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Abstract 

The fo l lowing problem is shown to be decidable. 

Given are homomorphisms h I and h 2 from E* to 

E* and str ings a I and o 2 over Z such that 

hV(~ i )  is a proper p re f i x  of h~+l(~ i )  for  

i = I ,  2 and a l l  n ~ 0 , i . e .  for  i = I ,  2, h. 
1 

generates from o. an i n f i n i t e  str ing m. with 
1 1 

n 
prefixes hi(~ i )  for  a l l  n ~ 0 . Test whether 

ml = m2 " From this resu l t  eas i ly  fol lows the 

dec idab i l i t y  of l i m i t  language equivalence 

(w-equivalence) for  DOL systems. 

1. Introduct ion 

Since the old work of Thue [15],  i n f i n i t e  

words (~-words) have been invest igated. Apart 

from being of in terest  in i ts  own r i gh t ,  the theory 

of i n f i n i t e  words has often been able to shed l i g h t  

on some problems concerning ordinary F in i te  words 

and languages of them. As regards i n? in i t e  words 

associated to f i n i t e  automata, the reader is 

referred to [8 ] ,  and as regards those associated to 

context- f ree grammars, the reader is referred to 

[11]. 
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When proving the existence oF an i n f i n i t e  

cubeless str ing over a binary alphabet and i n f i n i t e  

squareless str ing over a t h ree - l e t t e r  alphabet Thue 

[15] used the fo l lowing mechanism to generate 

i n f i n i t e  str ings over alphabet Z Let w c S* 

and h be a homomorphism from E* to ~* such 

that hn(w) is a proper p re f i x  of hn+l(w) for  

a l l  n ~ 0 . Then h generates from w an 

i n f i n i t e  s t r ing with pref ixes hn(w) for  a l l  

n ~ 0 . Our main resul t  is that i t  is decidable 

whether two i n f i n i t e  str ings defined as above are 

equal (m-DOL equivalence). 

Without considering the p re f i x  property we 

have the simplest (and most important) model for  

developmental (genetic) programs in c e l l u l a r  

biology introduced by Lindenmayer and cal led DOL 

system. The problem whether two DOL systems 

generate an ident ica l  sequence of ( f i n i t e )  str ings 

(DOL equivalence problem) was for a long time the 

best known open problem in the area of L systems 

[4] .  I t  has been shown in [6] that the 

dec idab i l i t y  of m-DOL equivalence implies the 

dec idab i l i t y  of ordinary DOL sequence equivalence 

which indicates that our main resul t  is a hard one 

especia l ly  when the attempts to reduce i t  to DOL 

equivalence have not succeeded. However, we are 

using some aux i l i a r y  results and refinements of 

techniques from [4] .  

We consider both words (str ings) and i n f i n i t e  

words also referred to as m-words, over a f i n i t e  

alphabet E An w-language is a set of w-words. 

I f  L c Z* , then Lim(L) is the w-language 

consisting of the w-words with a rb i t ra ry  long 

pref ixes belonging to L . 

The l i m i t  language equivalence problem (or 

m-equivalence problem) for  a fami ly of languages is 
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the decision problem of whether Lim(L 1) = Lim(L 2) 

for any two ef fect ively given languages L 1 and 

L 2 from the family. We show that this problem is 

decidable for DOL languages, given by DOL systems. 

I t  was conjectured to be decidable in [6],  where 

i t  was reduced to DOL system with the i n i t i a l  

prefix property, i .e .  to the equivalence problem 

for Thue's mechanism for generating i n f i n i t e  

strings discussed above. 

Our approach generalizes and extends the 

techniques used in [4] to prove the decidabi l i ty of 

the DOL-sequence equivalence problem. Similar 

notions of normal systems, simple systems, common 

subalphabets and combinations of morphisms as in 

[4] are used, however the situation at a numLer of 

places is more d i f f i c u l t  and new techniques need to 

be deviced. The basic strategy remains the same, 

we show that for every pair of m-equivalent DOL 

systems we can construct a f i n i t e  number of pairs 

of DOL systems each of them m-equivalent with 

"bounded balance". 

