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Abstract .  We are interested in the complexity of soN- 

ing the knapsack problem with n input real numbers 

on a parallel computer with real ari thmetic and branch- 

ing operations. A processor-time tradeoff constraint is 

derived; in particular, it is shown that  an exponential 

number of processors have to be used if the problem is 

to be solved in time t < v ~ / 2 .  
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1. Introduction. 

Given n real numbers z l , x 2 ,  . . . , z ,~ ,  the knap-  

sack problem is to determine if there exists a subset 

S C C_ { 1 , 2 , . . . , n }  such that  ~-]ics :ci = 1. We are 

interested in the complexity of solving the knapsack 

problem on a parallel computer with real arithmetic 

and branching operations (but without ceiling and floor 

functions). A constraint on the time-processor tradefoff 

will be derived. In particular, it implies that  p >__ 

~2 x/-ff/2 processors have to be used if the problem is 

to be solved in time t < x /n /2  - -  1. This seems to 

be a rare case, where a natural  problem is shown to 

be not solvable in simultaneous O((logn) k) t ime and 

O(n k) processors for any k, wiihout being shown to re- 

quire exponential t ime for the sequential computat ion 

(p = i ) .  
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In the literature, the sequential complexity of the 

knapsack problem has becn considered in a somewhat  

different model (Dobkin and Lipton [3], Steele and Yao 

[8]). In Section 4, an extension of the time-processor 

tradeoff constraint to a parallel version of that  model 

will be considered. (We recommend the readers to [3] 

[8] for background reading, where many concepts used 

in this paper were originaly introduced.) 

Hardware size and parallel time required for com- 

putat ions in a variety of models have received much 

attention recently (see, e.g., Borodin [2], Dymond and 

Cook [4], Hong Jai-Wei [51). Our model differs from 

them in that  the inputs xi are treated as real num- 

bers and not as finite bit strings. Thus, our conclusions 

do not translate into results in those models, in which 

the individual bits in the inputs can be manipulated.  

However, our model is quite proper for the knapsack 

problem, and other problems such as network flows, 

finding shortest paths, etc., as many algorithms for 

these problems treat  xi just  as real numbers (see e.g. 

[11 [6]). 

2. The Parallel Arithmetic Model. 

Let  W C R '~ be any set. The membersh ip  prob- 

lem for W is the following: Given ;2 -~ (xl  , z2, . . . ,  xn)  E 

tU", determine if ;2 C W. As in [3], we regard the n- 

input knapsack as a membership problem with W -~ 

W (n), where W (~) is defined to be 

s c  { 1,2,...,n} iES 

We will be interested in solving the knapsack prob- 
otherwise, or to republish, requires a fee and /o r  specific permission, lem on a parallel computer  with p processors. Each 

processor can perform an ari thmetic operation and test  
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the resulting value. The selection of the next  (parallel) 

step may depend on the results of all the previous tests 

(thus, a priori, there are 3 v possible branchings  at each 

step). Formally,  a parallel program with p processors 

T is a mult i-way tree, with each internal node v con- 

taining a set of p rat ional  functions 

5r~ = { f , , (x ) ,  fv2(~), . - . ,  fvv(~)},  

and with each leaf ~ containing ee, a "yes" or "no" 

answer. Let  

9u = {1,  Xl ,X2,  • .,Xn} 
td <~t~ 

where v ~ < v denotes t ha t  v ~ are ancestors o f 'v .  Each  

f~i(~) is either of the form g(5) o h(~) or of the form 

co h(~), where o C { + ,  - - ,  * , / } ,  g, h C ~ ,  and c is any 

constant .  Each  branch leaving v is labeled by a dist inct  

string b = b, b2. . .b  v C { 1 , 0 , - - 1 }  v. ( tIence there are 

at mos t  3 p branchings at  any node v; there may be 

fewer.) Given an input  g C R n, the program traverses 

a pa th  P(~) in the tree T from the roo t  down. At  

each internal node v, the comparisons {fvi(~): 0} are 

made  and the branch labeled b (where bi  -~- 1, 0,--1 
according to whether  f , i (~) :  0 is < ,  = ,  > )  chosen. 

W h e n  a leaf g is reached, the answer ee is returned.  

We say "5 passes th rough  v" if v is a node on the pa th  

P(g) .  We require that ,  if an input  ~ passes th rough  a 

node v and fvi is g/h or c/h, then the value h(~) ~A 0. 

