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A B S T R A C T  

This  paper discusses the use of a general model of APL 
(written in APL) which allows convenient definition of new 
operators and functions and experimentation with their use. Use 
of the model is illustrated by a number  of functions and 
operators, some of which have been previously discussed, and 
some (such as the operator til) which are new. Details of the 
model itself are not treated. 

The  effective use of new facilities introduced into APL systems 
is often long delayed, not only because of a programmer 's  
tendency to cling to familiar ways, but also because the abstract, 
formal treatment necessary to the specification of a new facility 
often makes its assimilation and use seem unduly difficult. 
Working models of new facilities available before their actual 
introduction can be very helpful in teaching, their use, and very 
effective in speeding their widespread application. 

However, the development of an accurate model for each new 
facility can, especially in the case of new operators, be 
burdensome, and we have found that a general model of the 
APL interpreter, developed primarily for use by the language 
designers in the design and modelling of new extensions, can also 
be useful in providing specific models for the enlightenment of 
users. 

This  paper discusses such uses of the general model, 
employing illustrations executed by the version available on the 
I.P. Sharp Associates APL system. Except for information 
necessary for understanding its use, details of the model will not 
be discussed here. 

The  model incorporates a number  of facilities proposed in 
earlier papers [1 2 3]; the more fundamental  among them are 
illustrated below. The  model, invoked by executing the function 
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AAPL, accepts character input and parses and executes the 
expression entered. 0-origin indexing is used throughout the 
paper. 

AAPL 

A÷i 2 3 * may be used to assign 
MP++.x names to functions and 
DOT÷. operators as well as to 

variables [1 3] 

AMP A 
14 

A + DOT x A 
14 

A CF A 
2 2 .5  3.33333333 

CF A 
2 2.5 3.33333333 

CF/A 
1.42857143 

CF\A 
1 1.5 1.42857143 

+.x~ 3 2 2p~12 

118 131 

518 575 

~-xV - 

AQA 

1 4 9  
Q A  

1 2 3 
R~-*V ' 10 .~  ' 
3 R A  

3 9 2 7  
R A  

10 100 1000 

The  function 
definition operator V 
may be used to define 
ambivalent functions [3] 

Operators apply to 
defined and derived 
functions as well as 
to primitives 

The  operator V applies to 
functions as well as to 
character vectors 
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BA 
RE 

BE 
JR 

14 

An assignment can be 
made to a graphic 
name (-~ is now the 
function lev which 
returns its left argument) 

C1÷2 2p'BARE'~C2+2 2p'BEAR' 

C1 

C2 

~++ .x  New composite symbols 
can be used 

A~A 

Assignment of values to graphic symbols is, of course, intended 
for use in language design, and is not proposed for general 
inclusion in the language. It is, nevertheless, convenient for use 
in experimentation by programmers as well as by language 
designers. 

The  use of new composite symbols is possible because the 
model receives and handles arb i t rary  i n p u t  ([]ARBIN in IPSA 
APL),  that is, all terminal inputs including backspace and 
attention are transmitted directly to it. 

The  model also incorporates a definition from [1] which 
illustrates the notion that an operator may produce an 
ambivalent derived function - specifically, the monadic derived 
function produced by reduction is supplemented by a dyadic case 
in which the left argument  specifies the width of the "window" 
over  which reduction is applied. For example: 

P÷13 11 7 5 3 2 

2 -7 P Pairwise differences 
24221 

(4+/P) ÷4 Running Averages 
9 6.5 4.25 

A/2 >_/P Test for decreasing 
1 sequence 

A. SOME N E W  F U N C T I O N S  

We will further illustrate the use of the model in simple cases 
by defining a few functions (most of which have been defined in 
earlier papers [12])  for use in later examples: 

n+'(Lew)/L+,a' V '' 

~-'(~Lem)/L÷,a' V ~ 

ABACS 
'ABACUS' n 'SCAB' 