The crucial property of pairs of DOL systems 

for the proof of ordinary DOL equivalence is that 

each pair of sequence equivalent systems has 

"bounded balance". This is no more true in the 

case of m-equivalence, however we w i l l  be able to 

overcome this d i f f i c u l t y  by using the compositions 

hg and gh (or more complicated compositions) 

instead of homomorphisms g and h, and the result 

from [6] that the m-equivalence of hg and gh 

(from some common starting string w ) implies 

the m-equivalence of g and h themselves. 

We now outl ine our proof of the decidabi l i ty 

of m-DOL equivalence, for a detailed proof see [5]. 

The main goal of section 2 is to show that 

without loss of generality we ca~ res t r ic t  

ourselves to normal 1-systems. In the next 

section 1-simple systems are introduced and i t  is 

shown, using l inear algebraic arguments, that 

m-equivalent 1-simple systems have combinations 

with bounded balance. The last section contains 

the most crucial arguments showing essential ly that 

the general case can be reduced to the case of 

1-simple normal systems. 

2. Preliminaries 

For notations and defini t ions in lanquage 

theory not explained here we refer to [12]. We 

shall also assume fami l ia r i ty  with the results in 

[ 4 ] .  

The e n t i t y  Ix l  denotes ( i )  the abso lu te  

value of  a complex number x ; ( i i )  the length  o f  

a word x ; ( i i i )  the vec to r  ( I X l l  . . . . .  IXk l )  

i f  x is  a r e a l - v a l u e d  vec to r  (x I . . . . .  x k) . 

Let  x and y be two words over a f i n i t e  

a lphabet .  I f  x i s  a p r e f i x  (a p o s t f i x ,  resp . )  

o f  y then we denote x < y i x  < y , r e s p . ) .  pr po 
A word x is  p e r i o d i c  i f  i t  is  o f  the form 

x = yny I , where n m 2 and Yl  < p r y  " The 

words x and y are comparable i f  e i t h e r  

x < y or  y < x . The empty word is  denoted pr pr  
by e and the f ree  monoid generated by a set  

is  denoted by ~* . 

I f  h I . . . . .  h k are endomorphisms on ~* 

then <h I . . . . .  hk> denotes the monoid generated 

by h I . . . . .  h k under the opera t i on  o f  composi t ion 

of  morphisms. 

An i n f i n i t e  word is  ca l l ed  an m-word and a 

set  of  m-words is  sa id  to be an m-language. To 

each language L (o f  f i n i t e  words) we assoc ia te  an 

m-language Lim(L) , the l i m i t  language o f  L , 

which cons is ts  of  the m-words m having 

a r b i t r a r i l y  long p r e f i x e s  belonging to L . 

C lea r l y  i f  L is  f i n i t e  then Lim(L) = ~ . 

A language L is  semi-convergent  i f  

Lim(L) ~ $ , convergent i f  each word in L is  a 

p r e f i x  of  some m-word in  Lim(L) . Furthermore L 

is  said to be un i f o rm ly  convergent i f  #Lim(L) = i ,  

i . e .  L has an unique l i m i t  word. 

The l i m i t  language equiva lence problem (or  

m-equivalence problem) for a family of languages 

means the decision problem Lim(L I) =? Lim(L 2) for 

any (ef fect ively given) L 1 and L 2 from the 

family. 

We shall prove that the l im i t  language 

equivalence problem is decidable for DOL languages. 

For the proof of this result we shall f i r s t  

reduce the problem to a simplif ied form in this 

section- A DOL system is a construct 

G = (~, h, ~) , where ~ is a f i n i t e  alphabet, h 

is an endomorphism on ~* and o E S* . Denote 

L(G) = {hn(~) : n ~ O} , 



the language generated by G . 

The system G (as def ined above) is  p r e f i x -  

preserv in 9 i f  ~ <pr h(~) . The f o l l ow ing  was 

shown in [6 ] .  