We say tha t  a parallel program T solves the mem- 

bership prol)lem for W, if the answer re turned is cor- 

rect for every input  g E R ~. Let  Cost('~,T) denote  

the number  of internal nodes tha t  g passes through.  

The  running  time t of T is given by the m a x i m u m  of 

Cost(:~, T) for any :~. 

For any open set W, let ~ W  denote the  number  of 

connected components  W has. It  was proved in Dobkin 

and Lip ton  [3] that ,  for the knapsack problem, 

# W  c") > 2 "~/~ . (2) 

This last inequality was used in [3] [8] to derive lower 

bounds  on the knapsack  complexity,  and will again be 

crucial in this paper.  

We will prove the following results: 

T h e o r e m  1. Let  W E  R "  be an open set, and T be a 

parallel program with p processors and turning ~ime t 

that solves the membership problem for W.  Then 

p >_ (#W)t/ttt+~)'O2-tt+s). 

Theorem 2. Le t  T be a parallel program with p proces- 

sors and running time t that solves the n-inpu~ knap- 

sack problem. Then 

P _> 2n/(2( t+l))--{t+s) .  

Corollary.  If a parallel program solves the knapsack 

problem in time t ( 1V ~ -  1, then the number of 

processors p is at least 2½ v ~ - 2 .  

Theorem 2 and its corollary follows from Theorem 

1 and inequality (2) easily. Thus,  we need only to prove 

Theo rem 1. 

3. P r o o f  of  T h e o r e m  1. 

We need some prel iminary definitions. For any 

polynomial  q(xt, ~ 2 , . . . ,  Xn), let Sq --- {~ ] q(~) ~ 0}. 

For any integer rn, n > 0, let 

fl(m, n) = max{ #Sq ] q is a polynomial  in n 

variables and of degree at most  m } .  

It follows from a fairly deep result  of J. Milnor [7] t ha t  

n) < (m + 2)(m + 1F- ' .  (3) 

For more  discussions of inequali ty (3), see reference [8, 

Section 3]. 

We now begin the proof. W i t h o u t  loss of generali ty,  

we assume tha t  no branching in T is redundant ,  i.e., 

there  is at  least one input  ~ taking each branching.  

This  implies tha t  each leaf can be reached by some in- 

pu t  5. The running time t is now the same as th e  

height  of  the tree T.  The depth of a node v, denoted  

by depth(v), is its distance from the root ;  the root  has 

depth  0. 

We can also assume tha t  no test funct ion fvi(~) is 

identically 0, because we can replace such a funct ion by 

any non-zero cons tant  funct ion (say 1) and  then relabel 

the branchings.  

For each node v, let Vv be the set of  inputs ~ tha t  

pass th rough  v. 

L e m m a  1. Le t  v be an internal node of depth j ,  and let 

f C Yr. Then there exist polynomials a(~), big ) each 

of degree at most 2 j+l  such that, for all ~ E Vv, we 

have d(~) 7g 0 and f(g)  -~ a(g)/d(g). 

Proof. We prove by induct ion on j .  The l emma  

is t rue for j = 0 by inspection. Suppose the l emma is 
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true for all j < e (~ > 0), we will prove it for j =- e. 

There are two possibiities: 

Case 1. fCg) ----- g( )o h(g), where 

O, LJ z,, 

and 

e (Z, " " , = ° } 0  

for some v / < v, v" < v. 

By the induction hypothesis, we can write g(~) ----- 

gl(:~)/g2(:~) for !~ E Vv, and h(ig) - -  h~(?~)/h2(g) for 
~ Vo,,, such tha t  deg(gi) < 1 l+d*mh(' ' )  < 2 j and 

deg(hl) <: 2 t+depth(°'') < 2 i for i = 1,2, and such 

tha t  g~(~) ~A 0 for !~ e Vo, and h2(~) ~A 0 for ~ E Vo,,. 
In particular,  this implies 92(~) # 0, h2(~) # 0 for all 

~EVo. 
If o = + ,  then f (g )  = a(~)/d(~) for ~ E V,,  

where 
= + 

= 

Clearly, deg(a($)), deg(d(~)) < 21+1 and d(~) ~A 0 for 

al l  ~ E V~. 
If o ~-~ *, then we can take a (~ . )=  gi(~)ht(~) and 

dig ) = g~(~)h2('~). Then f(~)  ~--- a(~)/d(g) for g ~ Vo, 

and all conditions are satisfied. 

