
APL 82, W. H. Janko, W. Stucky (ed.),
APL Quote Quad, Vol. 13 No. 1,
(~) 1982 by ACM, Inc.

P R A C T I C A L USES OF A M O D E L OF APL

Kenneth E. Iverson
I.P. Sharp Associates,

Box 418, Exchange Tower,
2 First Canadian Place,

Toronto, Ontario
Canada M 5 X 1E3

Arthur T. Whitney
11033 80th Avenue
Edmonton, Alberta
Canada T6G 0R2

A B S T R A C T

This paper discusses the use of a general model of APL
(written in APL) which allows convenient definition of new
operators and functions and experimentation with their use. Use
of the model is illustrated by a number of functions and
operators, some of which have been previously discussed, and
some (such as the operator til) which are new. Details of the
model itself are not treated.

The effective use of new facilities introduced into APL systems
is often long delayed, not only because of a programmer 's
tendency to cling to familiar ways, but also because the abstract,
formal treatment necessary to the specification of a new facility
often makes its assimilation and use seem unduly difficult.
Working models of new facilities available before their actual
introduction can be very helpful in teaching, their use, and very
effective in speeding their widespread application.

However, the development of an accurate model for each new
facility can, especially in the case of new operators, be
burdensome, and we have found that a general model of the
APL interpreter, developed primarily for use by the language
designers in the design and modelling of new extensions, can also
be useful in providing specific models for the enlightenment of
users.

This paper discusses such uses of the general model,
employing illustrations executed by the version available on the
I.P. Sharp Associates APL system. Except for information
necessary for understanding its use, details of the model will not
be discussed here.

The model incorporates a number of facilities proposed in
earlier papers [1 2 3]; the more fundamental among them are
illustrated below. The model, invoked by executing the function

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 A C M 0 - 8 9 7 9 1 - 0 7 8 - 8 / 8 2 / 0 0 7 / 0 1 4 0 $ 0 0 . 7 5

AAPL, accepts character input and parses and executes the
expression entered. 0-origin indexing is used throughout the
paper.

AAPL

A÷i 2 3 * may be used to assign
MP++.x names to functions and
DOT÷. operators as well as to

variables [1 3]

AMP A
14

A + DOT x A
14

A CF A
2 2 .5 3.33333333

CF A
2 2.5 3.33333333

CF/A
1.42857143

CF\A
1 1.5 1.42857143

+.x~ 3 2 2p~12

118 131

518 575

~-xV -

AQA

1 4 9
Q A

1 2 3
R~-*V ' 10 .~ '
3 R A

3 9 2 7
R A

10 100 1000

The function
definition operator V
may be used to define
ambivalent functions [3]

Operators apply to
defined and derived
functions as well as
to primitives

The operator V applies to
functions as well as to
character vectors

140

http://crossmark.crossref.org/dialog/?doi=10.1145%2F390006.802236&domain=pdf&date_stamp=1982-07-26

BA
RE

BE
JR

14

An assignment can be
made to a graphic
name (-~ is now the
function lev which
returns its left argument)

C1÷2 2p'BARE'~C2+2 2p'BEAR'

C1

C2

~++ .x New composite symbols
can be used

A~A

Assignment of values to graphic symbols is, of course, intended
for use in language design, and is not proposed for general
inclusion in the language. It is, nevertheless, convenient for use
in experimentation by programmers as well as by language
designers.

The use of new composite symbols is possible because the
model receives and handles arb i t rary i n p u t ([]ARBIN in IPSA
APL), that is, all terminal inputs including backspace and
attention are transmitted directly to it.

The model also incorporates a definition from [1] which
illustrates the notion that an operator may produce an
ambivalent derived function - specifically, the monadic derived
function produced by reduction is supplemented by a dyadic case
in which the left argument specifies the width of the "window"
over which reduction is applied. For example:

P÷13 11 7 5 3 2

2 -7 P Pairwise differences
24221

(4+/P) ÷4 Running Averages
9 6.5 4.25

A/2 >_/P Test for decreasing
1 sequence

A. SOME N E W F U N C T I O N S

We will further illustrate the use of the model in simple cases
by defining a few functions (most of which have been defined in
earlier papers [12]) for use in later examples:

n+'(Lew)/L+,a' V ''

~-'(~Lem)/L÷,a' V ~

ABACS
'ABACUS' n 'SCAB'

'ABACUS' ~ 'SCAB'

