
ROUTING, MERGING AND SORTING ON PARALLEL
MODELS OF COMPUTATION

Extended Abstract

A. Borodin
University of Toronto

J.E. Hopcroft
Cornell University

A variety of models have been proposed for the
study of synchronous parallel computation. We
review these models and study further some proto-
type problems. We distinguish two classes of models,
fixed connection networks and models based on a
shared memory. Routing is the prototype problem for
the networks. In oarticular, routing provides the
basis for simulating the more powerful shared
memory models. We show that a simple but important
class of deterministic strategies (oblivious rout-
ing) is necessarily inefficient with respect to
worst case analysis. Routing can be viewed as a
special case of sorting and the existence of a
deterministic O(logn) routing or sorting algorithm
for an n processor fixed connection network remains
open. IIowever, if we consider the more powerful
class of shared memory models, we are "almost" able
to achieve such an efficient sort via Valiant's
parallel merging algorithm. Within a spectrum of
models, we show that log log n - log log r is
asymptotically optimal for rn processors to merge
two sorted lists of n elements.

I. Introduction: What is a reasonable model?

A number of relatively diverse problems are
often referred to under the topic of "parallel
computation". The viewpoint of this paper is that
of a "tightly coupled", synchronized (by a global
clock) collection of parallel processors, working
together to solve a terminating computational
problem. Such parallel 9rocessors already exist
and are used to solve time consuming problems in
a wide variety of areas including computational
physics, weather forecasting, etc. The current
state of hardware capabilities will facilitate
the use of such parallel nrocessors to many more
applications.

This research was supported in part by ONR
contract N00014-76-C-0018.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-067-2/82/005/0338 $00.75

Within this viewnoint, Preparata and Vuillemin

[79] distinguish two broad categories. Namely,
we can differentiate between those models that are
based on a fixed connection network of processors
and those that are based on the existence of global
or shared memory. In the former case, we assume
that only graph theoretically adjacent processors
can communicate in a given step, and we usually
assume that the network is reasonably sparse; as
examples, consider the shuffle-exchange network
(Stone [71]) and its development into the Ultra-
commuter of Schwartz [80], the array or mesh
connected processors such as the Illiac IV, the
cube-connected cycles of Preparata and Vuillemin
[79], or the more basic n-dimensional hypercube
studied in Valiant and Brebner [81]. As examples
of models based on shared memories, there are the
PRAC of Lev, Pippenger and Valiant [81], the PRAM
of Fortune and Wyllie [78], the unnamed parallel
model of Shiloach and Vishkin [80], and the
SIMDAG of Goldschlager [78]. Essentially these
models differ in whether or not they allow fetch
and write conflicts, and if allowed, how write con-
flicts are resolved.

From a hard, are point of view, fixed connect-
ion models seem more reasonable and, indeed, the
global memory-processor interconnection would pro-
bably be realized in practice by a fixed connection
network (see Schwartz [80]). Furthermore, for a
number of important problems (e.g., FFT, bitonic
merge, etc.) either the shuffle-exchange or the
cube connected cycles provide optimal hosts for
well known algorithms. On the other hand, many
problems require only infrequent and irregular
processor conm~unication, and in any case the shared
memory frame,fork seems to provide a more convenient
environment for constructing algorithms. Finally,
in defense of the PR~I, it is plausible to assume
that some braodcast facilities could be made avail-

able.

The problem of sorting, and the related nro-
blem of routinK are prototype problems, due both to
their intrinsic significance and their role in
processor communication. Since merging is a (the)
key subroutine in many sorting strategies, we are
interested in merging and sorting with respect to
both the fixed connection and shared memory models.
For a fixed connection network such as the n-
dimensional cube, the complexity of merging has
been resolved by the fundamental log n algorithms
of Batcher (see Knuth [72] for a discussion of odd-

338

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800070.802209&domain=pdf&date_stamp=1982-05-05

even and bitonic merge). The lower bound in this
regard is immediate because log n is the graph theo-
retic diameter. In this paper, we concentrate on
routing in networks and the complexity of merging
(with application to sorting) on shared memory
machines.

II. Routing in Networks

The problem of routing packets in a network
arises in a number of situations. For applications
in parallel computer architecture we are concerned
with special networks such as a d-dimensional
hypercube or a shuffle exchange interconnection.
In this setting O(log n) global strategies are

known as well as O(log2n) local strategies.

