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ABSTRACT 
• , " 9  

A commumcatlon system is presented which 
consists of a switch (Datakit [Fraser 1979]) 
with associated control and interface 
hardware and software• The switch offers 
virtual circuit service which is internally 
implemented through packet switching. The 
users of the communication system are 
operating systems; using our communication 
system, we have implemented a network of 
U N I X  TM systems and a new distributed 
operating system derived from UNIX. Our 
work concentrated on the performance of 
the subscriber-switch interface; on the 
reliability and recoverability of the switching 
service; and on the exploitation of the circuit 
concept for operating system design. 

Introduction 

The last years have seen many research 
efforts in local area networks and distributed 
systems (see e.g. [Thurber 1979] for an 
overview of current work; or [Shoch 1980] 
for an annotated bibliography.) Most 
software architects building such a system 
arrive at the conclusion that some message 
discipline (i. e. a higher level protocol) has 
to be defined. This emphasis on message 
exchange has, in many cases, led to the 
conclusion that the underlying data transport 
mechanism better be of the same kind, that 
is datagram service, sometimes also called 
packet switching in this context. We follow 
Pouzin's distinction between packet 
switching as a service offered to the user and 
packet switching as a transport mechanism 
employed at lower protocol levels [Pouzin 
1977], [Pouzin 1978]. 

Our observation has been, that for 
applications we are familiar with, the 
message traffic is highly localized, and thus 
we should be able to carry it over virtual 

circuits• For example, a process in the 
U N I X  I time-sharing system communicates 
with the outside world (files, peripherals, 
terminals or "pipes* to other processes) via 
an abstraction called ~file descriptor ~, which 
handles an unformated byte stream. We 
think that the main objection to circuit 
switching as a transport mechanism stems 
from the observation that data traffic is 
much more bursty than voice traffic, and 
hence setting up a circuit implies reserving 
bandwidth in the communication medium, 
much of which will not be used most of the 
time. Fortunately, we had access to a data 
switch called Datakit [Fraser 1979] which 
provides virtual circuit switching service but 
implements the data transport internally by 
way of packet switching, i.e. no bandwidth is 
reserved, rather a contention scheme 
effectively offers dynamic bandwidth 
allocation. This switch allowed us to explore 
the development of network operating 
systems based on virtual circuit 
communication. 

The Datakit switch leads to a star topology 
for the node. Although most other local 
area network research concerns more 
distributed topologies using busses, loops or 
rings, the virtues of a star topology have 
been pointed out in one [Closs 1980] of the 
two star proposals known to us (the other is 
[Rawson 1978]): the network interfaces are 
simpler, and the maintenance and fault 
isolation are easier• 

Our study of other research efforts revealed 
further, that, no matter how high the 
bandwidth of the interconnection (including 
prior Datakit based architectures [Chesson 
1979]), the computer interface to the switch 
or network was always the performance- 
limiting factor. It is not uncommon to 

1. UNIX is a tro.demark of Bell Laboratories. 
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observe maximum data transfer rates that 
are two orders of magnitude lower than the 
idle network could carry. We therefore  
decided to concentrate our research effort on 
the network interface, and we were willing to 
forego, if necessary, the use of standardized 
protocols. Moreover ,  we set out to 
investigate the use of  a fast front-end 
processor as the network interface. 

The Datakit switch uses a control computer  
for circuit management. .  Our second 
concern was to make this control as simple 
and reliable as possible and to deal with the 
problem of recovery from control failure. 

The communicat ion subsystem we built has 
been used in two different environments .  
First, we have been using it since early 1981 
to interconnect  a network of eight 
conventional  au tonomous  UNIX systems in 
our laboratory 2. Second,  we built a 
distributed system with two kinds of 
specialized computers.  These are computers  
with the conventional  UNIX process 
envi ronment  running under the S-UNIX 
subsystem which obtain fast file service from 
computers running under  the F-UNIX 
subsystem. 

Our current research has several near-term 
goals: first, to connect  terminals and 
dedicated work-stations to the network, 
second to ease connect ion of  network 
components  built by others including 
connection to other  networks, and third to 
further  improve the network interface by 
exploiting the virtual circuit concepts. 

In the remainder  of this paper, we shall first 
describe our architecture from a functional 

• viewpoint. Then follows a description of the 
Datakit switch hardware. Our switch 
interface including the data and control 
protocol is next, and that is followed by a 
report  on performance measurements  and 
analysis. Finally, we present two operating 
system environments  implemented on top of 
our communicat ion subsystem and conclude 

2. For a report  on a network of  UNIX sys tems  us ing 
the  same interface hardware as we did, but  direct 
connect ions  in place of  a switch see [Croft 1980]. 

with a perspective on future extensions. 

Architecture 

A high level view of our architecture is 
shown in Figure 1. It shows two nodes, A 
and B, connected by a trunk. Although we 
have so far restricted ourselves to a single 
node, Datakit-based systems with glass fiber 
trunks between nodes are in operation 
elsewhere at Bell Laboratories. 