Set intersection

Set difference.
Note that the monadic
definition of ~ is preserved.

u ÷ " 7 ' ((l p ~) = w l c 0) / w ~ - , ~ ' N u b (set
of distinct elements)

u ' A B A C U S ' D i s t r ibu t ion [1]
ABCUS

~÷'' 7 '(uw)o.=~'

' ABACUS '
101000

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
o o o o o i

0 t 3 U applied to any vector
1 0 0 of distinct elements
0 1 0 produces an identity matrix
0 0 1

[]+W~-R~IpR~8 45 2
40 10 2 1 The weights associated

with the radix R

+/Wxl 2 3 4

70
R±i 2 3 4

70

B. E N C L O S E D ARRAYS

Enclosed arrays provide a good example of a notion whose
formal treatment makes it seem unduly difficult. For example, a
graphic display of enclosed arrays is very helpful to the beginner,
but the definition of a suitable display is recursive and somewhat
complicated. However, its behaviour is immediately evident from
a model. The definition of display, (i.e., of the function v) used
here, is a modification (due largely to P.K. Wooster) of the
definition in [2], and may be illustrated as follows:

~ S ÷ o 0 3 3

[]4-Q+-2 2 p (< A) , (< (< C 1) , < C 2) , < A o . x A
I I

. I I I - - I I - - I I
1 2 31 I IBAI IBE I I
. . . . I I IREI I J R I I

I 1 _ _ 1 I _ _ 1 1
I I

.

1 2 31 I I
2 4 61 I1 2 31
3 6 9 1 I I

. J

The last two elements of the system variable lIPS determine
the row and column spacing between enclosed elements, injecting
"box" decorations in one of the spaces if the arguments are
negative. The first two elements control the vertical and
horizontal positioning of the elements, -1 denoting top (or left)
justification, 0 centering, and 1 bottom (or right) justification.

141

For example:

~PS~--1 1 0 3

Q
I 2 3 BA BE

RE AR
123 123

246

369

In later examples it will be convenient to use two further
functions. The first is the boolean match (called idem in [3]),
denoted by E, which compares its left and right arguments and
yields a scalar 0 unless they match in every respect. We will
also define its monadic case to yield 1 if its argument is simple,
that is, contains no enclosed elements.

The second function is a variant of link, defined as follows:

In words, ;X encloses X if X is simple, and X;Y catenates the
enclose of X to Y, first enclosing Y if it is simple. For example:

[]PS÷O 0 3 3

Ci;C2

i--I I--I
IBAI [BEI
IREI iARi
l__i i__i

C1;C2;A

l--i l--ii I
IBA[IBEI Ii 2 3l
iREi I A R I I I
i__l i__l

;/c1
I - - I I - - I
IBAI IREI
I__1 I__l

Q52 2oA; (C1 ;C2) ; A o . x A

The A occurring in the definition of ; is a "self-reference" to
the function being defined [3]; since it is used monadically, it
refers to the monadic case and therefore encloses its argument if
it is simple. It should also be noted that this use of the
semicolon as a function need not conflict with its use as a
separator in bracket indexing.

C. T H E DISP OS IT ION OF AXES

The effect of an axis operator in an expression such as
F'gl 0 T is simply to apply the function F to the subarrays along

the indicated axes of the argument T, and the axes resulting
from applying F to each subarray are placed last in the overall
result. As simple as these rules are, their effects can be
bewildering until the user develops some familiarity with their
application in specific instances. Such familiarity can be gained
by applying some simple function (such as ravel or scan) in a
number of eases:

[]+T÷3 2 4p124

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

,~1 2 T

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

,~o I T

0 4 8 12 16 20

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

,~0 T

0 8 16

1 9 17

2 10 18

3 11 19

4 12 20

5 13 21

6 14 22

7 15 23

The results of the ravelled
2-by-4 subarrays
are placed along
the last axis.

The results of the ravelled
3-by-2 subarrays
are placed along
the last axis.

Although the ravel of each
vector along axis 0
produces no change, the
placement of the result
along the last axis
effects an overall
transposition.

+kTo T
o 8 24

1 10 27

2 12 30

3 14 33

4 16 36

5 18 39

6 20 42
7 22 45

Because the axis resulting
from the scan of each
vector is placed last,
the result differs (by
a transposition) from
the result of +\[0]T.
Compare with the
preceding result.