Theorem 2. I 

The l i m i t  language equivalence problem is 

decidable fo r  DOL systems i f f  i t  is  dec idable fo r  

p re f i x -p rese rv ing  DOL systems. [] 

In fac t  i t  was shown in [6]  tha t  

n 
Lim(L(G)) : L) L im(L(Gi))  , 

i : l  

where G i , i = i ,  2 . . . . .  n , are subsystems of  

G and G i is  p re f i x -p rese rv ing  fo r  each i . 

From [6] we take also 

Theorem 2.2 

A pref ix-preserving D0L system is uniformly 

convergent or i t s  l i m i t  language is  empty. [] 

By Theorem 2.2 #Lim(L(G)) = 1 i f  G is an 

p re f i x -p rese rv ing  and L(G) is  i n f i n i t e .  

A DOL system G = ()~, h, a) is a I-system i f  

i t  is p re f i x -p rese rv ing  and furthermore 

( i )  a E ~ , (denote )~ : ~ - {o}) , 
c 

( i i )  h(~) E aT. + and h(Zc) c Z* 
- -  C 

( i i i )  i f  a c ~ then a occurs i n f i n i t e l y  many 
c 

times in the unique l i m i t  word of G . 

The subset %c of )~ is cal led ba core (core 

alphabet) of G . 

We note here that i f  G = (%, h, a) is 

pref ix-preserving and i f  h(a) = ox then 

hn+l(a) : hn(a)hn(x) , 

for a l l  n -> 0 . 

The next lemma reveals that we may r e s t r i c t  

ourselves to l-systems. 

Lemma 2.3 

The l i m i t  language equivalence problem is 

decidable for  D0L systems i f f  i t  is decidable for  

1-systems. 

Idea of Proof. 

Let G i : (~, h i , o i )  , i = i ,  2 be two 

pref ix-preserving DOL systems. We construct DOL 
i systems G i , i = 1, 2 by choosing a new single 

symbol o as the i r  s tar t ing st r ing and modifying 

the morphism so that a w i l l  replace the pre f ix  of 

the i n f i n i t e  words generated by G 1 and G 2 

containing a l l  "mortal l e t te rs "  i . e .  le t te rs  which 

occur only f i n i t e l y  often in the generated words. 

The fol lowing important resul t  was proved in 

[6] (Thm. 6 in [ 6 ] ) .  

Theorem 2.4 

Let G i = (Z, h i , ~) be two 1-systems for  

i = I ,  2 and h E <h 1, h2> . Then 

Lim(L(G1) ) = Lim(L(G2) ) = {~} 

i f f  

where G~ 

This 

ing: 

Lemma 2.5 

Lim(L(G~)) : Lim(L(G~)) : {m} , 

= (Z, h ih ,  a) fo r  i = I ,  2 . 

r e s u l t  y i e l d s  immediately to the f o l l o w -  

Let G i be as above and gi E <h I ,  h2> for  

i = 1, 2 . The systems G 1 ~nd G 2 define a 

common l i m i t  word ~ i f f  the l-systems 

G~ = (%, hig i ,  o) define the l i m i t  word ~ for  

both i = 1, 2 . D 

For the next reduct ion we need some nota t ions 

and facts  from [ 4 ] .  Let x be a word in ~* and 

def ine 

min(x) = {a : a occurs in x , a E ~}. 

Let G = (S, h, o) be a 1-system and 

m : P(S) ÷ P(S) a function, where P(Z) is the 

set of subsets of Z , such that 

m(@) : @ , 

m({a}) = min(h(a)) for  a E ~ , 

m(A u B) : m(A) u m(B) . 

The I-system G is said to be normal i f  

a E mJ(b) , j > 0 impl ies a E m(b) 

holds fo r  every a,b E ~c " The f o l l ow ing  r e s u l t  

immediately fo l lows from [4,  Lemma 2].  

Lemma 2.6 

( i )  For each 1-system G = (~, h, a) one can 

f ind  e f f e c t i v e l y  an in teger  k such tha t  the 

I-system G k = (Z, h k, a) is normal. 