For our purposes, a network is a diagraph <V,E>
where the set of nodes V are thought of as pro-
cessors, and (i,j)eE denotes tile ability of pro-
cessor i to send one packet or message to processor
j in a given time step. A packet is simply an
<origin,destination> pair or, more generally,
<origin,destlnation,bookkeeping information>.

A set of packets are initially placed on their
origins, and they must be routed in parallel to

their destinations; bookkeeping information can be
provided by any processor along the route traver-
sed by the packet. The prototype question in this
setting is that of full permutation routing, in
which we must design a strategy for delivering N
packets in an N node network, when ~: {origin} +
[destinations} is a permutation of the node labels
{i,2,...,N}. Other routing problems, in particular
partial routing where ~ is i-i, but there may be
less than N packets, are also of immediate interest.

There are three positive routing results
which provide the motivation for this paper.

i. Batcher's (see Knuth [72]) O(log2N) sorting
network algorithm (say, based on the bitonic merge)
can be implemented as a routing strategy on various
sparse networks, such as the shuffle exchange
(Stone [71]), the n-dimensional cube (Valiant
and Brebner [81]), or the cube connected cycles
(Preparata and Vuillemin [79]). This constitutes
a local or distributed strategy, in that each pro-
cessor p decides locally on its next action using
only the packets at p. We also note that Batcber's
bound is a worse case bound, holding for any and

indeed all initial permutations of the packets.

2. Valiant and Brebner [81] construct an O(log N)
Monte Carlo local routing strategy for the n-cube.
In a Monte Carlo strategy, processors can make
random choices in deciding where to send a given
packet. Valiant's strategy achieves O(log N) in
the sense that for every permutation, with high
probability (e.g. ~i-N c) all packets will reach
that destination in ~(l+c) log N steps. Valiant's
analysis can also be used to show that for a random
input placement, the "naive strategy" on the n-cube
terminates in O(log N) steps with high probability
(here, the probability is on the space of possible
inputs).

3. The Slepian-Benes-Clos permutation network
(see Lev, Pippenger and Valiant [81]) can be im-
plemented as a global worst case O(log N) routing

scheme (on any of the above mentioned sparse net-
works). Here, a pair of processors at a given
time step simulate a switch of the permutation
network; as such, the actions of any processor
depend on the entire permutation.

We note that each of these strategies can be
modified to handle partial routing. (This is
immediate except for the strategy derived from
Batcher's algorithm.) The obvious question remains
as to whether or not there exists a local, worst
case, O(log N) routing strategy.

The Relation Between Fixed Connection and Global
Memory Models

Before proceeding to discuss routing algorithms
for fixed connection networks, we want to briefly
relate such parallel machines with parallel models
based on a global memory. Indeed, this relation is
yet another motivation for the importance of the
routing problem. The importance of the routing
problem is also emphasized in the paper of Galil
and Paul [81] who consider simulations between
various parallel models. We mention only a few
global memory models:

i. PRAC (Lev, Pippenger and Valiant) - Simultane-

ous read or write (of same cell) is not allow-
ed.

2. PRAM (Fortune and Wyllie) - Simultaneous
fetches are allowed but no simultaneous writes.

3. WRAM - WRAM denotes a variety of models that
allow simultaneous reads and (certain) writes,
but differ in how such write conflicts are to
be resolved.

a) (Shiloach and Vishkin) a simultaneous write
is allowed only if all processors are try-
ing to write the same thing, otherwise the
computation is not legal.

b) An arbitrary processor is allowed to write.

c) (Goldschlager) the lowest numbered process-
or is allowed to write.

For the purpose of comparison with an n-node and m-
edge fixed connection network, we assume the global
memory models have n processors and m memory cells.
It is then obvious that even the weakest of the
above models, the FP~C, can efficiently simulate
a fixed connection network by dedicating a memory
location for each directed edge of the network.
Conversely, letting n=m, Lev, PiDpenger and
Valiant [81] observe that a fixed connection net-
work capable of (partial) routing in r(n) time,
can simulate one step of a PRAC in time O(r(n)).
With some extra care, one can also simulate one
step of a PRAM or WRAM in time O(r(n)). 'The idea
is roughly as follows:

a) Sort the read requests into consecutive loca-
tions; that is, sort pairs <request for memory
located in i, by processor j> by i and then j. We
note that other authors (see Schwartz [80] for the
Ultracomputer) have indicated that sorting can
often be used to implement partial routing which is
all that is required here. The omitted details are
not difficult.

