
A Virtual Circuit Switch as the Bas i s for Distr ibuted S y s t e m s

G• W. R. Luderer
H. Che

W. T. Marshall

Bell Laboratories
Murray 'Hill, New Jersey 07974

ABSTRACT
• , " 9

A commumcatlon system is presented which
consists of a switch (Datakit [Fraser 1979])
with associated control and interface
hardware and software• The switch offers
virtual circuit service which is internally
implemented through packet switching. The
users of the communication system are
operating systems; using our communication
system, we have implemented a network of
U N I X TM systems and a new distributed
operating system derived from UNIX. Our
work concentrated on the performance of
the subscriber-switch interface; on the
reliability and recoverability of the switching
service; and on the exploitation of the circuit
concept for operating system design.

Introduction

The last years have seen many research
efforts in local area networks and distributed
systems (see e.g. [Thurber 1979] for an
overview of current work; or [Shoch 1980]
for an annotated bibliography.) Most
software architects building such a system
arrive at the conclusion that some message
discipline (i. e. a higher level protocol) has
to be defined. This emphasis on message
exchange has, in many cases, led to the
conclusion that the underlying data transport
mechanism better be of the same kind, that
is datagram service, sometimes also called
packet switching in this context. We follow
Pouzin's distinction between packet
switching as a service offered to the user and
packet switching as a transport mechanism
employed at lower protocol levels [Pouzin
1977], [Pouzin 1978].

Our observation has been, that for
applications we are familiar with, the
message traffic is highly localized, and thus
we should be able to carry it over virtual

circuits• For example, a process in the
U N I X I time-sharing system communicates
with the outside world (files, peripherals,
terminals or "pipes* to other processes) via
an abstraction called ~file descriptor ~, which
handles an unformated byte stream. We
think that the main objection to circuit
switching as a transport mechanism stems
from the observation that data traffic is
much more bursty than voice traffic, and
hence setting up a circuit implies reserving
bandwidth in the communication medium,
much of which will not be used most of the
time. Fortunately, we had access to a data
switch called Datakit [Fraser 1979] which
provides virtual circuit switching service but
implements the data transport internally by
way of packet switching, i.e. no bandwidth is
reserved, rather a contention scheme
effectively offers dynamic bandwidth
allocation. This switch allowed us to explore
the development of network operating
systems based on virtual circuit
communication.

The Datakit switch leads to a star topology
for the node. Although most other local
area network research concerns more
distributed topologies using busses, loops or
rings, the virtues of a star topology have
been pointed out in one [Closs 1980] of the
two star proposals known to us (the other is
[Rawson 1978]): the network interfaces are
simpler, and the maintenance and fault
isolation are easier•

Our study of other research efforts revealed
further, that, no matter how high the
bandwidth of the interconnection (including
prior Datakit based architectures [Chesson
1979]), the computer interface to the switch
or network was always the performance-
limiting factor. It is not uncommon to

1. UNIX is a tro.demark of Bell Laboratories.

CH1694-9/81/0000/0164500.75 © 1981 IEEE 154

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1013879.802670&domain=pdf&date_stamp=1981-10-01

observe maximum data transfer rates that
are two orders of magnitude lower than the
idle network could carry. We therefore
decided to concentrate our research effort on
the network interface, and we were willing to
forego, if necessary, the use of standardized
protocols. Moreover , we set out to
investigate the use of a fast front-end
processor as the network interface.

The Datakit switch uses a control computer
for circuit management. . Our second
concern was to make this control as simple
and reliable as possible and to deal with the
problem of recovery from control failure.

The communicat ion subsystem we built has
been used in two different environments .
First, we have been using it since early 1981
to interconnect a network of eight
conventional au tonomous UNIX systems in
our laboratory 2. Second, we built a
distributed system with two kinds of
specialized computers. These are computers
with the conventional UNIX process
envi ronment running under the S-UNIX
subsystem which obtain fast file service from
computers running under the F-UNIX
subsystem.

Our current research has several near-term
goals: first, to connect terminals and
dedicated work-stations to the network,
second to ease connect ion of network
components built by others including
connection to other networks, and third to
further improve the network interface by
exploiting the virtual circuit concepts.

In the remainder of this paper, we shall first
describe our architecture from a functional

• viewpoint. Then follows a description of the
Datakit switch hardware. Our switch
interface including the data and control
protocol is next, and that is followed by a
report on performance measurements and
analysis. Finally, we present two operating
system environments implemented on top of
our communicat ion subsystem and conclude

2. For a report on a network of UNIX sys tems us ing
the same interface hardware as we did, but direct
connect ions in place of a switch see [Croft 1980].

with a perspective on future extensions.