A node has a star topology. The  switch 
control computer  and up to 510 subscriber 
computers  can be connected to the switch 
via dedicated subscriber links. 

II, CONTROL [~ U CONTROL[~ 

[ SWITCH ~ ~ ' ~  SWITCH I 

SUBSCRIBERS SUBSCRIBERS 

Figure 1. Network Architecture 

Links are currently multiwire cables limited 
to the same room, but coaxial cable and 
glass fiber links for longer distances are 
being investigated. Each physical link can be 
multiplexed into up to 512 virtual circuits. 
Such a computer  link can be replaced by 
several terminal connections.  Hardware 
exists to connect  four terminals in place of 
one computer  link, al though we have not 
used it yet. For  the moment ,  view the 
switch as a backplane equipped with one 
interface module board per computer  or 
trunk, or per four terminals. The address 
space of a single node is therefore  510 x 512 
virtual circuit terminations,  each ending in a 
computer  or terminal. All circuits are full 
duplex. 

The communicat ion subsystem operates as 
follows: As each subscriber computer  is 
bootstrapped, circuit 1 is automatically 
connected to Common  Control [Chesson 
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1979]. This is the signaling circuit. All the 
even-numbered  circuits (2 through 510) of a 
subscriber are owned and managed by 
Common Control. Each subscriber owns 
and manages its odd-numbered circuits (3 
through 511). Circuit 0 is for maintenance 
and circuit 1 for signaling. 

Common  Control holds the other  end of 
each signaling circuit, one circuit per 
physical link. Signaling for circuit set-up 
proceeds as follows: The calling subscriber 
allocates one of its odd-numbered channels,  
say x, and sends a message to Common  
Control asking 

connect circuit x to subscriber m 

where m is the link address (one  of the 511 
interface module addresses). Common  
Control then informs the subscriber on link 
m over its signaling circuit 1 that it has a call 
on its circuit y, which is picked from one of 
the unused even-numbered  circuits. If  
subscriber m has no more free even- 
numbered circuits, the caller would get a 
denial message on its circuit x. If  the call is 
successful, the called subscriber is expected 
to reply on its circuit in whatever protocol 
the two parties want to use. The caller 
would thus receive the expected ready 
message from the called subscriber or a busy 
message from Common  Control on its 
circuit x. 

The above scheme could suffice only for 
intra-node traffic; moreover ,  the physical 
module address must be known to the caller. 
Therefore ,  call set-up can be by name rather 
than address. Common  Control will help in 
the following way. A subscriber will allocate 
an odd-numbered circuit x and send an 
~available message" over its circuit 1 to 
Common Control: 

accepting calls f o r  name N on circuit z 

Common Control will verify uniqueness of  
name N and enter  the name into a table. 
Subsequently,  somebody may call 

connect circuit x to name N 

and Common  Control will try to allocate one 
of  N's  circuits and inform N on its circuit z 
that it has a call on the allocated channel,  
and so on as above. If  the service is 
provided on another  node,  Common  Control 

will connect  to a t runk circuit leading to the 
service-providing node. 

The important  point here is that this scheme 
allows a name server hierarchy. The level 0 
name service provided by Common  Control  
is very simple and need never  be modified 
(we restrict such "names" to one byte 
number) .  The  application builder can 
implement  an application-specific name 
server and announce  it to C o m m o n  Control  
in the above fashion. Calling parties would 
then as a first step ask to be connected to 
this name server which could use more  
elaborate schemes to map a name into an 
address. For example,  the name server  
could subsume some scheduling function. 
Imagine, e.g., a caller asking for service of  
type S. The name server could manage 
several servers of type S and return the 
address of a free server. Notice that this is 
analogous to providing a hunt  sequence in 
the te lephone system. Other  services 
modeled after  the modern te lephone system 
could be implemented,  e.g., call forwarding 
to another  node or a 'call waiting" signal 
message to allow flexible priority scheduling. 
The important  point is that such features can 
be put on top of our communicat ion 
subsystem. 

Once a circuit has been set up, we guarantee 
error-free transmission of a byte stream. 
The message protocol superimposed on the 
byte-stream transmitted through the circuit 
is entirely up to the convent ions  established 
between the communicat ing parties. I f  a 
circuit is broken,  due to one party becoming 
inoperative,  the switch discovers this fact 
and informs the live party on its signaling 
circuit. 

Having explained the functional architecture 
of our communicat ion subsystem, we shall 
now turn to a description of  the Datakit 
hardware. 