339

b) Fan in all requests for a location i to a
specified processor. This is done in such a way
that a given processor only has to remember to
which neighbors the requested information must be
returned. This step will also be depend on the net-

work and will take either O(log n) or O(log2n) time.

c) In the specified processors do a memory fetch
(~1.e. this is another partial sort).

d) The requested information (the memory con-
tents) is distributed back to requesting processors
by the specified processor.

A Routing Lower Bound for a Special Case

It turns out to be surprisingly difficult to
analyze reasonably simple strategies. We are able
to show, however, that a very simple class of
strategies, including the "naive strategy", cannot
work well in the worst case, this being the case
for a wide class of networks. Specifically, we
study oblivious strategies where the route of any
packet is completely determined by the <origin,
destination> of the packet. Oblivious strategies
are almost, but not quite, local by definition; we
might still determine when a processor sends a
packet along an edge by global means. We can
motivate the use of oblivious strategies by call-
ing attention to the processor-memory inter-
connection network of the NYU-Ultracomputer (see
Got[lieb, Lubachevsky and Rudolph [82]), which
requires an oblivious strategy for their memory
arbitration scheme.

Theorem I In any network having in-degree d, the

time required in the worst case by any oblivious

routing strategy is ~(~n/d3/2).

We first prove the lower bound for a more
restricted class of protocols, namely, those where
the next step in the route of a packet depends only
on its present location and its final destination.
For this class the set of routes for a packet
heading for a given destination forms a tree. To
see this observe that at any vertex there is e
unique edge that the packet will take. Following
the sequence of edges from any vertex must lead to
the final destination.

If we superimpose the n trees determined by
the n possible destinations for packets, each
vertex is on n trees. This suggests that we
might be able to route n packets through a vertex.
Since at most d packets can leave the vertex at
any given time this would imply a delay of n/d.
The difficulty is that in order to force a packet
headed for a given destination to go through ver-
tex v we must initially start the packet on a
vertex that is a descendent of v in the particular
destination tree. But there may be only a small
number of such descendents of v and if many trees
have the same set there will not be enough descen-
dents to start each packet at a distinct vertex.
This motivates the following technical lemma
(proven by induction on n):

Lemma Let Td,k(n) be the minimum number of ver-

tices with k, ke2, or more descendents in any n
vertex tree with maximum degree d, de2. Then

n-k+l
Td,k(n) ~ l+(d-l)(k-1) e

In each destination tree mark those vertices
that have at least k descendents. Let k = n~.
In the network assign a count to each vertex indi-
cating the number of destination trees in which the
vertex is marked. Since at least n/dk vertices
are marked in each tree, the sum of the counts must

be at least n2/dk. Therefore, the avera~_count
(over all vertices) is at least n/dk = enid which
implies there is at least one vertex v 0 which has

at least n~ descendents in each of n~ descen-
dent trees. For each of these descendent trees we
can place the corresponding packet at some vertex
of the network so that it will pass through vertex
v 0. Thus ~7d packets will go through v 0. Since

v 0 is of degree at most d, it requires time at

least equal to "/n/d 3. In particular, any routing
procedure for an n-cube where the route of a packet
depends only on the destination requires time at

3/2
least ~n/(log n)

The above proof can be modified to apply to
oblivious routing schemes. Consider a single
destination. We no longer have a tree since the
route of a packet depends on the source as well as
the destination. We modify the lemma to say that
there must be at least Yd,k(n) vertices having at

least k paths through them. The inductive hypo-
thesis is that in any directed graph with maximum
fan-in d, with n loop-free directed paths to a
designated vertex, at least Td,k(n) vertices must

be on at least k paths.

An Oblivious Routing Algorithm For An n-cube

The question remaining is how tight is the
lower bound. The answer depends on the actual
structure of the network. One important parameter
in addition to the degree is the diameter of the
graph. Clearly if the diameter of the graph is n
we cannot hope for a O(/~) algorithm. However,
even for some O(log n) diameter graphs with degree
2 we cannot achieve an O(~n) algorithm since there
may be an isthmus or other type of bottleneck.
However, for many structures there are oblivious
routing algorithms that are close to this lower
bound. We exhibit one for the hypercube. Lang
[76 ! has previously given an O(~Tn) oblivious rout-
ing algorithm for the shuffle-exchange network.