Although the definition of the axis operator used here is
adopted from [2], the representation of the right argument T
differs slightly; the older definition would be satisfied by
replacing F~'Z by F 7 (; Z) . In other words, an enclosed right
argument is treated as in [2], but a simple argument is treated
as a single entity and specifies (in the dyadic case of the
resulting function) both the left and right axes of application.
For example:

C1
BA
RE

C2
BE
AR

C1,~1 C2

BABE
REAR

C1,~0 C2
BRBA
AEER

142

D. C O M P O S I T I O N AND RELATED OPERATORS

For a single scalar argument S, the composition of two
functions F and G (denoted by b%;G) is easy to understand, since
F'o'G S is equivalent to F G S. For example:

t i ;L 3 .6 tL 3 .6
0 1 2 0 1 2

+/~ ' t~ [3 .6 + / l L 3 .6
3 3

However, much of the importance (and difficulty) of
composition stems from its use with non-scalar arguments, in
which case the entire composed function F'gG is applied
individually to each of the subarrays to which G (according to its
axes of application) applies. For example:

+ / ~ t ~ [V+ 2 .5 3 .6 4 . 9 6 . 4
1 3 6 1 5

I---II II I
10111o1211o1231

I___II II I

+/~> L
1 3 6 1 5

I I
1 0 1 2 3 4 5 1
I I

Note that the expressions +I lL and <IL and +/>
corresponding to the foregoing compositions would not even be
valid for the given arguments. In some cases, the corresponding
expressions are valid, but yield different results. For example:

A+3 2 2 p l 0 1 1 1 0 2 1 1 0 3 1
A E~]A ~'~ A ~ A

1 0 1 0 1 1 1 1 1
1 1 - 1 1 0 1 - 1 - 2 - 3

1 0 1 0 1 2 0 0 0
2 1 2 1 0 1 1 1 1

1 0 1 0 1 3
3 1 3 1 0 1

The operator denoted by "" (called with in [2]) applies in two
distinct ways. Applied to a function and a variable, it produces
the monadic function obtained by supplying the variable as one
argument of the (dyadic) function. For example:

(EXP+-iO"*) 1 2 3
10 100 1000

(SQ*-*"2) 1 2 3
1 4 9

Applied to two functions, as in F"G, it is equivalent to
composition, with a final application of the function GI which is
inverse to G. Thus, for a scalar argument S, we have
F"G S ~ GI F G S. The extension to general arguments is
like that of composition. For example:

+\"cbV~l 2 3 4 5
15 14 12 9 5

f " (* " . 5) V
14449

[}~-M÷ 3 4p t12
0 1 2 3
4 5 6 7
8 9 10 11

+/'" (*"270)M Lengths of
columns

8.9442719 10 .3440804 11.8321569 13.3790882

+/'" (*"2o"1)M Lengths of
r o w s

3. 74165739 11. 22497216 19. 13112647

In the foregoing discussion of the operators "" and o', only the
monadic case of the derived function was considered, that is, it
was applied to a single argument. The dyadic cases of P'gG and
F"G are similar, the function G being applied (along appropriate
axes) to both the left and right arguments. For example:

A +~'÷ B~-i+A~-i 2 3
1.5 0.83333333 0.58333333

A+"÷B
0.66666667 1.2 1.71428571

C ×~'(+/~,'0) C~3 3p l9
81 144 225

The composition in the expression A F~G B (referred to in [2]
as F on G) applies the dyadic (case of the) function F to the
results of the monadic function G; the composition in the
expression A FSG B (to be referred to as P upon G) applies the
monadic function F to the result of dyadic G, as in F A G B.
The difference may be illustrated as follows:

C1 C2
BA BE
RE AR

C1 , ~ , C2
BAREBEAR

C1 ,~, C2
BABEREAR

A <~'÷ B~-qbA÷l 234
0011

A <o÷ B

l 1 1 1 I---I I-I
10.251 10.666666671 11.51 141
I _ _ _ 1 I I I _ _ 1 I_1

We will conclude this section with a rather complex expression
involving operators, the purpose being to illustrate how to "read"
such expressions. If:

A÷2 3 4 5p t120
V ÷ (I ÷ I) ; (J ÷ 2 0) ; (K ÷ 3) ; (L . ~ 4 2 0)

then it is possible to write a function of V such that the ravel of
A indexed by its result is equivalent to A [I ; J ; K ; L] . Thus:

A [I ; J ; K ; L] -Z (, A) [> o . + " > / Y x " > R ± t ~ t p R ÷ p A]