The Datakit Switch 

The Datakit switch [Fraser 1979] consists of 
one or more  interconnected backplanes 
holding interface module  cards into which 
the subscriber link cables are plugged. 
Besides signaling and power supply 

166 



connections, the backplane provides access 
to a folded serial bus, as shown 
schematically in Figure 2. 
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Figure 2. Datakit Switch 

Each module connects to both the up-link 
and the down-link of the serial bus. A 
switch module sits at the pivot between the 
two links. A clock module terminates the 
bus. It runs at 7.5 MHz and defines a 180- 
bit packet cycle of 24ps. At the start of a 
cycle, modules contend for the up-link by 
putting their address on the bus and 
monitoring the result. One of the 
contending modules always wins and the 
others, if any, defer. Thus, module 
addresses determine a priority order 3. The 
winning module uses the packet cycle to 
send a packet on the up-link to the switch 
module. As shown in Figure 3, the packets 
arriving on the up-link at the switch module, 
carry the source  address  in their header• 
The switch module does a double-index 

• / 
table look-up in ~ts circuit memory, mapping 
the source address into a destination address 
during one packet cycle. 

3. There  are several  easy ways approximate  to a more  
equitable round-robin- l ike  scheduling.  For example ,  
each access circuit could maintain a "justice" flip- 
flop, which would be set if the  last content ion cycle 
is lost and which would control whe ther  the  link is 
contending  or deferring. In case of  content ion,  its 
sett ing would be prepended to the address.  

TRANSMITTED PACKETS I SOURCE.I UP-L,NKi ~ SOURCE IIDESTINI 

ADDRESS DATA / z CIRCUIT 

RECEIVED PACKETS SWITCH MODULE 

Figure 3. Packet Address Transformation 
during Transmission 

As the packet is shifted out of the switch 
module onto the down-link of the bus, its 
source address is replaced by the destination 
address. All modules monitor the down-link 
and take in packets addressed to them. Up- 
link and down-link transmissions overlap, 
and the switch can handle about 42,000 
packets per second. 

The packet format on the Datakit bus is 
shown in Figure 4. There are 18 ten-bit 
envelopes. The tenth bit in each envelope is 
used fo r  even parity checking. Addresses 
consist of two components, which are carried 
as nine-bit values in the first two envelopes: 
a module address and a virtual circuit 
number (within the module). Since the 
module address is redundant inside the 
interface module, it is automatically 
appended to outgoing and stripped from 
incoming packets. The remaining 16 
envelopes carry data or control (signaling) 
information, with bit 9 determining whether 
it is a control or data envelope. 

[P!L~K • IPIC~Jrr~IPiC!~TA ]P!C!DATA I I  IP~:! °ATA I 
o ,  , o ,  , o , 2  9 o , 2  , o ; a  , 

BIT POSITIONS 

0 ! 2 3 17 
ENVELOPE N ~ R S  

P: PARITY BT C: CONTROL BT 

Figure 4. Packet Format on Datakit Bus 

Thus, the payload at this level is 16 eight-bit 
bytes. (Our !ink protocol uses one of these 
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bytes for error and flow control,  as explained 
later). 

The switch module recognizes specially 
formated control packets for reading or 
writing its circuit memory.  A control 
program in one of the subscriber computers  
accepts circuit set-up and take-down requests 
and manages the circuit memory.  

All Datakit modules perform certain 
maintenance functions. The clock polls each 
module  periodically for status information: 
module type and serial number,  parity 
errors, enable-disable state, etc. These 
packets are sent to a special circuit to which 
a monitor  program can be connected.  The 
current  monitor  program col lec ts  error 
statistics, and it can be used to interrogate 
and "manually" manipulate the switch state, 
an invaluable feature for debugging. 

Interface Modules  on the Swi tch  

The Datakit-computer interface module 
matches the Digital Equipment  Corporation 
(DEC) D R l l - C  parallel interface [Digital 
1978]. It provides 16 bit input and output 
registers with additional status information 
which is used to read or write 10 bit 
envelopes. The module buffers up to 16 
packets coming from the subscriber and up 
to 4 packets going to the subscriber from the 
switch. The subscriber can poll the status of 
the input (to the switch) memory  to avoid 
overflowing it. There  is no flow control at 
the output  side, as this task is entirely left to 
the subscriber. If more packets arrive before 
the subscriber has emptied the output  
buffer, output is lost. Packets with parity 
errors are discarded. 

There  exists a terminal interface board which 
contains an INTEL 8085 microprocessor and 
interfaces to four terminals via RS232C 
connectors.  Modems may be used or direct 
connect ions at 9600 baud. There  is a also a 
t runk interface board for twisted pairs or 
glass fiber cables to interconnect  Datakit 
switches. We are planning to use these 
boards later in 1981; they have been in use 
elsewhere at Bell Laboratories for some 
time. 