Future Work

Another restriction on routing is minimality.
A minimal routing scheme forbids transmitting along
an edge if it increases the distance of the packet
from its destination. Thus every packet must

follow a shortest path. For minimal routing
schemes it is an interesting open problem whether
there is a local (or even a global) routing scheme

that is O(logrn) for any r. For regular networks
such as the n-cube we know of no minimal scheme
better than O(/nT~g n).

The primary question is whether there is a
local routing algorithm for say an n-cube that is

340

better than O(log2n). In particular, does the
following algorithm or some variant of it, route
an arbitrary permutation in O(log n). Consider
some vertex. At a given stage as many as d packets,
where d is the dimension of the cube, will arrive.
As many as possible will be sent closer to their
destinations. The remaining packets will be ship-
ped to vertices of distance one greater. Since
packets are not allowed to build up at a vertex the
effect is to enlarge bottlenecks to several ver-
tices and hence to allow more packets to get to
their destinations in a given time. Although the
algorithm appears promising we have not been able
to formally analyze its behaviour.

We note that the above strategy avoids queues.

It is also an interesting question to study the
class of strategies which do not use queues (like
Batcher).

III. Merging and Sorting on Shared Memory Models

AHierarchy of Models

The shared memory models usually studied all
possess a global memory, each cell of which can be
read or written by any processor. For the purpose
of constructing algorithms, one usually assumes a
single instruction stream; that is, one program is
executed by all processors. However, when the pro-
cessor number itself is used to control the sequen-
cing of steps, and some ability to synchronize con-
trol is introduced, then the effect is that of a
multiple instruction stream. The processors are
assumed to have some local memory and each pro-
cessor can execute basic primitive operations such
as ~,=,# comparisons and integer +,-,x,÷ and L/-J
arithmetic operations in a single step. The
following models have already been noted in part
II: PRAC, PRAM, WRAM.

Other variants are clearly possible. We are
concerned with the merging and sorting problems
of elements from an arbitrary linear order (i.e.
the schematic or structured approach). In this
context, a "most powerful" parallel model (analo-
gous to the comparison tree for sequential computa-
tion) has been studied by Valiant. The parallel
co~utation tree idealizes k-processor parallelism

by a 3k-tree where each node is labelled by a set
of k {<,=,>} comparisons and the branches are

labelled by each of the 3 k possible outcomes. It
should be clear that for the problems of concern,
parallel computation trees can simulate any reason-
able parallel model and, in particular, can simu-
late all of the aforementioned shared memory
models.

Let M denote any of these models. We will be

concerned with T M (n,m,p) and T M (n,p), the
merge sort

minimum number of parallel steps to merge two sorted
lists of n and m elements (respectively, to sort n
arbitrary elements) using p processors. Typically,

n=m, and p=O(n) or O(n log~n). Clearly, for any
problem we have

T PRAC e T PRAM e T WRAM

TParallel computation tree

Our main contribution is to establish the follow-
ing two theorems:

Theorem 2 Let M denote the parallel computation

tree model. Then T M (n,n,n log~n) =
merge

~(log log n) for all e.

Theorem 3 T PRAM (n,n,n) = O(log log n).
merge

We use Valiant's algorithm, which already
establishes the bound for the parallel comparison
tree, but following Valiant [75], Preparata [78]
and Shiloach and Vishkin [80], remark that a
"processor allocation" problem must be solved to
realize Valiant's algorithm on the PRAM model.
Hence, the problem of merging is now resolved by
the above results on all of the above shared memory
models except the PRAC (for which we have the log n
upper bound of the Batcher merge). For the PRAC,
it is not difficult to show that ~(lo~g n) is a
lower bound for insertion (and hence merging);
recently, Snir [82] has announced an ~(log n)
lower bound, thus resolving the problem.

With regard to sorting, we have the following
direct corollaries.

Corollary 1 TPRAM(n,n) = O(log n log log n).

Corollary 2 TPRAM(n,n log n) = O(log n).

