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Abstract

The following problem is shown to be decidable.

Given are homomorphisms h1 and h2 from I* to
Z* and strings o, and o, over I such that

1
n+1(0 )

h?(oi) is a proper prefix of hi ; for

i=1,2 andall n=0, j.e. for i=1, 2, hi
generates from o; an infinite string oy with
prefixes h?(oi) for all n = 0 . Test whether
ap <o, - From this result easily follows the
decidability of 1imit language equivalence

(w-equivalence) for DOL systems.

1. Introduction

Since the old work of Thue [15], infinite
words (w-words) have been investigated. Apart
from being of interest in its own right, the theory
of infinite words has often been able to shed 1light
on some problems concerning ordinary finite words
and languages of them. As regards infinite words
associated to finite automata, the reader is
referred to [8], and as regards those associated to
context-free grammars, the reader is referred to

[11].
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Finland

When proving the existence of an infinite
cubeless string over a binary alphabet and infinite
squareless string over a three-letter alphabet Thue
[15] used the following mechanism to generate
Let we I*

and h be a homomorphism from ZI* to I* such
1
(

infinite strings over alphabet =2

w) for
all n=0 . Then h generates from w an

that hn(w) is a proper prefix of n"*

infinite string with prefixes hn(w) for all
nz=0 . Our main result is that it is decidable
whether two infinite strings defined as above are
equal (w-DOL equivalence).

Without considering the prefix property we
have the simplest (and most important) model for
developmental (genetic) programs in cellular
biology introduced by Lindenmayer and called DOL
system. The problem whether two DOL systems
generate an identical sequence of (finite) strings
(DOL equivalence problem) was for a Tong time the
best known open problem in the area of L systems
[4]. It has been shown in [6] that the
decidability of w-DOL equivalence implies the
decidability of ordinary DOL sequence equivalence
which indicates that our main result is a hard one
especially when the attempts to reduce it to DOL
equivalence have not succeeded. However, we are
using some auxiliary results and refinements of
techniques from [4].

We consider both words (strings) and infinite
words also referred to as w-words, over a finite
alphabet I An w-language is a set of w-words.
If Lcz*, then Lim(L) is the w-language
consisting of the w-words with arbitrary long
prefixes belonging to L .

The 1imit language equivalence problem (or
w-equivalence problem) for a family of languages is
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the decision problem of whether Lim(Ll) = Lim(Lz)
for any two effectively given languages L1 and
L2 from the family. We show that this problem is
decidable for DOL languages, given by DOL systems.
It was conjectured to be decidable in [6], where

it was reduced to DOL system with the initial
prefix property, i.e. to the equivalence problem
for Thue's mechanism for generating infinite
strings discussed above.

Our approach generalizes and extends the
techniques used in [4] to prove the decidability of
the DOL-sequence equivalence problem. Similar
notions of normal systems, simple systems, common
subalphabets and combinations of morphisms as in
[4] are used, however the situation at a numbter of
places is more difficult and new techniques need to
be deviced. The basic strategy remains the same,
we show that for every pair of w-equivalent DOL
systems we can construct a finite number of pairs
of DOL systems each of them w-equivalent with
"bounded balance".

The crucial property of pairs of DOL systems
for the proof of ordinary DOL equivalence is that
each pair of sequence equivalent systems has
"bounded batance". This is no more true in the
case of w-equivalence, however we will be able to
overcome this difficulty by using the compositions
hg and gh (or more complicated compositions)
instead of homomorphisms g and h, and the result
from [6] that the w-equivalence of hg and gh
{from some common starting string w ) implies
the w-equivalence of g and h themselves.

We now outline our proof of the decidability
of w-DOL equivalence, for a detailed proof see [5].

The main goal of section 2 is to show that
without loss of generality we can restrict
In the next

section 1-simple systems are introduced and it is

ourselves to normal 1-systems.

shown, using linear algebraic arguments, that
w-equivalent 1-simple systems have combinations
with bounded balance. The last section contains
the most crucial arguments showing essentially that
the general case can be reduced to the case of

1-simple normal systems.

[

n

2. Preliminaries

For notations and definitions in lanquage
theory not explained here we refer to [12]. We
shall also assume familiarity with the results in
[4].

The entity
value of a complex number x ; (ii) the length of

I x| denotes (i) the absolute

aword x ; (iii) the vector (|x1|, cens |xk|)
if x 1is a real-valued vector (xl, s xk) .
Let x and y be two words over a finite
alphabet. If x
of y then we denote x <pr y (x <
A word x

is a prefix (a postfix, resp.)
po y , resp.).
is periodic if it is of the form

X = yny1 , where nz 2 and Yy <pr y . The
words x and y are comparable if either

X <pr y or y <pr X . The empty word is denoted
by e and the free monoid generated by a set I

is denoted by I* .