'ABACUS' ~ 'SCAB' 

Set intersection 

Set difference. 
Note that the monadic 
definition of ~ is preserved. 

u ÷ "  7 ' ( ( l p ~ ) = w l c 0 ) / w ~ - , ~ '  N u b  (set 
of distinct elements) 

u ' A B A C U S '  D i s t r ibu t ion  [1] 
ABCUS 

~÷'' 7 '(uw)o.=~' 

' ABACUS ' 
101000 

0 1 0 0 0 0  
0 0 0 1 0 0  
0 0 0 0 1 0  
o o  o o o i  

0 t 3 U applied to any vector 
1 0 0 of distinct elements 
0 1 0 produces an identity matrix 
0 0 1  

[]+W~-R~IpR~8 45 2 
40 10 2 1 The  weights associated 

with the radix R 

+/Wxl 2 3 4 

70 
R±i 2 3 4 

70 

B. E N C L O S E D  ARRAYS 

Enclosed arrays provide a good example of a notion whose 
formal treatment makes it seem unduly difficult. For example, a 
graphic display of enclosed arrays is very helpful to the beginner, 
but the definition of a suitable display is recursive and somewhat 
complicated. However, its behaviour is immediately evident from 
a model. The  definition of display, (i.e., of the function v) used 
here, is a modification (due largely to P.K. Wooster) of the 
definition in [2], and may be illustrated as follows: 

~ S ÷ o  0 3 3 

[]4-Q+-2 2 p ( < A ) , ( < ( < C 1 ) , < C 2 ) , < A o . x A  
I . . . . . . . . .  I 

. . . . .  I I I - - I  I - - I I  
1 2 31 I IBAI IBE I I  
. . . .  I I IREI  I J R I I  

I 1 _ _ 1  I _ _ 1 1  
I I 

. . . . .  

1 2 31 I . . . . .  I 
2 4 61 I1 2 31 
3 6 9 1  I . . . . .  I 

. . . . .  J 

The last two elements of the system variable lIPS determine 
the row and column spacing between enclosed elements, injecting 
"box" decorations in one of the spaces if the arguments are 
negative. The  first two elements control the vertical and 
horizontal positioning of the elements, -1  denoting top (or left) 
justification, 0 centering, and 1 bottom (or right) justification. 
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For example: 

~PS~--1 1 0 3 

Q 
I 2 3 BA BE 

RE AR 
123 123 

246 

369 

In later examples it will be convenient to use two further 
functions. The  first is the boolean match (called idem in [3]), 
denoted by E, which compares its left and right arguments and 
yields a scalar 0 unless they match in every respect. We will 
also define its monadic case to yield 1 if its argument  is simple, 
that is, contains no enclosed elements. 

The  second function is a variant of link, defined as follows: 

In words, ;X encloses X if X is simple, and X;Y catenates the 
enclose of X to Y, first enclosing Y if it is simple. For example: 

[]PS÷O 0 3 3 

Ci;C2 

i--I I--I 
IBAI [BEI 
IREI iARi 
l__i i__i 

C1;C2;A 

l--i l--ii ..... I 
IBA[ IBEI Ii 2 3l 
iREi I A R I I  . . . .  I 
i__l i__l 

;/c1 
I - - I  I - - I  
IBAI IREI 
I__1 I__l 

Q52 2oA; (C1 ;C2)  ; A o . x A  

The  A occurring in the definition of ; is a "self-reference" to 
the function being defined [3]; since it is used monadically, it 
refers to the monadic case and therefore encloses its argument  if 
it is simple. It should also be noted that this use of the 
semicolon as a function need not conflict with its use as a 
separator in bracket indexing. 