An understanding of the expression in the brackets can be gained
by executing it piece-by-piece:

[]~-Z÷R±~ I pR÷pA
60 20 5 1

V
I - I I - - - I I - I I I
I l l 12 ol 131 14 2 ol
I_1 I _ _ 1 I_1 I I

143

[]~Y÷V x"> Z

l--I I I I--I I I
1601 140 ol 1151 [4 2 ol
I _ _ 1 I I I _ _ 1 I I

o . + " > / y

I I
1119117 1151
I 79 77 751
I I

The expressmn for Z (whose details were shown in Section A)
yields the weights appropriate to the successive axes in indexing
the ravel of the argument A. The vector Y is obtained by
multiplying each element of the list of indices (V) by the
appropriate weight, and the final result shown is the application
of the plus-outer-product (o .+) between each of the disclosed
elements of Y.

E. T H E D E F I N I T I O N OF O P E R A T O R S

A dyadic operator can be defined in terms of expressions
involving its two arguments (to be denoted by a and ~) and the
two arguments of the derived function produced (to be denoted
by c~ and w), For example, if the dyadic operator ~ were defined
by the expression '(acL)x~o~' 7 'w/xoo', then 3 .5 L~F 6 .5
would yield 21, and 3 .5 r~L 6 . 5 would yield 24.

Since either or both of the arguments a or w may be either a
variable or a function, and since definitions must sometimes be
provided for two or more of the four possible cases, each
definition will be associated with an indication of the case it
defines. For example, if

~÷(11;01) V ('''(ga)xMm''V''~Aw''''
'''''V''~"xT~''')

then L~[behaves as described above, and 3~[6 . 5 yields 21.

In general, the definition of a dyadic operator requires as the
left argument of 7 a vector whose Kth element is the enclosed
representation (using 0 to denote a variable and 1 to denote a
function) of the case represented by the Kth element of the right
argument. In the definition of a monadic operator, each case is
indicated by a single quantity, and the left argument of 7 is
therefore one of 0, or 1, or 0 ;1 , or 1 ;0 .

We will conclude this section with the definition of a new
dyadic operator denoted by ;z (and called til as an abbreviation
of tilde):

~-11 V '''(~m)~a''V''mAm'''

This operator is of great practical interest because it subsumes
a number of important special cases arising from its use with the
identity function ~- (defined as w ~ - ' ~ ' 7 ' w ') , and with a sequence
of functions, as in F:~G~H:

a) Since

the function F:~-- is the commutation of F.

b) Since

FmGmH w ~-+ (Gw) F (Hw)

the operator til provides a generalization of the operators
illustrated above, for instance by the operator ~, applying
an arbitrary dyadic function F to the results of two
monadic functions G and H. Moreover, the use of the
identity function for either G or H provides cases which
might be called "left composition" and "right
composition":

F=G:~-w *-* (Gw) F
Fr+-:Hw ~-+ w F (Hw)

For example, if the propositions P and Q are defined
by P÷2"'[and Q÷3"'<, then:

^~P~Q V+i 234567
0000101

v=p=Q v
1 0 1 1 1 1 1

+nP~Q V
1011212

Finally, the function CF (defined in the introduction by
'a+-~0'V'wz~oJ') may now be defined by CF ÷ +:':4-;:" or,
since + is commutative, by CF ÷ +=L and the expression
for indexing the ravel of an array .4 (given at the end of
Section D) can now be defined by:

Q÷>6(o. + " > /) 6 (x "" > ; -1 ' - : ' (±'- 'o'z (u'g~. ; 'p ; 'p)))

F. M E R G E AS A DYADIC CASE OF S E L E C T I O N

If S is a dyadic selection function such that I S A selects from
.4 an array determined by the "indices" (or other parameters)
provided by the variable I , then the derived function I " S is a
derived selection function which is monadic, and selection from .4
is obtained by the expression I " S .4. For example, if ~ - 3 3019,
then 0 0"~ is a monadic selection function such that 0 0 "'~
selects the diagonal vector 0 4 8 when applied to M.