Architecture

A high level view of our architecture is
shown in Figure 1. It shows two nodes, A
and B, connected by a trunk. Although we
have so far restricted ourselves to a single
node, Datakit-based systems with glass fiber
trunks between nodes are in operation
elsewhere at Bell Laboratories.

A node has a star topology. The switch
control computer and up to 510 subscriber
computers can be connected to the switch
via dedicated subscriber links.

II, CONTROL [~ U CONTROL[~

[SWITCH ~ ~ ' ~ SWITCH I

SUBSCRIBERS SUBSCRIBERS

Figure 1. Network Architecture

Links are currently multiwire cables limited
to the same room, but coaxial cable and
glass fiber links for longer distances are
being investigated. Each physical link can be
multiplexed into up to 512 virtual circuits.
Such a computer link can be replaced by
several terminal connections. Hardware
exists to connect four terminals in place of
one computer link, al though we have not
used it yet. For the moment , view the
switch as a backplane equipped with one
interface module board per computer or
trunk, or per four terminals. The address
space of a single node is therefore 510 x 512
virtual circuit terminations, each ending in a
computer or terminal. All circuits are full
duplex.

The communicat ion subsystem operates as
follows: As each subscriber computer is
bootstrapped, circuit 1 is automatically
connected to Common Control [Chesson

165

1979]. This is the signaling circuit. All the
even-numbered circuits (2 through 510) of a
subscriber are owned and managed by
Common Control. Each subscriber owns
and manages its odd-numbered circuits (3
through 511). Circuit 0 is for maintenance
and circuit 1 for signaling.

Common Control holds the other end of
each signaling circuit, one circuit per
physical link. Signaling for circuit set-up
proceeds as follows: The calling subscriber
allocates one of its odd-numbered channels,
say x, and sends a message to Common
Control asking

connect circuit x to subscriber m

where m is the link address (one of the 511
interface module addresses). Common
Control then informs the subscriber on link
m over its signaling circuit 1 that it has a call
on its circuit y, which is picked from one of
the unused even-numbered circuits. If
subscriber m has no more free even-
numbered circuits, the caller would get a
denial message on its circuit x. If the call is
successful, the called subscriber is expected
to reply on its circuit in whatever protocol
the two parties want to use. The caller
would thus receive the expected ready
message from the called subscriber or a busy
message from Common Control on its
circuit x.

The above scheme could suffice only for
intra-node traffic; moreover , the physical
module address must be known to the caller.
Therefore , call set-up can be by name rather
than address. Common Control will help in
the following way. A subscriber will allocate
an odd-numbered circuit x and send an
~available message" over its circuit 1 to
Common Control:

accepting calls f o r name N on circuit z

Common Control will verify uniqueness of
name N and enter the name into a table.
Subsequently, somebody may call

connect circuit x to name N

and Common Control will try to allocate one
of N's circuits and inform N on its circuit z
that it has a call on the allocated channel,
and so on as above. If the service is
provided on another node, Common Control

will connect to a t runk circuit leading to the
service-providing node.

The important point here is that this scheme
allows a name server hierarchy. The level 0
name service provided by Common Control
is very simple and need never be modified
(we restrict such "names" to one byte
number) . The application builder can
implement an application-specific name
server and announce it to C o m m o n Control
in the above fashion. Calling parties would
then as a first step ask to be connected to
this name server which could use more
elaborate schemes to map a name into an
address. For example, the name server
could subsume some scheduling function.
Imagine, e.g., a caller asking for service of
type S. The name server could manage
several servers of type S and return the
address of a free server. Notice that this is
analogous to providing a hunt sequence in
the te lephone system. Other services
modeled after the modern te lephone system
could be implemented, e.g., call forwarding
to another node or a 'call waiting" signal
message to allow flexible priority scheduling.
The important point is that such features can
be put on top of our communicat ion
subsystem.

Once a circuit has been set up, we guarantee
error-free transmission of a byte stream.
The message protocol superimposed on the
byte-stream transmitted through the circuit
is entirely up to the convent ions established
between the communicat ing parties. I f a
circuit is broken, due to one party becoming
inoperative, the switch discovers this fact
and informs the live party on its signaling
circuit.