If hl’ cees hk are endomorphisms on I*
then <h1, cees hk> denotes the monoid generated
by hl’ cens hk under the operation of composition

of morphisms.

An infinite word is called an w-word and a
set of w-words is said to be an w-lanquage. To
each language L (of finite words) we associate an
w-language Lim(L) , the 1imit language of L ,
which consists of the w-words o having
arbitrarily long prefixes belonging to L .
Clearly if L 1is finite then Lim(L) = ¢ .

A language L is semi-convergent if
Lim(L) # ¢ , convergent if each word in L
prefix of some w-word in Lim(L) . Furthermore L
is said to be uniformly convergent if #Lim{L) = 1,

is a

i.e. L has an unique limit word.

The 1imit lanquage equivalence problem (or

w-equivalence problem) for a family of languages

means the decision probiem Lim(Ll) =? Lim(LZ) for
any (effectively given) L1 and L2 from the
family.
We shall prove that the Timit language
equivalence problem is decidable for DOL languages.
For the proof of this result we shall first
reduce the problem to a simplified form in this
section. A DOL system is a construct
G=(z, h, o) , where T is a finite alphabet, h
is an endomorphism on I* and o ¢ I* . Denote
L(6) = {n"(c) : nz 0} ,



the language generated by G .

The system G (as defined above) is prefix-
preserving if o <pr h(c) . The following was
shown in [6].

Theorem 2.1
The 1imit language equivalence problem is
decidable for DOL systems iff it is decidable for
prefix-preserving DOL systems. ]
In fact it was shown in [6] that

n
Lim(L(G)) = Y Lim(L(G;)) ,
1=

where Gi s, 1=1,2, ..., n, are subsystems of
G and Gi is prefix-preserving for each i .
From [6] we take also

Theorem 2.2
A prefix-preserving DOL system is uniformly
convergent or its limit language is empty. ]
By Theorem 2.2 #Lim(L(G)) = 1 if G 1is an
prefix-preserving and L(G) 1is infinite.
A DOL system G = (I, h, o) 9s a l-system if
it is prefix-preserving and furthermore
(i) o ez , (denote Io=1- {o}) ,
(11) h(o) < oI, and h(z) cI¥,
(iii) if a e Zc then a occurs infinitely many
times in the unique 1limit word of G .
The subset Zc of I is called g core {core
alphabet) of G .
We note here that if G = (Z, h, o) is
prefix-preserving and if h{c

} = ox then
W 1(s) = hM(o)n"(x

)

for all n=z 0.

The next lemma reveals that we may restrict
ourselves to l-systems.
Lemma 2.3

The Timit language equivalence problem is
decidable for DOL systems iff it is decidable for
1-systems.

Idea of Proof.

Let Gi = (%, hi’ 01) , 1 =1, 2 be two
prefix-preserving DOL systems. We construct DOL
systems G% » i =1, 2 by choosing a new single
symbol o as their starting string and modifying
the morphism so that ¢ will replace the prefix of
the infinite words generated by G1 and G2
containing all "mortal letters" i.e. letters which
occur only finitely often in the generated words.

The following important result was proved in
[6] (Thm. 6 in [6]).
Theorem 2.4

Let Gi = (%, hi’ o) be two l-systems for
i=1,2 and h e <h,, h,> . Then

172
Lim(L(6))) = Lin(L(6,)) = {o}

iff

{o} ,

where G% = (z, hih’ o) for i=1,2. a
This result yields immediately to the follow-

Lim(L(G})) = Lim(L(G}))

ing:
Lemma 2.5
Let Gi be as above and 9; € <h1, h2> for
i=1,2 . The systems G1 dnd G2 define a
common limit word o 1iff the 1-systems
G% = (g, higi’ o) define the limit word o for
both i=1, 2. 0
For the next reduction we need some notations
and facts from [4]. Let x be a word in I* and
define

min(x) = {a : a occurs in x , a € L}.

Let G =(Z, h, o) be a l-system and
m: P(£) - P(£) a function, where P(I) is the
set of subsets of % , such that

m($) = ¢ ,
m({a}) = min(h(a)) for ae X ,
m(A v B) = m(A) v m(B) .

The 1-system G is said to be normal if

ae mJ(b) , J>0 dimplies a e m(b)

holds for every a,b e ZC . The following result
immediately follows from [4, Lemma 2].
Lemma 2.6
(i} For each 1-system G = (I, h, o) one can

find effectively an integer k such that the
1-system Gk = (z, hk, o) 1is normal.

