log n). 
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