( i i )  For each pa i r  of  normal I-systems 

G i = (~, h i , a) , i = I ,  2 one can f i nd  

e f f e c t i v e l y  an in teger  k such tha t  the i-systems 

G k : (~, h i (h lh2  )k, a) i : 1 2 are normal D 

The morphism (h lh2)k in ( i i )  was ca l l ed  a 

normal combination o f  (G 1, G 2) in [ 4 ] .  

Combining Lemmas 2.3,  2.5 and 2 . 6 ( i )  we 

obta in  



Lemma 2.7 

The l i m i t  language equivalence problem is 

decidable fo r  DOL systems i f f  i t  is decidable fo r  

normal I-systems. 

3. 1-Simple Systems 

I A I-system G = (~, h, o) is ca l led  I -s imp le  

i f  there ex is ts  m > 0 such tha t  fo r  a l l  

a,b E E a E min(hm(b)) , i .e.  from each core c 
le t ter  any other core le t ter  can be obtained in 

certain fixed number of steps. 

In the linear-algebraic terminology this means 

that the growth matrix of G restricted to Z c 
is primitive. We use this in the detailed proofs. 

Using resu l ts  from l i n e a r  algebra and l i ~ e a r  

a lgebra ic  methods we obta in  the f o l l o w i n g ,  fo r  

d e t a i l s  see [5 ] .  

Theorem 3.1 

I f  G I = (S, h, o) and G 2 = (~, g, ~) are 

l i m i t  language equ iva len t  and i - s imp le  and there 

are morphisms h I and h 2 such tha t  h : hlh 2 

and g = h2h I , then the maximal c h a r a c t e r i s t i c  

values and vectors of  the two systems are equal.  

Let G i = (~, h i , o) be two DOL systems fo r  

i = I ,  2 . Define a mapping B : ~* ÷ ~ by 

se t t i ng  

B(x) = Ih l (X)  l - Ih2(x)J 

The in teger  B(x) is ca l l ed  the balance o f  the 

word x (with respect to h I and h2). The 

systems G I and G 2 are of bounded balance i f  

there exists an integer k such that 

IB(x) I  ~ k 

whenever x is a p r e f i x  o f  a word in L(G I)  . 

In the proof  of  the d e c i d a b i l i t y  of  o rd inary  

sequence equivalence fo r  DOL systems in [2]  

the c ruc ia l  r esu l t  was tha t  every two equ iva len t  

normal DOL systems have bounded balance. This 

cannot be extended to m-equivalence, even fo r  

systems generat ing aper iod ic  words, as is shown by 

the f o l l ow ing  example: 

The axiom of  both systems is c . The 

product ions in the f i r s t  system are 

g : a ÷ aa, b ÷ b, c ÷ cab 

and in the second: 

f : a ÷ aaaa, b ÷ b, c ÷ cabaab . 

Clearly, f = g2 , thus the two systems are 

w-sequence equivalent, but they do not have bounded 

balance. Note, however gf and fg are 

m-equivalent with bounded balance. They are even 

equal in this example. 

On our way to show that any given pair of 

m-equivalent D0L systems can be transformed into 

such a pair which has bounded balance we start with 

result showing that balance growth much slower than 

length of generated words for such systems. 

Lemma 3.2 

Let G i = (%, h i , a) be two l im i t  language 

equivalent 1-simple systems with a common maximal 

characteristic value and le t  m be their common 

l imi t  word. I f  mn denotes the prefix of m of 

length n then 

I~ (%)1  
l im - 0  , n n-~oo 

where B is the balance func t ion  of  the pa i r  

(G I ,  G 2) • [] 
We now proceed to the c ruc ia l  r e s u l t  of  th i s  

sect ion:  

Lemma 3.3 

I f  G12 = (E, hlh 2, ~) and G21 = (S, h2hl ,~)  
are I -s imp le  (and corresponding to the l i m i t  

language equ iva len t  i -systems G I ,  G 2) then t h e i r  

balance is bounded. 

Idea of  Proof.  

F i r s t  we show tha t  the systems are e i t h e r  

exponen t i a l l y  growing or DOL-equivalent wi th  

balance zero. 