(ii) For each pair of normal 1-systems
G, = (z, hys o), i=1,2 one can find
effectively an integer k such that the 1-systems

G? = (z, hi(h1h2)k’ o) ,i=1,2 arenormal. 0O

The morphism (hlhz)k in (ii) was called a
normal combination of (Gl, GZ) in [4].

Combining Lemmas 2.3, 2.5 and 2.6(i) we
obtain



Lemma 2.7

The 1imit language equivalence problem is
decidable for DOL systems iff it is decidable for
normal 1-systems.

3. 1-Simple Systems

A l-system G = (X, h, o) is called l-simple
if there exists m > 0 such that for all
a,b ¢ I, @« min(hm(b)) , 1.e. from each core
letter any other core letter can be obtained in
certain fixed number of steps.

In the linear-algebraic terminology this means
that the growth matrix of G vrestricted to Zc
is primitive. We use this in the detailed proofs.

Using results from linear algebra and linear
algebraic methods we obtain the following, for
details see [5].
Theorem 3.1

If G1 = (Z, h, o) and 62 = (%, g, o) are
Timit language equivalent and 1-simple and there
are morphisms h1 and h2 such that h = hlh2
and g = hzh1 , then the maximal characteristic
values and vectors of the two systems are equal. [

Let Gi = (zZ, hi’ o) be two DOL systems for
i=1,2. I* >~ ZZ by
setting

Define a mapping B :

800) = [hy ()] - [hy(x)]

The integer B(x) 1is called the balance of the
word x {with respect to h1 and hZ)' The
systems G1 and 62 are of bounded balance if
there exists an integer k such that

[B(x)| =k

whenever x is a prefix of a word in L(Gl) .

In the proof of the decidability of ordinary
sequence equivalence for DOL systems in [2]
the crucial result was that every two equivalent
normal DOL systems have bounded balance. This
cannot be extended to w-equivalence, even for
systems generating aperiodic words, as is shown by
the following example:

The axiom of both systems is ¢ . The
productions in the first system are

g:a—~aa, b+b, c~>cab
and in the second:

f : a~> aaaa, b > b, ¢ »~ cabaab .

Clearly, f = g2 , thus the two systems are
w-sequence equivalent, but they do not have bounded
balance. Note, however g¢f and fg are
w-equivalent with bounded balance. They are even
equal in this example.

On our way to show that any given pair of
w-equivalent DOL systems can be transformed into
such a pair which has bounded balance we start with
result showing that balance growth much slower than
length of generated words for such systems.

Lemma 3.2

Let Gi =
equivalent l-simple systems with a common maximal

(z, hi’ o) be two limit language

characteristic value and let o be their common
limit word. If o
Tength n then

denotes the prefix of o of

1im ———=0,
n-oo
where B 1is the balance function of the pair
(G19 Gz) .
We now proceed to the crucial result of this
section:

O

Lemma 3.3
If G12 = (z, h1h2’ o) and 621 = (g, hzhl,o)
are 1-simple {and corresponding to the limit

Tanguage equivalent l-systems G GZ) then their

balance is bounded. '
Idea of Proof.

First we show that the systems are either
exponentially growing or DOL-equivalent with
balance zero.

For the case of exponentially growing systems
we first use the "shifting technique" from [2].

The unboundeness of balance implies that there is
infinitely many of local strict maxima of balance
in the generated infinite string. The shifting
technique shows that there is a non-empty substring
of the form v2 at the point of each sufficiently
distant maxima. However, unlike in [4], this does
not immediately yield a contradiction. A new
technique is used to show that in this case there
would have to exist substrings with large enough

balance to contradict Lemma 3.2. ]

4. The General Case

Given a 1-system G = (I, h, o) a set
TSI, is called a subalphabet of G if h(m) < 7*.



Denote € =L -7 and let & be a word in Q*
obtained by deleting the symbols from w in x .
Furthermore set h'(x) = h(x)® and

&’ = (2, 1%, o) .
subalphabet of the 1-systems G1 and G2 if it is
a subalphabet of both of them. Note, that in
distinction with [4] we are not requiring that

m# ¢ . The following is obvious.