Clearly, Corollary 1 follows from a standard
merge sort, whereas Corollary 2 is a restatement of
Preparata's [78] result, which can now be stated
for PRAM's using Theorem 2. Corollaries 1 and 2
should be compared with the Shiloach and Vishkin

2 n
upper bound of O(log log(p/n) + log n) for sorting

on their version of a WRAM with p processors. With
regard to lower bounds for sorting, Haagvist and
Hell [81] prove that in terms of the parallel
computation tree, time less than or equal to k

implies ~(n l+I/k) . processors are required. Cook
and ~ork [82] show that ~(log n) steps on a PRAM
are required for the Boolean OR no matter how many
processors are available. It follows that ~(log n)
steps on a PRAM are required for the MAX and sort-
ing. For O(n) processors, ~(log n) is a trivial
lower bound resulting from the sequential lower
bound of Q(n log n). Among the open questions for
parallel sorting are the following: the number of
processors for O(log n) time sorting on a PRAC
(Preparata [78] achieves O(k log n) time with
l+i/k

n processors); whether it is possible to sort
in time O(log n) with only n processors on a PRAM
or WRAM; whether it is possible to sort in time
0(i) on a WRAM using less than an exponential in n
number of processors. Recently, Stockmeyer and
Vishkin [82] have shown how to simulate a WRAM
(in particular, the SIMDAG) by an unbounded fan-in
AND/OR circuit with only a constant delay factor.
By this simulation and some appropriate reduci-
bilities, Stockmeyer and Vishkin are able to use
the beautiful lower bound of Furst, Saxe and Sipser
[81] to show that a WRAM cannot sort in O(I) time
using only a polynomial in n number of processors.

341

An Q(log io$ n) Lower Bound for Merging on Valiant's

Model - Sketch of Proof

Since only 2n-i comparisons are necessary to
sequentially merge two n lists, conceivably in a
parallel model they could be merged in time 0(i)
with n processors. However, we shall show that
this is not possible.

Consider the process of merging two sorted

lists al,...,a n and bl,...,b n with n processors.

At the first step at most n comparisons can be made.
Partition each list into 2~ blocks of length

• . orm pairs of blocks, one from each list.

There are 4n such pairs of blocks. Clearly there
must be 3n pairs (Ai,Bj) of blocks such that no

element from the block A. is compared with any
i

element from the block B . We shall show that we
i 3

can select ~n pairs of blocks

{(Ai,Bi)}

such that iz<iZ+l and jZ<jZ+i" for l~%<~n.__ If the

total order is such that all elements in A. uB.
i~ JR

are less than any element in A uB
~%+i 3£+i

l~i<~n, then after the first stage we are faced
1 1

with ~n subproblems each of size ~n.

At the second stage the n processors are par-
1

tioned somehow among the ~n subproblems. However

this is done, at least one half of the subproblems
have assigned to them fewer than twice the average
available number of processors per subproblem.

1 --
Thus there are ~/n subproblems with at most 4~n

processors per problem. Intuitively this argument
suggests that at each stage the size of subproblem
goes down by a square root and hence log log n
time is necessary. These ideas are made precise.

In what follows let G = (AuB,E) be a bipartite
graph with EcA×B. Further let Ai,A2,... and

Bi,B2,... be fixed orderings of the vertices in A

and B, respectively. A matching is said to be
compatible if for each pair of edges (Ai,B j) and

(Ag,Bh) in the matching i<g if and only if j<h.

Lemma Let G = (AuB,E) be a bipartite graph with

A = Ai,A2,...,A2k and B = Bi,B2,...,B2k and let

EcAxB have 3k 2 edges. Then G has a compatible
matching of cardinality at least k.

Theorem 2' Let T(s,c) be the time necessary to
solve k, k el, problems of size s with cks processors.

Then T(s c) is Q(log -~9-$--~-q"
' log c)"

Proof On the average we can assign cs processors
to each problem. At least one half of the problems
can have no more than twice this number of pro-
cessors assigned to them. That is, at least k/2
problems have at most 2cs processors.

Consider applying 2cs processors to a problem
of size s. This means that in the first step we
can make at most 2cs comparisons. Partition the

1
lists into 2/2cs blocks each of size ~/s/2c.