Switch Interface on the Hos t  

The Datakit switch has been in use at Bell 
Laboratories for connection of au tonomous  
computer  systems running under the UNIX 
operating system [Chesson 1979]. The 
computers  have been connected via the 
D R l l - C  parallel interface which is a 
program-controlled I /O device (non-DMA) .  
Its performance,  though tolerable for the 
application, was of concern to us when we 
decided to investigate the design of a 
distributed UNIX system with more tightly 
coupled computers.  Performance 
measurements  revealed a data transfer rate 
in the 10 to 20 Kbyte /sec  range with close to 
100% CPU, utilization of the host. Standard 
DMA devices like the DEC D R l l - B  could 
not be used due to too low intelligence for 
dealing with issues of packetizing, timing, 
and protocols. We had prior experience 
[Long 1981] with a DEC front-end 
processor, the K M C l l - B ,  a specialized 
UNIBUS 4 device with a 200ns instruction 
time, 8 Kbytes of program memory  and 4 
Kbytes of data memory  [Digital 1978]. Our 
intent  was to convert  the DRI 1-C program- 
controlled interface into a DMA interface 
using the KMC front-end processor. We 
went through four design versions with 
extensive measurement ,  analysis and 
modeling efforts (see below). Figure 5 
shows the hardware evolution of  our 
interface. Starting with the non-DMA 
interface (a),  we next used the KMC to 
drive the D R l l - C  interface (b) and ended 
up building a special peripheral to the KMC 
processor, called KDI, which looks like a 
DR11-C to the Datakit switch (c). 

4. UN1BUS and PDP are a trademarks of the Digital 
Equipment Corporation. 
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Figure 5. Evolution of Interface between 
Switch and Computer  

the switch interface, it communicates  via 
packets of 17 envelopes (Figure 6). Since 
the Datakit switch checks for errors and 
discards bad packets, there is no need for a 
checksum (or CRC) in the packet. 

0 I 9 0 1 2 4 5  9 0 1 2  9 0 t 2  

ALL-Z~"RO ENVELOPE IF NO DATA 

Link Protocol 

We assumed that any operating system 
would set up a virtual circuit and then ask 
for for either transmission of a block of data 
or reception in a supplied buffer. Our 
communicat ion subsystem therefore had to 
provide these capabilities. In terms of a 
protocol, that means supplying circuit set-up 
and take-down and a link protocol to handle 
error and flow control between the 
subscriber computer  and the switch-sided 
interface. 

Our measurement  and analysis of earlier 
implementations led us to the following 
insights. 

i. The receiver part of the transmission 
job tended to be substantially more 
complex and t ime-consuming than the 
transmission part. 

ii. The error behavior of the transmission 
medium is very low. (We have 
observed one lost packet in six 
months.)  

iii. The flow control (buffer management)  
ought to be of paramount  concern. 

The Network Kernel  (NK) protocol we 
designed takes these considerations into 
account; in addition the limited code 
memory  in the front-end processor was 
another  inducement  towards keeping the 
protocol simple. 

To the operating system, the NK protocol 
provides an error-free stream of  bytes. To 

Figure 6. Packet Format of NK Protocol 

Envelope 1 carries the 9-bit circuit number.  
Envelope 2 holds control information: a 3-bit 
command code and a 5-bit argument.  
Envelope 3 through 17 carry up to fifteen 8- 
bit data bytes. Absence of data is indicated 
by an all-zero envelope. We shall now 
describe the protocol algorithm. 

1 The transmitter  sends an initializing " 
command offering a window size, i.e., 
asking the receiver to reserve a certain 
number  of packet-size buffers. 

2 The receiver responds with a buffer size 
that is equal or tess than the offered one 
and resets its sequence counter.  The 
transmitter  accepts the offer. 

3.1 The transmitter  may now send a data 
packet with a sequence number  as 
command argument.  

3.2 Alternatively, the transmitter  may send a 
data packet with a sequence number  and, 
in addition, ask for a response. 

3.3 Alternatively, the transmitter  may just 
ask for a response without sending data. 

In case 3.1, the receiver accepts the data 
packet only if its counter  agrees with the 
supplied sequence counter  modulo 
window size, which is subsequently 
incremented.  Otherwise, the packet is 
flushed. There  is no reply. 

In case 3.2, the receiver acts as in case 
3.1, except that the sequence number  of  

4.1 

4.2 
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the packet is returned, if the packet is 
accepted. 

4.3 As response to case 3.3, the receiver just 
returns the sequence number of the last 
successfully received packet. 

Notice that the receiver has only one state; it 
handles two registers: window size and 
sequence count, and it responds to only 
three types of commands. All time-out 
processing is left to the transmitter, to the 
extent that the receiver even won't answer 
to repeated enquiries of type 3.3 if it is busy. 

Control Protocol 

When this protocol was used to transmit a 
circuit set-up request or any other control 
message (a one-packet message) to Common 
Control, the following situation could arise. 
The packet is successfully transmitted and 
acknowledged, but thereafter the Common 
Control computer could fail. Although the 
message was received, the required service 
will not be carried out even after the Control 
computer is restarted. We therefore varied 
the receiver in the Common Control in the 
following way. Control delays the 
acknowledgement of a control request packet 
until after it has replied to the request. Only 
then will the request packet be 
acknowledged. The caller will repeat its 
control request across control failure events. 