A set 7 1is called a common

Lemma 4.1
If G1 and G2 are 1imit language equivalent

then so are G? and Gg for any common subalphabet

m . Moreover, if G1 is normal, then so is G? .0
Let us fix for Lemmas 4.2-4.5 two normal

= (2, h;, 0) , i =1, 2 which are

It is not difficult to

1-systems Gi
limit language equivalent.
prove the following
Lemma 4.2

There is a morphism h e <h1, h2> and a common

subalphabet w of G1 i (z, hih, g) ,i=1,2,
such that G {2
9 1,1 1

and G1 o are propagating for Q=1 -«

and G1,2 are normal and G 1

Furthermore, m and h can be found effectively. O
The next lemma appears already in [4] for DOL

equivalence. The proof for our case is almost the

same,
Lemma 4.3
If G1 and G2 are propagating then they have
a nonempty common subalphabet or the morphisms
hlh2 and h2h1 are l-simple. 0

Using the Lemmas 4.1-4.3 we show the following
Lemma 4.4

There is a morphism h € <h1, h2> and a common
subalphabet 1w of normal

Gi = (2, hih’ o)y, 1=1,2

such that (hlhhzh)Q and (hzhhlh)Q are l-simple
for Q=15 -7

found effectively. O

Furthermore © and h can be

Lemma 4.5

The T1imit language equivalence problem is
decidable for DOL systems iff it is decidable for
pairs of normal 1-systems

Gi = (5, hi’ o) , i=1,2

with the following property (P)
a common subalphabet = such that (hlh2

19} -
(hZhl) Q=% -7

: G1 andQ G2 have
) and
are 1-simple for

Proof.

The Lemmas 4.2-4.4 are clearly effective in
the construction of the common subalphabets and of
the morphisms. The Temma follows now by Theorem
2.4 and Lemma 2.7. 0

In the next lemma we prove that the property
P implies bounded balance of the "commutator
systems®.
Lemma 4.6

Let Gi =
language equivalent 1-systems with the property
(P) . Then the l-systems Gp = (z, h1h2’ o) and
G

(%, hi’ g) be two normal limit

o1 = (z, h2h1’ o) have bounded balance.

Idea of Proof.

Let m be the common subalphabet of G1 and
G2 such that G?Z and Ggl are 1-simple for
Q= -m
are limit language equivalent and thus by Lemmas
3.6 and 3.7 their balance is bounded.
gy = (hh)* and g, = (hohy)(h hy)*!
the balance of 9; and g% is also bounded by B.

. ] Q
The 1-simple systems G12 and 621

Define
, clearly,

Hence, one of the words (grl](x))Q and
(5,971 (x))?
n=0 and the length of their "difference" is
We show that these

"differences" are cyclicly repeating for growing

is prefix of the other for each
uniformly bounded for all n .

n . We use this fact to transform 1-systems
61 = (Z’ gi’ O) s 1=
equivalent DOL systems.

by [7] and from the construction it follows that

1, 2 , into two sequence
Their balance is bounded

also the pair Gl’ 62 has bounded balance. 0
Let h and g be two endomorphisms on I* .

The compatibility Tanguage of h and g is defined

by

com(h, g) = {x : h(x)

g(x) or g(x) or h(x)}

and Eq(h, g)
as defined in {12]. In fact the equality language
Eg(h, q)
Comk(h, g) the subset of Com{h, g) which has

<
pr
Note the resemblance of Com(h, g)

is included in Com(h, g) . Denote by

balance at most k , i.e.

Cmmw,g)=h:xECmﬂm g}, xq < x+|Mxﬂ1§kL

pr
The following Temma is an analogy of the result for
bounded equality languages. Since the proof is

obvious and similar to that given for Eqk(h, g) ,

see [2] or [12], we just state the result.



Lemma 4.7
For each k z 0 and endomorphisms h and g,
the set Comk(h, g) 1is regular and can be

effectively constructed. 0

Finally we collect the above results into the
main theorem, u
Theorem 4.8

The 1imit Tanguage equivalence problem is
decidable for DOL systems.
Proof.

By Lemma 4.5 we may restrict ourselves to
normal 1l-systems which have the property P . Let
Gy = (z, hys o) be two of such systems for
i=1,2.

We use two semidecision procedures, one for
non-equivalence and one for equivalence.

(A) The first semidecision procedure computes
h?(o) and hg(c) for n=0,1, ...
for each n if these words are compatible. Thus

and checks

if G1 and G2 are not limit language equivalent
then the procedure finds an integer n such that
h?(o) and hg(c) are incomparable.

(B) The procedure for equivalence constructs
the regular languages Comk(hlhz, hzhl) = Ck for
k=0,1, ...
checks if

(1) L(Gl) cCp -

inductively. For each k one

The above inclusion can be checked effectively
since L(Gl) is a DOL language and Ck is a
regular set by Lemma 4.7. If G1 and 62 are
limit language equivalent, then by Lemma 4.6 the
system Gy, = (z, h1h2’ o) and

621 = (z, hzhl’ o) have bounded balance and thus
(1) holds for some k= 0 . On the other hand if
(1) holds for some k then G
1imit language equivalent since L(Gl) is an

1 and G2 are
infinite prefix-preserving language. 0
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