There are 8cs pairs of blocks. Thus there must be
6cs pairs of blocks with no comparisons between
elements of the blocks in a pair. Construct a
bipartite graph whose vertices are the blocks from
the two lists with an edge between two blocks if
there are no comparisons between elements of the
two blocks. By the previous lemma there is a com-

1
patible match of size at least ~ 2~cs. This means

1 --
that there are at least ~/2cs problems each of size

1
at least ~s/2c that we must still solve. Thus

T(s,c) ~ i+T(~ s/~c,4c). We show by induction on

s, that T(s,c) ~ dlog -~-g-~-q for some sufficiently
log c

log sc
small d. Observe that log log c is Q(log log s -

log log c) which matches Valiant's upper bound of
2 (log log s - log log c).

An O(log log n) Upper Bound for Merging on a PRAM -
Sketch of Algorithm

We assume the reader is familiar with Valiant's
(n,m) merging algorithm which merges X and Y with
#X=n, #Y=m, n~m using n+m processors. Our goal is
to implement Valiant's algorithm on a PRAM.

On the completion of stages (a), (b) and (c)
of Valiant's algorithm we can store each xi[~n] in

its appropriate place in the output Z. It then
remains to merge the L~nJ disjoint pairs of sub-

lists (Xo,Y0),(Xi,Y I) where the X. and Y are
1 1

sequences of X and Y respectively. Whereas there
will clearly be enough processors to carry out
these independent merges by simultaneous recursive
calls of the algorithm, it is not clear how to
inform each processor to which (Xi,Yi) subprogram

(and in what capacity) it will be assigned. This
is the main concern in what Shiloach and Vishkin
[80] refer to as the processor allocation problem.

We desire a recursive procedure

MERGE(i,ni,J,mi,k) which merges xi,xi+l,...,x.+
i ni-i

and yj,...,YJ+mi_l into

zi+j_l,...,zi+j+n +m _ 2 using at most n.+ml i pro-
1 1

cessors beginning at processor number Pk" Such a

merge will be simultaneously invoked by processors

pk,Pk+l,...,Pk+ni+mi_ I. The initial call is

MERGE (l,n, l,m, i).

We will now indicate how processors reassign
themselves before recursively invoking the merge
routine. For simplicity, assume that we have just
completed steps (a), (b), (c) of MERGE(i,n,i,m,i).
We can assume that we have determined for each i,

O~i~L~nJ-I that y3i. <xiF~n]~yji+l and that we have

constructed a table J

342

I 0 Jl J2 "'" J~n-i m

accessible by all processors. A given processor p
must determine its role in the next iteration of
the algorithm.

Lemma Suppose (X0,YO),...,(Xr_i,Yr_ I) have been

assigned processors, and Xr_ 1 = (.... Xr/~_ I) and

Yr-i = (.... Yf)" There exists a function ~ such

that no more than ¢(r,n,f) processors have been
assigned. Indeed, @(r,n,f) = r~n+f.

The actual assignment of a processor to a
(Xk,Yk) subproblem proceeds in two stages (note

that we cannot simply do a sequential binary search
in J because this would require log~n steps):

Stage i): Processors are assigned for those (Xk,Y k)

with #Yk ~ m/~n (and hence no more than

/n+m/~n = (n+m)/~n processors need be
assigned to this task since #X. = ~n-i

i
for all i.

Stage 2): Processors are assigned to the remaining

(Xk,Yk).
Stage 1 - For each k, 0~k~-l, we assign (n+m)/~

processors to look at both the k and the k+l st entry
of the table J. If Jk+l-Jk~m/~n, then these pro-

cessors inform (by posting the information in an
appropriate place of global memory) processors
numbered ~(k,n,Jk)+l ~(k+l,n,Jk+ I) that they

are assigned to (Xk,Yk). We then wait until the

completion of Stage 2 before invoking merge on
(Xk,Y k) since all processors are needed for Stage 2.

Stage 2 - The processors are divided into
(n+m)/~n blocks, each block containing /n process-
ors. Each of the ~n processors in a block are try-
ing to determine to which Xk,Y k these ~n pro-

cessors will be assigned. Let p. be the first
3£

processor of block £. The k th processor of block
looks at the Jk and Jk+l in table J and determines

(via the function @) whether or not processor pjz

would be assigned to this subproblem. Now each

processor p in the £th block can determine (again
via table J and ~) which of the following hold:

i) p is assigned to (~,Yk), the subproblem

assigned to p j .

ii) p is assigned to (Xk,,Yk,), the subproblem

assigned to
PJ£+i"

iii) p has already been assigned in Stage I.

We claim that if neither i) and ii) hold, then iii)
must hold since clearly less than (n+m)/~n

processors have been assigned to the same task as p.