Host-Front-End Interface 

One of the critical design issues turned out 
to be the separation of functions between 
the host CPU and the front-end processor. 
We experimented with various 
implementations, including the one used by 
the vendor-supplied software. Our final 
implementation achieved almost a 50% 
throughput improvement. There are two 
circular buffer queues: 

i. The command queue receives 
commands from the host destined for 
the front-end. 

ii. The status queue receives status 
information from the front-end 
destined for the host. 

The head and tail pointers of the queues are 
addresses common to both host and CPU 
(control registers). Notice that the flow of 
communication guarantees that head or tail 
pointer updating is the exclusive 
responsibility of either host or front-end. 
Pointers to buffers for open read and write 
requests are kept in the front-end. 

The above actions take place when the host 
and front-end are in the operational state. 
There are three states: idle when powered 
up, initializing, which is entered under 
command ' from the host, followed by 
operational, reported to the host after 
successful initialization, which includes 
acquiring the above two circular queues. 

Performance Definitions 

We think that architects designing a local 
network or distributed system should define 
performance goals for their system and 
moreover, they ought to report performance 
measurements of their implementation. We 
know of no standards of performance and 
have tried to define some experiments that 
could be reproduced by most systems. We 
assume an idle network with two 
communicating subscribers. The 
performance measures we suggest are the 
following: 

1. Data transfer rate: measuring the 
error-free transfer of a large enough 
amount of data to achieve steady state 
and avoid boundary effects; e.g. 
bytes/see to transfer 100,000 bytes 
from main memory across the network 
to main memory. 

2. Message turn-around times: sending a 
short (say 1 byte) message and 
receiving a reply message of the same 
length; measured typically in msec. 

3. Hosi CPU use: subscriber CPU time 
per message exchange and per 
transferred byte (instruction counts 
may be more descriptive but are 
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usually harder to measure).  
Alternatively, the percentage of the 
CPU used during data transfer may be 
reported. 

4. Circuit set-up time: (this measurement  
applies only to systems using virtual 
circuits) the time it takes to establish a 
virtual circuit between two subscribers. 

It is evident that these measures depend on 
both hardware and software. We found that 
the software enters the picture in two ways. 
First there is a network component  
determined by the architecture of the 
communicat ion subsystem. Second, there is 
an operating system component  which 
depends on the structure of the user 
environment  offered within the subscriber. 
As the operating system using the 
communicat ion subsystem is changed, the 
network component  typically remains 
unaffected. We are therefore reporting all 
our measurements  at both the user level 
which includes the operating system 
overhead,  and at the kernel  level, which 
does not. 

This is significant in several ways. If an 
exis t ing operating system is augmented to 
provide communicat ion facilities, it may in 
most cases not be optimized for this 
purpose. (This was true in the two cases 
reported later). On the other hand, new 
system architectures may be designed with 
efficient and easy communicat ion in mind. 
The kernel level characterization is more 
typical for such tasks as down-line loading of 
programs or whole operating subsystems 
( remote  boot-strapping). 

Performance  Goals  

We did not know what performance goals 
would be achievable when we started our 
work. As a general objective, we took the 
file system of  a uniprocessor time-sharing 
system (UNIX) as a reference point. 

The analog of the data transfer rate across 
the network is the maximum sustained rate 
at which the file system can supply or absorb 
data. A UNIX system on a DEC PDP-11/45 
can attain about  25 Kbytes/sec  in an ad-hoc 

experiment;  the CPU utilization is then 
about 50%. This equates to 10ms of CPU 
time per 512-byte block. To get a short i tem 
from the disk (16 ms rotation),  provided 
one knows where it is, thus takes in the 
order of 20 ms. Such an action may be 
likened to a message exchange. Finally, a 
good counterpart  to the circuit set-up time is 
opening a file, which takes upwards from 40 
ms depending on the depth of the name 
search. In summary,  our initial performance 
goals can be stated as follows: 

1. a data transfer rate on the order of 25- 
50 Kbytes/sec,  

2. a host utilization of  not more than 50% 
at the above rate or an overhead of 
about 10 msec per block transfer, 

3. a message exchange rate of about 20 
m s .  

4. a circuit set-up time of about  50 ms. 

At the kernel level, we have exceeded all 
four objectives. At the user level, they have 
been reached except that we can attain 50 
Kbyte /sec  at a CPU utilization of  about 75%. 

Exper imenta l  Condi t ions  

All measurements  were made between two 
DEC PDP-11/45 computers  which are of the 
0.3 MIPS category. One computer  is 
approximately 10% slower because of core 
memory  (the other 's  is of the semiconductor  
type). Both computers  are connected via 
KMC II -B front-end processors and 
specially designed line cards (KDI)  to a 
single-backplane Datakit switch, except in 
those measurements  where we compared the 
interface to a program-controlled DR11-C or 
a KMC l l - B / D R l l - C  combination. CPU 
time was measured by using a ' soaker  ~ 
program, that runs at low priority and 
reports its CPU usage based on a 16ms cycle 
system clock [Feder 1980]. 