C. T H E  DISP OS IT ION OF AXES 

The  effect of an axis operator in an expression such as 
F'gl 0 T is simply to apply the function F to the subarrays along 

the indicated axes of the argument  T, and the axes resulting 
from applying F to each subarray are placed last in the overall 
result. As simple as these rules are, their effects can be 
bewildering until the user develops some familiarity with their 
application in specific instances. Such familiarity can be gained 
by applying some simple function (such as ravel or scan) in a 
number  of eases: 

[]+T÷3 2 4p124 

0 1 2 3  

4 5 6 7 

8 9 10 11 

12 13 14 15 

16 17 18 19 

20 21 22 23 

,~1 2 T 

0 1 2 3 4 5 6 7  

8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 

,~o I T 

0 4 8 12 16 20 

1 5 9 13 17 21 

2 6 10 14 18 22 

3 7 11 15 19 23 

,~0 T 

0 8 16 

1 9 17 

2 10 18 

3 11 19 

4 12 20 

5 13 21 

6 14 22 

7 15 23 

The  results of the ravelled 
2-by-4 subarrays 
are placed along 
the last axis. 

The  results of the ravelled 
3-by-2 subarrays 
are placed along 
the last axis. 

Although the ravel of each 
vector along axis 0 
produces no change, the 
placement of the result 
along the last axis 
effects an overall 
transposition. 

+kTo T 
o 8 24 

1 10 27 

2 12 30 

3 14 33 

4 16 36 

5 18 39 

6 20 42 
7 22 45 

Because the axis resulting 
from the scan of each 
vector is placed last, 
the result differs (by 
a transposition) from 
the result of +\[0]T. 
Compare with the 
preceding result. 

Although the definition of the axis operator used here is 
adopted from [2], the representation of the right argument  T 
differs slightly; the older definition would be satisfied by 
replacing F~'Z by F 7 ( ; Z ) .  In other words, an enclosed right 
argument  is treated as in [2], but a simple argument  is treated 
as a single entity and specifies (in the dyadic case of the 
resulting function) both the left and right axes of application. 
For example: 

C1 
BA 
RE 

C2 
BE 
AR 

C1,~1 C2 

BABE 
REAR 

C1,~0 C2 
BRBA 
AEER 
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D. C O M P O S I T I O N  AND RELATED OPERATORS 

For a single scalar argument S, the composition of two 
functions F and G (denoted by b%;G) is easy to understand, since 
F'o'G S is equivalent to F G S. For example: 

t i ;L 3 .6  tL 3 .6  
0 1 2  0 1 2  

+/~ ' t~ [  3 .6  + / l L  3 .6  
3 3 

However, much of the importance (and difficulty) of 
composition stems from its use with non-scalar arguments, in 
which case the entire composed function F'gG is applied 
individually to each of the subarrays to which G (according to its 
axes of application) applies. For example: 

+ / ~ t ~ [  V+ 2 .5  3 .6  4 . 9  6 . 4  
1 3 6 1 5  

I---II ..... II ....... I 
10111o1211o1231 

I___II ..... II ....... I 

+/~> L 
1 3 6 1 5  

I . . . . . . . . . . .  I 
1 0 1 2 3 4 5 1  
I I 

Note that the expressions +I lL and <IL and +/> 
corresponding to the foregoing compositions would not even be 
valid for the given arguments. In some cases, the corresponding 
expressions are valid, but yield different results. For example: 

A+3 2 2 p l  0 1 1 1 0 2 1 1 0 3 1 
A E~]A ~'~ A ~ A 

1 0 1 0 1 1 1 1 1 
1 1 - 1  1 0 1 - 1  - 2 - 3  

1 0 1 0 1 2 0 0 0 
2 1 2 1 0 1 1 1 1 

1 0 1 0 1 3 
3 1 3 1 0 1 

The operator denoted by "" (called with in [2]) applies in two 
distinct ways. Applied to a function and a variable, it produces 
the monadic function obtained by supplying the variable as one 
argument of the (dyadic) function. For example: 