For the case o f  e x p o n e n t i a l l y  growing systems 

we f i r s t  use the " s h i f t i n g  technique" from [2 ] .  

The unboundeness o f  balance impl ies  tha t  there is  

i n f i n i t e l y  many o f  loca l  s t r i c t  maxima of  balance 

in the generated i n f i n i t e  s t r i ng .  The s h i f t i n g  

technique shows tha t  there is  a non-empty substr ing 
2 of  the form v a t  the po in t  of  each s u f f i c i e n t l y  

d i s t a n t  maxima. However, un l i ke  in [ 4 ] ,  th i s  does 

not immediately y i e l d  a c o n t r a d i c t i o n .  A new 

technique is used to show tha t  in t h i s  case there 

would have to e x i s t  substr ings wi th la rge  enough 

balance to con t rad i c t  Lemma 3.2. [] 

4. The General Case 

Given a 1-system G : (S, h, a) a set 

~ Zc is called a subaIDhabet of G i f  h(~) ET*. 



Denote ~ : ~ - ~ and l e t  x ~ be a word in ~* 

obtained by delet ing the symbols from ~ in x . 

Furthermore set h~(x) = h(x) ~ and 

G ~ = (R, h ~, o) . A set ~ is cal led a common 

subaIphabet of the l-systems G 1 and G 2 i f  i t  is 

a subalphabet of both of them. Note, that in 

d is t inc t ion with [4] we are not requir ing that 

~ @ . The fol lowing is obvious. 

Lemma 4.1 

I f  G 1 and G 2 are l i m i t  language equivalent 

then so are G I and G fo r  any common subalphabet 

Moreover, i f  G I is normal, then so is G I .D 

Let us f i x  fo r  Lemmas 4.2-4.5 two normal 

1-systems G i = (~, h i , ~) , i = I ,  2 which are 

l i m i t  language equ iva len t .  I t  is not d i f f i c u l t  to 

prove the f o l l ow ing  

Lemma 4.2 

There is a morphism h E <h I , h2> and a common 

subalphabet ~ o f  GI, i = (Z, h ih ,  ~) , i = I ,  2 , 

such that  GI, 1 and GI, 2 are normal and G ~ i , I  
and GI, 2 are propagating fo r  ~ = E - 

Furthermore, ~ and h can be found e f f e c t i v e l y .  

The next lemma appears a l ready in [4]  f o r  DOL 

equivalence. The proof  fo r  our case is almost the 

same. 

Lemma 4.3 

I f  G I and G 2 are propagating then they have 

a nonempty common subalphabet or the morphisms 

hlh 2 and h2h I are I - s imp le .  D 

Using the Lemmas 4.1-4 .3  we show the f o l l ow ing  

Lemma 4.4 

There is a morphism h E <h I , h2> and a common 

subalphabet ~ of  normal 

Gi = (~' h ih '  ~) ' i = i ,  2 

such that  (hlhh2h)a and (h2hhlh)a are i-simple 
fo r  ~ = Z - ~ Furthermore ~ and h can be 

found e f f e c t i v e l y .  D 

Lemma 4.5 

The l i m i t  language equivalence problem is 

decidable fo r  DOL systems i f f  i t  is decidable fo r  

pai rs of  normal i -systems 

G i = (~, h i , o) , i = 1, 2 

wi th the fo l l ow ing  proper ty  (P) : G I and G 2 have 

a common suba!phabet ~ such that  (hlh2)~ and 

(h2hl)~ are I - s imp le  fo r  ~ = ~ - 

Proof. 

The Lemmas 4.2-4.4 are c lear ly  ef fect ive in 

the construction of the common subalphabets and of 

the morphisms. The lemma follows now by Theorem 

2.4 and Lemma 2.7. D 

In the next lemma we prove tha t  the proper ty  

P impl ies bounded balance o f  the "commutator 

systems". 