For more accurate t ime measurements ,  we 
ins t rumented the systems by planting write- 
operations to a (another)  DR11-C device at 
strategic points in the code. A multi-channel 
oscilloscope or logical analyzer provided a 
make-shift  hardware monitor  to graphically 
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display event  sequences of interest. 

It is perhaps worth reporting, that these 
measurements  and efforts to derive a model 
from the observations led to a series of code 
corrections and improvements .  

Measurement Results 

Figure 7 shows the in tercomputer  data 
transfer rate at the user level, i.e. a user 
process on one computer  writing data to a 
process on another  computer  who discards 
them. For comparison,  two intracomputer  
transfer measurements  have been included. 
One is the UNIX pipe, which is (on an 
otherwise idle system) an in-memory  
transfer between two processes. The other  
exper iment  writes data into a local file, i.e. 
onto an RP06 disk (3600 rpm, 809 Kbyte /s  
transfer rate). The  disk as well as the 
network curve flatten out beyond the block 
size of 512 bytes which is not only the native 
disk sector size but also the system buffer 
size used by network transfers. 

IN MEMORY PIPE 
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Figure 7. User-Level  Data Transfer  Rates 

Figure 8 shows the data rate as a function of  
the block size at the kernel level for the 
three different interface configurations of 
Figure 5. 
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Figure 8. Kernel-Level  Data Transfer  Rates 

The flattening out of the kernel-level KDI 
curve at 127 Kbyte /s  (circa 1 Mbit /s)  is due 
to the front-end being fully busy. As shown 
below, the front-end needs l l6~,~s for each 
packet with a payload of 15 bytes). 

Let us now turn to the host CPU resource 
usage. As an integral raw measurement ,  
Figure 9 shows the host CPU utilization at 
the kernel level for the experiments  of 
Figure 8. 
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The CPU utilization has to be considered in 
relation to the obtained throughput.  For 
example, one could plot % CPU usage per 
Kbytes/sec transfer, which would avoid the 
somewhat misleading intersection of curves 
in Figures 9 and 10. However,  we preferred 
to present the raw measurements.  

This raises the question of the usefulness of 
the CPU utilization measurement .  For 
purposes of design analysis, one would like a 
finer breakdown of the resources expended. 
Such a measurement  has been conducted 
and is reported below under  response time 
measurement.  Another  viewpoint is that of 
the system engineer sizing a system for an 
application. Given a block size and a 
required d~ta transfer rate, how much of the 
host CPU is taken up by communicat ion 
work? Notice that a similar question could 
be asked with regard to local I /O traffic i.e. 
file system activity. Figure 11 illustrates 
both situations. 
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Figure 9. Kernel-Level  Host CPU 
Utilization 

The CPU utilization comparing kernel-level 
transfer and user- level transfer is shown in 
Figure 10. 
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Figure 1O. User-Level Host CPU Utilization 
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Figure 11. Operating Characteristic: CPU 
Use Versus Data Traffic 

For the block size of 512 bytes, we show 
CPU utilization as a function of network 
data traffic or local disk I /O traffic. The 
latter uses the measurement  result that each 
disk block access requires an average of  10 
ms CPU time. One could use this "operating 
characteristic" for scheduling purposes, for 
example to set a limit on the amount  of 
permitted network traffic such that a certain 
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fraction of the CPU is available for local 
work. 

Response Time 

The time it takes a user process to send a 
short message to another process on a 
different computer and to receive an 
acknowledgement has been measured as 10.6 
ms. We have found that 8.8 ms of that time 
is actually spent in the UNIX file system, i.e. 
is operating system dependent. Our special 
attention has been directed at the kernel- 
level breakdown of the operating-system- 
independent component. Using the 
hardware monitoring technique explained 
above, we obtained the timing diagram 
(Gantt Chart) of Figure 12. 
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Figure 12. Timing Diagram for Short 
Message 

The Kernel-level exchange takes 1.8 ms. 
Figure 12 shows a 1 ms interval for the 
processing of one message going through the 
following components. 

a. The host CPU sending the first 
message, with five layers of software 
indicated on the left, 

b. the KMC front-end on the above CPU, 

c. the Datakit interface logic (KDI) of 
this KMC, 

d. the front-end KMC on the receiving 
CPU, 

e. the Datakit interface logic (KDI) of 
this KMC, 

f. the Datakit bus with up-link and 
down-link packet cycle. 

The sequence of events is as follows. The 
host enters the trap handler as the result of 
an interrupt (previous cycle reported 
complete) and processes the interrupt (kmc- 
int, dkk-int). It prepares the message to be 
transmitted (dk-xmit) and hands it off to the 
front-end (dk-cmd). Going from left to 
right, we see the following devices become 
active: (1~) the sending KMC, (2) its 
peripheral, (3) the Datakit bus, (4) the 
receiving KMC's peripheral, (5) the 
receiving KMC's peripheral, (6) the 
receiving KMC, (7) its peripheral again for 
the acknowledging packet, (8) the Datakit 
bus, (9) the peripheral on the first KMC 
again, (10) the first KMC, which finally at 
900ps interrupts the host to complete the 
cycle). The message processing is actually 
completed somewhat later, in dkk-int, but we 
have accounted for that time earlier .when we 
processed the previous message. 