If o = / ,  then by assumption h(~) # 0 for g E 

Vo,,, and hence hl(~) ~A 0 for ~ ~ V.. One can then 

easily verify that  a(~) : gl(~)h2(~), d(~) = g2(~)ht(g) 

satisfy the conditions. 

Case 2. f (g)  = c o h(~) where c is a constant  and 

h(~) E {1, 2~1, . . . ,  Xn} U ~v' for some v '  < 

v. 

A similar (and simpler) argument  as given above 

takes care of this case. We omit  the details. 

This completes the inductive proof. I 

Let  

A = {b [ b-=-- bl b2 . . .bv  with bi E {1 , - -1}  for all i} .  

L e m m a  2. Le~ v be any internal node, and Bo be the 
number  of branches from v that have labels b E A.  
Then B ,  < fl(21+2p, n) where j -~ depth(v). 

Proof. Le t  jro = { f l , f 2 ,  . . . , f p } .  By L e m m a  

1, we can choose polynomials hi, di for 1 _< i < p 

such tha t  deg(a,) <_ 21+1, deg(d,) < 2 iWt and f (g )  ~--- 

aiC~,)/di(g), diCY,) yA 0 for all ~ E Vo. 

For each b E A, let X~ = {g I di(g) ~A_ 0, bifi(~) < 
0 for all i}. Then By is no greater than the number  of 

E A with X~ ~A (~. Now, we can write X~ --~ {5 [ 

~i(~)d~(g) < 0 for all i}. Note that  X~ is an open set. 

Consider the polynomial q(2) = H I  <i<v(ai(g)di(~))" 
Then Sq : O~EA X~. Since all X~, are disjoint open 

sets, we have B ,  _< (the number of b E A with X~ 

O) <_ #Sq  < fl(p2 i+2, n). | 

Let  us write W = U l < ~ < # w  wi,  the disjoint union 

of nonempty open sets. Let  L be the set of leaves of 

T with a "yes" answer and which can be reached from 

the root using only "inequality" branches (i.e., branches 

labeled by b E A). Clearly, [-JeeL Ve C_ W. 

Lemma 3. The set UeEI. Ve intersects all the open sets 
w~. 

Proof. The set W -  t.Jeez. Ve is contained in the 

union of Ve where £~ are leaves that  satisfy at least one 

equality constraint along the path  from the root. Such 

We, have measure 0 and so does W - -  [.JeEL Ve. As each 

Wi is of non-zero measure, the lemma follows. It 

Lemma  4. /;br each l E L, Vt intersects at mos* 

p(p2 ~+2, n) 

of the Wi. 

Proof. Let  root = Vo, Vt,v2, . . . , v s  = l be the 

sequence of nodes from the root to ~ (s < t). Consider 

3roi = { f j l ,  f 1 2 , . . . ,  fi~}" By a e m m a  1, we can write 

fi~(33) ~- aji(~)/dji(~) with dji(~) yA 0 for all g E V~., 

and deg(ali ) < 2 i+1 ,  dcg(d3i(g)) <_ 2 i+1 .  

Let  b(J) = b~ j) b~J)...b(J) be the label on the branch 

from vj to v j ÷ l .  Then 

v ,  - -  l < o 

f o r 0  < j <  s, 1 < i < p } .  

Clearly the open set Ve is the union of some components 

of the set Sq, where q(~) = rI,j(aii(~)djiC~t)). Thus, 

#Ve _< p(m,  n), where 

m = ~ (p2 j+2)  = p(2 *+2 - -  4 ) <  p2 t+2.  
O<j<s 
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Since Ve _C W, each component  of Ve is completely 

contained in some component  of W. Thus Ve can in- 

tersect at  most  #Ve <_ fl(rn, n) components of W. The 

lemma then follows from the monotoniei ty of fl(rn, n) 
i n t o .  | 

We now complete the proof of Theorem 1. 

Lemmas  3 and 4, we have 

>_ # w .  

But from L e m m a  2, [L[ < (fl(p2~+2,n)) t. Hence, 

(fl(p2 t+2, n)y +' > # W .  

By 

Applying (3), we obtain 

(p2 t+2 Jr- 2)n _> ( # W )  ' 1 ( ' + 0  . 