(EXP+-iO"*) 1 2 3 
10 100 1000 

(SQ*-*"2)  1 2 3 
1 4 9  

Applied to two functions, as in F"G, it is equivalent to 
composition, with a final application of the function GI which is 
inverse to G. Thus, for a scalar argument S, we have 
F"G S ~ GI F G S. The extension to general arguments is 
like that of composition. For example: 

+\"cbV~l 2 3 4 5 
15 14 12 9 5 

f " ( * " .  5) V 
14449 

[}~-M÷ 3 4p t12  
0 1 2 3 
4 5 6 7 
8 9 10 11 

+/'" ( *"270 )M Lengths of 
columns 

8.9442719 10 .3440804  11.8321569 13.3790882 

+/'" ( *"2o"1 )M Lengths of 
r o w s  

3. 74165739 11. 22497216 19. 13112647 

In the foregoing discussion of the operators "" and o', only the 
monadic case of the derived function was considered, that is, it 
was applied to a single argument. The dyadic cases of P'gG and 
F"G are similar, the function G being applied (along appropriate 
axes) to both the left and right arguments. For example: 

A +~'÷ B~-i+A~-i 2 3 
1.5 0.83333333 0.58333333 

A+"÷B 
0.66666667 1.2 1.71428571 

C ×~'(+/~,'0) C~3 3p l9  
81 144 225 

The composition in the expression A F~G B (referred to in [2] 
as F on G) applies the dyadic (case of the) function F to the 
results of the monadic function G; the composition in the 
expression A FSG B (to be referred to as P upon G) applies the 
monadic function F to the result of dyadic G, as in F A G B. 
The difference may be illustrated as follows: 

C1 C2 
BA BE 
RE AR 

C1 , ~ , C2 
BAREBEAR 

C1 ,~,  C2 
BABEREAR 

A <~'÷ B~-qbA÷l 234 
0011 

A <o÷ B 

l .... 1 1 .......... 1 I---I I-I 
10.251 10.666666671 11.51 141 
I _ _ _ 1  I I I _ _ 1  I_1 

We will conclude this section with a rather complex expression 
involving operators, the purpose being to illustrate how to "read" 
such expressions. If: 

A÷2 3 4 5p t120  
V ÷ ( I ÷ I ) ; ( J ÷ 2  0 ) ; ( K ÷ 3 ) ; ( L . ~ 4  2 0)  

then it is possible to write a function of V such that the ravel of 
A indexed by its result is equivalent to A [ I ; J ; K ; L ] .  Thus: 

A [ I ; J ; K ; L ]  -Z ( , A ) [ > o . + " > / Y x " > R ± t ~ t p R ÷ p A ]  

An understanding of the expression in the brackets can be gained 
by executing it piece-by-piece: 

[]~-Z÷R±~ I pR÷pA 
60 20 5 1 

V 
I - I  I - - - I  I - I  I . . . . .  I 
I l l  12 ol  131 14 2 ol 
I_1 I _ _ 1  I_1 I . . . .  I 
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[]~Y÷V x"> Z 

l--I I .... I I--I I ..... I 
1601 140 ol 1151 [4 2 ol 
I _ _ 1  I . . . .  I I _ _ 1  I . . . . .  I 

o . + " > / y  

I . . . . . . . . . . .  I 
1119117 1151 
I 79 77 751 
I I 

The  expressmn for Z (whose details were shown in Section A) 
yields the weights appropriate to the successive axes in indexing 
the ravel of the argument  A. The  vector Y is obtained by 
multiplying each element of the list of indices (V) by the 
appropriate weight, and the final result shown is the application 
of the plus-outer-product (o .+) between each of the disclosed 
elements of Y. 

E. T H E  D E F I N I T I O N  OF O P E R A T O R S  

A dyadic operator can be defined in terms of expressions 
involving its two arguments (to be denoted by a and ~)  and the 
two arguments of the derived function produced (to be denoted 
by c~ and w), For example, if the dyadic operator ~ were defined 
by the expression '(acL)x~o~' 7 'w/xoo', then 3 .5  L~F 6 .5  
would yield 21, and 3 .5  r~L 6 . 5  would yield 24. 