Notice that the total cycle takes about 900jus, 
of which the host CPU is active during 
800as. Transferring a larger message would 
not increase this activity, since only pointers 
are passed at the kernel level. However, the 
activity of the front-ends, of their 
peripherals, and of the switch would 
proportionately increase. 

To put the above diagram into perspective, 
notice that it shows the interaction of a 0.3 
MIPS host with a 5 MIPS front-end. In such 
a configuration, we observe that the kernel 
level transfer rate is mainly determined by 
the speed of the front-end, whereas the host 
speed is the dominating factor for the 
responsiveness of the communication. 

Setting Up Virtual Circuits 

In order to understand the following 
measurements of setting up a virtual circuit 
between two computers, one has to consider 
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the steps involved in this activity. There are 
two UNIX processes on different computers, 
one "dialing" the other for a connection. At 
first the calling process opens a special "dial" 
file and obtains a file descriptor (the process' 
end of the circuit to be set up). This step is 
equivalent to getting dial tone on a phone 
system. Next the process issues an I/O 
control command on this file descriptor with 
the name of the called subscriber as an 
argument. Finally, the process issues a read 
command on this file descriptor and waits, 
i.e. listens. In the meantime, the local 
driver has allocated a free (odd-numbered) 
circuit to the file descriptor and sent a 
message over the signaling circuit (1) to 
Common Control that contains the newly 
allocated circuit and the name (or address, as 
explained above) of the called party. The 
called party has been listening for signal 
messages on its circuit 1, and is informed of 
the call as explained above. Finally, the 
called process issues an open command with 
the circuit number taken from the signaling 
call. This entire sequence has been timed 
for three different computers in the role of 
Common Control. Figure 13 shows the 
results. 

Common Control 
Computer 

LSI- 11 

PDP- 11/23 

PDP- 11/45 

Elapsed 
Time 

100 ms 

62 ms 

50 ms 

Figure 13. Circuit Set-Up Times 

Again we have noticed that over 50% of the 
time is spent in the UNIX operating system. 

actually shared with a monitor and 
maintenance program, see above). During 
15 months of operation, we have not had ~[ 
single hardware failure of this computer, but 
many software failures. 

The highlights of our Common Control are: 

i. Warmbooting: During a Common 
Control failure, the existing circuits 
remain unaffected. During the failure, 
circuits cannot be set up or taken 
down. Rebooting Common Control 
preserves the circuits existing before 
the failure. 

ii. Control Protocol: As explained above, 
pending control requests from 
subscribers survive Common Control 
failures; they will automatically be 
reissued after a restart. 

iii. Hot Stand-by: A spare Control 
computer acting as a stand-by monitors 
the active Common Control, which has 
to send periodic sanity messages. 
When the stand-by notices that the 
active Common Control is failing, it 
takes over the Common Control 
function by rerouting all circuits from 
the failing to the stand-by computer. 
The whole process takes one minute; 
actually, the switchover is 
accomplished in 2 seconds, but the 
new Common Control has to make 
sure that it knows about all active 
interface modules, even those that may 
temporarily or inadvertently have no 
terminating circuit. To that end, 
Common Control has to wait one or 
two complete maintenance polling 
cycles (the clocks poll every module 
for status periodically). 

Common Control Reliability 

The Common Control of the switch 
represents a single point of failure in the 
node, which is an undesirable property. We 
have taken special efforts to minimize the 
impact, of such a failure. The program runs 
on a dedicated DEC LSI-II/02 computer 
with no secondary storage (the computer is 

Connection of UNIX Systems 

In our laboratory, we are operating a 
network of eight computers: DEC PDP- 
11/23's, PDP-11/45's, a PDP-11/70, and a 
VAX 11/780. The last two provide time- 
sharing service; the others are used for 
special development. All run under the 
UNIX Version 7 operating system, which is 
unchanged except for the addition of drivers 
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to interconnect  the computers through the 
Datakit switch. A separate DEC LSI-11/02 
computer  holds the Common Control and 
Network Monitor programs (not  under  a 
UNIX system). We shall now explain how 
our communicat ion subsystem is used for 
this purpose. 

After  each UNIX system has been booted, a 
network server process is started in each 
computer  as part of the initialization 
procedure. Each server opens circuit 1 on 
the network link and reports to Common  
Control that it is willing to accept service of 
type n on its circuit 3. N is a different 
number  for each computer .  The network 
server stays alive permanently waiting for 
service requests. At the higher protocol 
level, it understands two commands;  dcon 
for direct connection,  and rexec for remote  
execution. 

When a user on any of the UNIX systems 
types the command 

dcon system-name 

where system-name is the name of a remote  
system in the network (ours have have 
bird's names like Eagle or Owl), the user 's 
terminal appears to be connected to the 
remote  system until a log-out command is 
given, which returns the session to the local 
system. 