The theorem follows. II 

4. Parallel Algebraic Decision Trees. 

Dobkin and Lipton [3] considered the decision-tree 

complexity of the knapsack problem for sequential com- 

putat ion,  and stlowed tha t  12(n 2) tests are needed if 

only "linear" tests )-~i kixi:  c are employed. Steele 

and Yao [8] extended this l~(n 2) lower bound to d-th 
order algebraic decision trees for any fixed d, where 

tests f (x t ,  x2, . . . ,  z~): 0 are allowed with f being any 

polynomial of degree ~ d. 

A natural  extcnsion is to consider parallel d-th or- 
der algebraic trees with p processors, which are multi- 

way trees with each internal node storing p d-th (or less) 

degree polynomial tests f l  (~): 0, f2(~): 0, . . . ,  fp(g): 0, 

and with its branches corresponding to the different 

combinations of outcomes for the tests. The running 
time t is again the max imum number of internal nodes 

any input ~ can encounter. This model differs from the 

"ari thmetic" modcl considered earlicr, in tha t  the lat ter  

model counts the ar i thmetic  cost in computing the test  

functions and can build up high order test  functions. 

ttowever, using the same basic approach (and techni- 

cally simpler), one can prove the following results. 

Theorem 3. Let W C R" be an open set, and T a 
parallel d-th order algebraic tree that  solves the mem- 

bership problem for W. Then ~he number of processors 
p and the running time t must satisfy 

1 
P ~ 2(d-t- 2) (#W)'/cnO+Q)" 

Corollary. For the knapsack problem, p = f l ( ~ k " # )  

where k : 4 V/~. 

Corollary. In the knapsack/~roblem, one cannot solve 
the problem in time o[. 1o-~-~) and with polynomial a 

number of processors, for fixed d. 

Proof We will only sketch the prouf. We can 

assume tha t  all leaves of T can be reached and that ,  in 

every test  f (~) :  0, f is not the identically 0 polynomial.  

Consider the set L of leaves g with '~yes" answer 

and with no test  with equality results along the pa th  

from the root to g. Consider the par t  Of the tree T 

tha t  consists of the paths (and the nodes on them) from 

the root to leaves in L. Noting tha t  at  most  fl(pd, n) 
branchings can occur at each node, we have 

ILl _< (ZCpd,,9)'. (4) 

Let  Ve be the set of inputs ~ leading to leaf l .  Then 

each Ve for £ C L can be shown to intersect at most  

fl(ptd, n) of the components  of W. This leads to 

# w  < ILl. (5) 

Using (2), (4), we obtain from (5) 

# W  ~_ (pd -{- 2)"t(ptd q- 2)'* 

(p(d Jr- 2)) n(1-t-t)tn • 

Tile theorem follows by noting t -( t /( l+t))  >_ 1/2 for 

t > l .  
The corollarics follow from tile theorem and in- 

equality (2). II 

5. Remarks. 

In this paper  we have shown that ,  in some real- 

ar i thmetic models, the knapsack problem is hard to 

solve fast in parallel. However, this does not imply 

the same behavior in the bit-oriented models [2] [4] [5], 

which are commonly employed in complexity theory. 

The following example illustrates the point: 

Given xl ,  x2, . . . ,  ~ , ,  determine if )-~1<i<,~ xi = 

3" for some integer 1 _< 3' < 2n~- As W = {~ [ 

I'Ii<j<2.2()-'~l<i<nXi--j) ~ 0} satisfies # W  ---- 2 ~ ' ,  
we obtain the same type of t ime-processor tradeoff con- 

straint as in the knapsack problem. However, circuits 

of small depth and size can obviously be built for this 

problem with finite-precision inputs xi. It  is interesting 
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to note tha t  this problem becomes trivial even in real 

arithmetic models, if we add the floor function [yJ to 

the models. (Thus, Theorems 1 and 3 cannot be true if 

the floor function is allowed.) 

The above example also gives in our model a prob- 

lem whose sequenial complexity is O(n2), but  a speedup 

to time ~ V ~ would call for an exponential number of 

procesors. In a way this can be considered as an extcn- 

sion of the problem of locating an item in an ordered 

table to rn items. With p parallel probes at a step, it 

takes ~ (log rn)/(logp) steps. Set rn ~-~ 2 '~ and try to 

reduce the number of steps from n to V~, we will find 

that  we need p ~ 2 v~ processors. 

To conclude this paper, we remark that  a major 

open problem on this subject is to determine the se- 

quential complexity of the knapsack problem in real 

arithm, eric models. Even a determination of the com- 

plexity with only linear tests would be of great interest. 
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