Consider a definition of the dyadic case of such a derived
function which returns the entire right argument, but with the
elements of the left argument substituted for the selected elements
of the right argument. The dyadic function therefore provides a
merge of its arguments. For example:

/v~-33pt9
M (10+t3) 00 "'~ M

012 10 1 2
345 311 5
678 6 712

This definition of a dyadic case will be extended to other
selection functions in the same manner. Consider, for example,
the following indexing function, defined in terms of the function
Q defined at the end of the preceding section:

1 2
2 0
0 0
1 0

[~-4-I+?4 2p3
ISM
5 6 0 3

1 4 4

The function l1 (called f rom) is incorporated in the model
using the definition of S above, but adopting the merge definition
for the dyadic case of the derived function I"l]. Thus:

(i0+14) I"O M

12 1 2

13 4 10
11 7 8

A different approach to the treatment of merge functions may
be found in [4].

G. F U N C T I O N ATTRIBUTES

An APL function is defined not only by the result it produces
for each argument in its domain, but by certain attributes, some
of which (like the axes of application) are manifest in every use
of the function, and some of which (like the identi ty e lement and
the inverse) become manifest only upon the application of some
operator. For example, the results of the functions ^ and k are
identical for boolean arguments, but differ in their identity
elements, ^ /~0 yielding 1, and L/~0 yielding infinity; the inverse
of a function is manifested in the application of the dual
operator.

The representation of attributes will be introduced into the
representation of functions as follows: any segment (as delimited
by diamonds) which begins with a right parenthesis represents an
attribute; the first token following the parenthesis denotes the
name of the attribute specified, and what follows (after the
delimiting space) specifies the attribute.

For example, the name zx t denotes the identity element
attribute, and the expression MP÷' a+. xw O) ZX/ ~ l 1 ~ pw ' V ' '
defines MP as a matrix product function whose identity function
produces an identity matrix of appropriate shape. Thus, if
pA ~ 5 4 4, thenMP / 5 0 o+A is a 4-by-4 identity matrix.

The following is a list of attributes (together with suggested
names) which we have found useful and have incorporated into
the APL model:

1. Axes (AT)

The axes of application, which may be specified
independently for the monadic and dyadic cases.

2. Scope (~;)

The names to be exempted from the localization
otherwise applied to names which are assigned values
within a function. Except for the inclusion of the name
(~ ;) for identifying the attribute, the scheme agrees with
that proposed in [3].

3. Identity Element (zx/)

The identity elements associated with the primitive
functions are (because limited to scalar functions) all
constants; in the more general case they may, like the
example of matrix product given above, be functions of
the shapes of the arguments.

4. Merge (c~_a"ZXt0)

This attribute will indicate that the derived function _a"zx
(for a variable _a) is a selection function which extends to
a merge in the dyadic case in the manner discussed in
Section F.

5. Inverse (£7~-1)

This attribute gives the inverse function to be used when
the dual operator is applied to the function. The name
zX;~-i used above arises from the power operator ;~
incorporated in the model (which applies its monadic left
argument the number of times specified by the variable
right argument). The result of 5';;-1 is the inverse of F.
For example, *~-1 is equivalent to ®.

6. Inverses: left and right cases (a"zX~-l) (A"ooTJ1)

If V is a variable and F is a function, then V"F produces
a monadic function (the left case of F), and F"V produces
a function, either or both of which may possess inverses.
These attributes provide the appropriate inverses.

For example, the inverses of +"V and V'% are both
(-V)"+, the inverse of -"V is +"V, and V"- is self-
inverse.

7. Derivative (£X)

The model incorporates the specification of derivatives for
a few cases. For example, 1"'o2~ is equivalent to 2"'0.

8. Variant (lx :)

The model provides a few cases of the variant operator
discussed in [1]. For example, (l : 1) 3 is 1 2 3, and
(l : 0) 3 is 0 1 2. This use of the colon need not
conflict with the present use provided that (as proposed
for the double use of the semicolon) the older usage is
given priority. Thus the colon in L:A B C at the
beginning of an expression will indicate that L is a label,
and the use of the variant L:A would (at the beginning
of an expression) have to be indicated by parentheses, as
in (L:A) B C.

1.

2.

3.

REFERENCES

Iverson, K.E., Operators and Functions, Research Report
#RC7091, IBM Corp., 1978.

Bernecky, R., and Iverson, K.E., Operators and Enclosed
Arrays, APL Users Meeting, I.P. Sharp Associates, 1980.

Iverson, K.E., and Wooster, P.K., A Function Definition
Operator, APL Quote Quad, Vol.12, No.l, Sept. 1981
(Proceedings of APLS1).

Pesch, R.H., Indexing and Indexed Replacement in APL,
APL Quote Quad, Vol.12, No.l, Sept. 1981.

145