Alternatively, a user may type 

rexec system-name command-line 

and the named command-line only will be 
executed on the remote  system, with the 
network server acting as the remote  user. 
Eventual output from the command ' s  
execution will be returned to the user. 

Having presented the functionality of remote  
connection and execution,  we need to 
digress into some of the UNIX architecture 
to explain our implementation.  The UNIX 
process is exceptionally well suited to exploit 
the virtual circuit concept. All process I /O is 
modeled after the file I /O where a file is an 
unformated stream of  bytes. This includes 
terminal and device I/O. For a process (i.e. 
command)  to communicate  with the outside 
world, it usually opens a standard input file 
and a standard output file. The  command  
language interpreter known as the shell 

allows great freedom in redirecting these 
streams [Ritchie 1974]. When a process is 
created, it inherits all the open files of its 
parent. Normally, the shell is the parent of 
executing commands.  

The dcon command acquires a local odd- 
numbered circuit and issues a service request  
on circuit 1 to Common  Control,  who 
forwards it to the named remote  network 
server. The server is informed via its circuit 
3 that it has a service request  on a newly- 
allocated even-numbered  circuit. The  server 
converses with dcon across this circuit to 
identify the remote  user and then logs this 
user into the remote  system (accounting and 
current-user  file, etc.). The server then 
spawns a .~hell which is connected with its 
standard input and output  to the newly 
allocated circuit. The  dcon command takes 
the user 's  terminal input processing (i.e. line 
editing) and forwards the input to the 
remote  shell which in turn automatically 
redirects all the standard output back to 
dcon. 

The remote  execution is much simpler. 
When the rexec command is issued, similar 
action as above is taken except that the 
server receives a whole command  line 
instead of  the dcon request. The  server 
simply executes the command  and returns 
the resulting output. 

Besides the network servers in each system, 
one system is initialized with a boot server,  
which announces  its service to Common  
Control as of type N-----0. We have a ROM 
bootstrap program on the PDP- I1 /23  
computers  which asks for service type 0 and 
understands the higher level bootstrap 
protocol managed by the boot server. 

A Distributed UNIX System 

We have also built a distributed operating 
system based on UNIX which uses our  
communicat ion subsystem. Figure 14 shows 
the configuration. 
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Figure 14. Distributed UNIX System 

Rather than having a network of 
autonomous  UNIX systems as described 
above, the S /F-UNIX system combines 
computers which receive file service (top- 
row) and file servers (bot tom row) in a 
single system. Users are logged into the top 
row computers  which run under  the S-UNIX 
operating subsystem. The file servers in the 
bottom row run under  the E-UNIX operating 
subsystem and together present a global file 
system view, i.e. a singly-rooted tree as the 
file name space (Figure 15). 
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Figure 15. File Name Space of a 2/2 System 

The name space is constructed at 
initialization t ime when each S-UNIX 
subsystem issues a "mount  file server" 
request to each of the F-UNIX subsystems. 

The details of the architecture and 
implementat ion are reported elsewhere 
[Luderer  1981]. We will restrict ourselves 
here to issues of using the communicat ion 
subsystem. 

In our first implementat ion,  we established a 
single permanent  virtual circuit between 
each S-UNIX subsystem and each F-UNIX 
subsystem. In the file servers, the endpoint  
of each circuit was served by a file server 
process. Thus,  each file server computer  
had as many server processes as there were 
S-UNIX subsystems having mounted its file 
space. We exper imented with various ways 
of  multitasking file service requests, on both 
the S-UNIX and the F-UNIX side, until we 
found that the circuit facility itself could 
help with this problem. 

In the current  implementat ion,  the S-UNIX 
side sets up several circuits, each with a file 
server process on the F-UNIX side, which 
offers us a cheap way of multitasking in the 
file server. 

One yet unattainable objective is to dedicate 
a virtual circuit to each open remote  file. 
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We are prevented from currently doing this 
since our interfaces do not support a 
sufficiently large number of virtual circuits, 
New hardware interfaces would be required, 
and we would also like to see an operating 
system architecture that supports more 
flexible memory management than the 
current PDP-11 family. With the era of 
VLSI upon us, we are looking for 
opportunities to identify functions that could 
be implemented in hardware. An efficient 
interface for a large number of circuits that 
"demultiplexes" incoming data right into user 
process space would be our objective. 

Conc lus ions  

We have built a data communication system 
around a virtual circuit switch. We have 
used this system to interconnect a local 
network of autonomous systems and also to 
form the foundation for a distributed system 
which relies on fast file transfer. We believe 
that our contributions lie in three areas: 
First, the achieved performance of the host- 
to-switch interface has been increased and 
knowledge about the operation of this 
interface has been added. Second, we have 
shown a number of steps that can improve 
the reliability and recoverability of a central 
switch. Third, we have shown how virtual 
circuit switching service can be used to 
connect existing systems or to provide a 
foundation for a distributed system. 
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