Since either or both of the arguments a or w may be either a 
variable or a function, and since definitions must  sometimes be 
provided for two or more of the four possible cases, each 
definition will be associated with an indication of the case it 
defines. For example, if 

~÷(11;01) V ('''(ga)xMm''V''~Aw'''' 
'''''V''~"xT~''') 

then L~[ behaves as described above, and 3~[ 6 . 5  yields 21. 

In general, the definition of a dyadic operator requires as the 
left argument  of 7 a vector whose Kth element is the enclosed 
representation (using 0 to denote a variable and 1 to denote a 
function) of the case represented by the Kth element of the right 
argument.  In the definition of a monadic operator, each case is 
indicated by a single quantity, and the left argument  of 7 is 
therefore one of 0, or 1, or 0 ;1 ,  or 1 ;0 .  

We will conclude this section with the definition of a new 
dyadic operator denoted by ;z (and called til as an abbreviation 
of tilde): 

~-11 V '''(~m)~a''V''mAm''' 

This  operator is of great practical interest because it subsumes 
a number  of important special cases arising from its use with the 
identity function ~- (defined as w ~ - ' ~ ' 7 ' w ' ) ,  and with a sequence 
of functions, as in F:~G~H: 

a) Since 

the function F:~-- is the commutation of F. 

b) Since 

FmGmH w ~-+ (Gw) F (Hw) 

the operator til provides a generalization of the operators 
illustrated above, for instance by the operator ~, applying 
an arbitrary dyadic function F to the results of two 
monadic functions G and H. Moreover, the use of the 
identity function for either G or H provides cases which 
might be called "left composition" and "right 
composition": 

F=G:~-w *-* ( Gw ) F 
Fr+-:Hw ~-+ w F (Hw) 

For example, if the propositions P and Q are defined 
by P÷2"'[ and Q÷3"'<, then: 

^~P~Q V+i 234567 
0000101 

v=p=Q v 
1 0 1 1 1 1 1  

+nP~Q V 
1011212 

Finally, the function CF (defined in the introduction by 
'a+-~0'V'wz~oJ') may now be defined by CF ÷ +:':4-;:" or, 
since + is commutative, by CF ÷ +=L and the expression 
for indexing the ravel of an array .4 (given at the end of 
Section D) can now be defined by: 

Q÷>6(  o. + " > / ) 6 (  x "" > ; -1 ' - : ' (  ±'- 'o'z ( u'g~. ; 'p ; 'p ) ) ) 

F. M E R G E  AS A DYADIC CASE OF S E L E C T I O N  

If S is a dyadic selection function such that I S A selects from 
.4 an array determined by the "indices" (or other parameters) 
provided by the variable I ,  then the derived function I " S  is a 
derived selection function which is monadic, and selection from .4 
is obtained by the expression I " S  .4. For example, if ~ - 3  3019, 
then 0 0"~ is a monadic selection function such that 0 0 "'~ 
selects the diagonal vector 0 4 8 when applied to M. 

Consider a definition of the dyadic case of such a derived 
function which returns the entire right argument,  but with the 
elements of the left argument  substituted for the selected elements 
of the right argument.  The  dyadic function therefore provides a 
merge of its arguments. For example: 

/v~-33pt9 
M (10+t3) 00 "'~ M 

012 10 1 2 
345 311 5 
678 6 712 

This  definition of a dyadic case will be extended to other 
selection functions in the same manner. Consider, for example, 
the following indexing function, defined in terms of the function 
Q defined at the end of the preceding section: 

1 2  
2 0 
0 0 
1 0  

[~-4-I+?4 2p3 
ISM 
5 6 0 3  

1 4 4  



The function l1 (called f rom)  is incorporated in the model 
using the definition of S above, but adopting the merge definition 
for the dyadic case of the derived function I"l].  Thus: 

(i0+14) I"O M 

12 1 2 

13 4 10 
11 7 8 

A different approach to the treatment of merge functions may 
be found in [4]. 