Lemma 4.6 

Let G i = (%, h i , o) be two normal l i m i t  

language equ iva len t  I-systems wi th  the proper ty  

(P) . Then the I-systems GI2 = (Z, hlh 2, ~) and 

G21 = (E, h2h I ,  ~) have bounded balance. 

Idea of  Proof. 

Let ~ be the common subalphabet of  G 1 and 

and G~ are l - s imp le  fo r  G 2 such tha t  GI2 i 
and G~ = Z - ~ The 1-s imple systems GI2 1 

are l i m i t  language equ iva len t  and thus by Lemmas 

3.6 and 3.7 t h e i r  balance is bounded. Define 

gl = (h lh2)k and g2 = (h2h l ) (h lh2)k -1  ' c l e a r l y ,  

and g~ is also bounded by B. the balance of  g l  

o f  the words (gV(x)) Q " and Hence, one 
n - i  )~ (g2gl (x) is p r e f i x  of  the other  fo r  each 

n ~ 0 and the length of  t h e i r  " d i f f e rence "  is 

un i formly  bounded fo r  a l l  n . We show that  these 

"d i f fe rences"  are c y c l i c l y  repeat ing fo r  growing 

n . We use th is  fac t  to t ransform i-systems 

Gi = (~' g i '  o) , i = i ,  2 , into two sequence 

equivalent DOL systems. Their balance is bounded 

by [7] and from the construction i t  follows that 

also the pa i r  ~ I '  ~2 has bounded balance. D 

Let h and g be two endomorphisms on ~* . 

The c o m p a t i b i l i t y  language of  h and g is def ined 

by 

Com(h, g) : {x : h(x) <pr g(x) or g(x) <pr h (x ) }  . 

Note the resemblance o f  Com(h, g) and Eq(h, g) 

as def ined in [12] .  In fac t  the e q u a l i t y  language 

Eq(h, q) is included in Com(h, g) . Denote by 

COmk(h, g) the subset of  Com(h, g) which has 

balance at most k , i . e .  

COmk(h, g ) = { x : x E C o m ( h ,  g),  x I <pr x~  IB(Xl) l ~ k } -  

The fo l l ow ing  lemma is an analogy of  the r e s u l t  f o r  

bounded e q u a l i t y  languages. Since the proof  is 

obvious and s i m i l a r  to that  given fo r  Eqk(h, g) , 

see [2 ]  or [12 ] ,  we jus t  s ta te  the resu l t .  



Lemma 4.7 

For each k _-> 0 and endomorphisms h and g, 

the set COmk(h, g) is regular and can be 

effect ively constructed. 

Finally we collect the above results into the 

main theorem. [] 

Theorem 4.8 

The l i m i t  language equivalence problem is 

decidable for  DOL systems. 

Proof. 

By Lemma 4.5 we may r e s t r i c t  ourselves to 

normal i-systems which have the property P . Let 

G i : (~, h i , ~) be two of such systems for 

i = 1 , 2 .  

We use two semidecision procedures, one for 

non-equivalence and one for equivalence. 

(A) The f i r s t  semidecision procedure computes 

hi(o) and h~(~) for n : O, 1 . . . .  and checks 

for each n i f  these words are compatible. Thus 

i f  G 1 and G 2 are not l im i t  language equivalent 

then the procedure finds an integer n such that 

h~(o) and h~(o) are incomparable. 

(B) The procedure for equivalence constructs 

the regular languages COmk(hlh2 , h2h 1) = C k for 

k = O, 1 . . . .  inductively. For each k one 

checks i f  

( i )  L(G I )  ~ C k • 

The above inc lus ion can be checked e f f e c t i v e l y  

since L(G I )  is a DOL language and C k is  a 

regular set by Lemma 4.7. I f  G I and G 2 are 

l i m i t  language equiva lent ,  then by Lemma 4.6 the 

system GI2 = (~, hlh 2, o) and 

G21 = (%, h2h 1, ~) have bounded Balance and thus 

(1) holds for some k a 0 . On the other hand i f  

(1) holds for some k then G 1 and G 2 are 

l im i t  language equivalent since L(G 1) is an 

in f in i te  prefix-preserving language. [i] 
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