Finally, we note that the base case (n=l, m
arbitrary), where most of the data movement takes
place, is easily performed with m+l processors.

Kruskal [82] has recently unified (and
improved) Valiant's merging algorithms to yield
the following upper bound: p processors can do an

(n,m) merge in time n+m + 1.893 log log n +
P

O(log(~)).Letting n=m, it follows that n/log logn
l

processors are sufficient to achieve an (n,n) merge
in time O(log log n). Clearly, this is now
asymptotically optimal since 2n-I comparisons are
needed sequentially. The claim is that this
improvement can also be implemented on a PRAM.
Finally then, this permits corresponding improve-
ments in Corollaries 1 and 2 (e.g. T(n,n) =
O(log n log log n/log log log n).

Acknowledgement: We are indebted to U. Vishkin for
observing that our original claims about merging on
a PRAM could not hold because of the amount of data
movement required in our formulation of the problem.
We also thank L. Rudolph for many helpful comments.

References

Cook, S. and C. Dwork, Bounds on the Time for
Parallel RAM's to Compute Simple Functions,
Proc. of the 14th Annual ACM Symposium on
Theory of Computation, May 1982.

Fortune, S. and J. Wyllie, Parallelism in Random
Access Machines, Proceedings lOth Annual ACM
Symposium on Theory of Computing, San Diego,
California, 1978, 114-118.

Furst, M., J.B. Saxe, and M. Sipser, Parity, Cir-
cuits and the Polynomial Time Hierarchy, Proc.
of 22nd Annual Symposium on Foundations of
Computer Science, Oct. 1981, 260-270.

Galil, Z. and W.J. Paul, An Efficient General
Purpose Parallel Computer, Proceedings 13th
Annual ACM Symposium on Theory of Computing,
Milwaukee, Wisconsin, 1981, 247-256.

Goldschlager, L., A Unified Approach to Models of
Synchronous Parallel Machines, Proceedings
lOth Annual ACM Symposium on Theory of Comput-
ing, San Diego, California, 1978, 89-94.

Gottlieb, A., B.D. Lubachevsky, and L. Rudolph,
Basic Techniques for the Efficient Coordination
of Very Large Numbers of Cooperating Sequential
Processors, to appear in ACM TOPLAS, 1982.

Haagvist, R. and P. Hell, Parallel Sorting with
Constant Time for Comparisons, SIAM J. on
Computing 10:3, 1981, 465-472.

Knuth, D.E., She Art of Computer Programming, vol.3,
Sorting and Searching, Addison-Wesley, Reading,
Massachusetts, 1972.

Kruskal, C., Personal Communication, 1982.

343

Lang, T., Interconnections between PE and ~s
using the Shuffle-Exchange, IEEE Transactions
on Computers, vol. C25, 1976, 496.

Lev, G., N. Pippenger and L.G. Valiant, A Fast
Parallel Algorithm for Routing in Permutation
Networks, IEEE Transactions on Computers,
1981.

Preparata, F.P., New Parallel-Sorting Schemes,
IEEE Transactions on Computers, C27:7,
1978, 669-673.

Preparata, F.P., and J. Vuillemin, The Cube-
Connected Cycles, Proceedings 20th Symposium
on Foundations of Computer Science, 1979,
140-147.

Schwartz, J.T., Ultracomputers, ACM TOPLAS 2, 1980,
484-521.

Shiloach, Y., and U. Vishkin, Finding the Maximum,
Merging and Sorting in a Parallel Computation
Model, Department of Computer Science,
Technion Israel, TRi73, March 1980.

Snir, M., On Parallel Search (Extended Abstract),
Preprint-Courant Institute, 1982.

Stockmeyer, L.,and Vishkin, U., Simulation of
Parallel Random Access Machines by Circuits,
IBM Yorktown Heights, Preprint, 1982.

Stone, H., Parallel Processing with the Perfect
Shuffle, IEEE Transactions on Computers,
C20:2, 1971, 153-161.

Valiant, L.G., Parallelism in Comparison Problems,
SIAM J. on Computing 4, 1975, 348-355.

Valiant, L.G., and G.J. Brebner, Universal Schemes
for Parallel Computation, Proceedings 13th
Annual ACM Symposium on Theory of Computation,
Milwaukee, Wisconsin, 1981, 263-277.

344