G. F U N C T I O N  ATTRIBUTES 

An APL function is defined not only by the result it produces 
for each argument in its domain, but by certain attributes, some 
of which (like the axes of application) are manifest in every use 
of the function, and some of which (like the identi ty  e lement  and 
the inverse) become manifest only upon the application of some 
operator. For example, the results of the functions ^ and k are 
identical for boolean arguments, but differ in their identity 
elements, ^ /~0  yielding 1, and L/~0 yielding infinity; the inverse 
of a function is manifested in the application of the dual 
operator. 

The representation of attributes will be introduced into the 
representation of functions as follows: any segment (as delimited 
by diamonds) which begins with a right parenthesis represents an 
attribute; the first token following the parenthesis denotes the 
name of the attribute specified, and what follows (after the 
delimiting space) specifies the attribute. 

For example, the name zx t denotes the identity element 
attribute, and the expression MP÷' a+. xw O) ZX/ ~ l 1 ~ pw ' V ' ' 
defines MP as a matrix product function whose identity function 
produces an identity matrix of appropriate shape. Thus, if 
pA ~ 5 4 4, thenMP / 5 0 o+A is a 4-by-4 identity matrix. 

The following is a list of attributes (together with suggested 
names) which we have found useful and have incorporated into 
the APL model: 

1. Axes (AT) 

The axes of application, which may be specified 
independently for the monadic and dyadic cases. 

2. Scope (~;) 

The names to be exempted from the localization 
otherwise applied to names which are assigned values 
within a function. Except for the inclusion of the name 
(~ ; )  for identifying the attribute, the scheme agrees with 
that proposed in [3]. 

3. Identity Element (zx/) 

The identity elements associated with the primitive 
functions are (because limited to scalar functions) all 
constants; in the more general case they may, like the 
example of matrix product given above, be functions of 
the shapes of the arguments. 

4. Merge (c~_a"ZXt0) 

This attribute will indicate that the derived function _a"zx 
(for a variable _a) is a selection function which extends to 
a merge in the dyadic case in the manner discussed in 
Section F. 

5. Inverse (£7~-1) 

This attribute gives the inverse function to be used when 
the dual operator is applied to the function. The name 
zX;~-i used above arises from the power  operator ;~ 
incorporated in the model (which applies its monadic left 
argument the number of times specified by the variable 
right argument). The result of 5';;-1 is the inverse of F. 
For example, *~-1 is equivalent to ®. 

6. Inverses: left and right cases (a"zX~-l) (A"ooTJ1) 

If V is a variable and F is a function, then V"F produces 
a monadic function (the left case of F), and F"V produces 
a function, either or both of which may possess inverses. 
These attributes provide the appropriate inverses. 

For example, the inverses of +"V and V'% are both 
( -V)"+,  the inverse of -"V is +"V, and V"- is self- 
inverse. 

7. Derivative (£X) 

The model incorporates the specification of derivatives for 
a few cases. For example, 1"'o2~ is equivalent to 2"'0. 

8. Variant (lx :) 

The model provides a few cases of the variant operator 
discussed in [1]. For example, ( l : 1 )  3 is 1 2 3, and 
( l : 0 )  3 is 0 1 2. This use of the colon need not 
conflict with the present use provided that (as proposed 
for the double use of the semicolon) the older usage is 
given priority. Thus the colon in L:A B C at the 
beginning of an expression will indicate that L is a label, 
and the use of the variant L:A  would (at the beginning 
of an expression) have to be indicated by parentheses, as 
in (L:A) B C. 

1. 

2. 

3. 
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