Having explained the functional architecture
of our communicat ion subsystem, we shall
now turn to a description of the Datakit
hardware.

The Datakit Switch

The Datakit switch [Fraser 1979] consists of
one or more interconnected backplanes
holding interface module cards into which
the subscriber link cables are plugged.
Besides signaling and power supply

166

connections, the backplane provides access
to a folded serial bus, as shown
schematically in Figure 2.

) 1 510 q 5 t t
UP LINK

e e e

DOWN LINK

MULTIPLEXED SUBSCRIBER LINKS

TO COMPUTERS AND
TERMINALS

S

w
I
T

H

Figure 2. Datakit Switch

Each module connects to both the up-link
and the down-link of the serial bus. A
switch module sits at the pivot between the
two links. A clock module terminates the
bus. It runs at 7.5 MHz and defines a 180-
bit packet cycle of 24ps. At the start of a
cycle, modules contend for the up-link by
putting their address on the bus and
monitoring the result. One of the
contending modules always wins and the
others, if any, defer. Thus, module
addresses determine a priority order 3. The
winning module uses the packet cycle to
send a packet on the up-link to the switch
module. As shown in Figure 3, the packets
arriving on the up-link at the switch module,
carry the source address in their header•
The switch module does a double-index

• /
table look-up in ~ts circuit memory, mapping
the source address into a destination address
during one packet cycle.

3. There are several easy ways approximate to a more
equitable round-robin- l ike scheduling. For example ,
each access circuit could maintain a "justice" flip-
flop, which would be set if the last content ion cycle
is lost and which would control whe ther the link is
contending or deferring. In case of content ion, its
sett ing would be prepended to the address.

TRANSMITTED PACKETS I SOURCE.I UP-L,NKi ~ SOURCE IIDESTINI

ADDRESS DATA / z CIRCUIT

RECEIVED PACKETS SWITCH MODULE

Figure 3. Packet Address Transformation
during Transmission

As the packet is shifted out of the switch
module onto the down-link of the bus, its
source address is replaced by the destination
address. All modules monitor the down-link
and take in packets addressed to them. Up-
link and down-link transmissions overlap,
and the switch can handle about 42,000
packets per second.

The packet format on the Datakit bus is
shown in Figure 4. There are 18 ten-bit
envelopes. The tenth bit in each envelope is
used fo r even parity checking. Addresses
consist of two components, which are carried
as nine-bit values in the first two envelopes:
a module address and a virtual circuit
number (within the module). Since the
module address is redundant inside the
interface module, it is automatically
appended to outgoing and stripped from
incoming packets. The remaining 16
envelopes carry data or control (signaling)
information, with bit 9 determining whether
it is a control or data envelope.

[P!L~K • IPIC~Jrr~IPiC!~TA]P!C!DATA I I IP~:! °ATA I
o , , o , , o , 2 9 o , 2 , o ; a ,

BIT POSITIONS

0 ! 2 3 17
ENVELOPE N ~ R S

P: PARITY BT C: CONTROL BT

Figure 4. Packet Format on Datakit Bus

Thus, the payload at this level is 16 eight-bit
bytes. (Our !ink protocol uses one of these

167

bytes for error and flow control, as explained
later).

The switch module recognizes specially
formated control packets for reading or
writing its circuit memory. A control
program in one of the subscriber computers
accepts circuit set-up and take-down requests
and manages the circuit memory.

All Datakit modules perform certain
maintenance functions. The clock polls each
module periodically for status information:
module type and serial number, parity
errors, enable-disable state, etc. These
packets are sent to a special circuit to which
a monitor program can be connected. The
current monitor program col lec ts error
statistics, and it can be used to interrogate
and "manually" manipulate the switch state,
an invaluable feature for debugging.

Interface Modules on the Swi tch

The Datakit-computer interface module
matches the Digital Equipment Corporation
(DEC) D R l l - C parallel interface [Digital
1978]. It provides 16 bit input and output
registers with additional status information
which is used to read or write 10 bit
envelopes. The module buffers up to 16
packets coming from the subscriber and up
to 4 packets going to the subscriber from the
switch. The subscriber can poll the status of
the input (to the switch) memory to avoid
overflowing it. There is no flow control at
the output side, as this task is entirely left to
the subscriber. If more packets arrive before
the subscriber has emptied the output
buffer, output is lost. Packets with parity
errors are discarded.

There exists a terminal interface board which
contains an INTEL 8085 microprocessor and
interfaces to four terminals via RS232C
connectors. Modems may be used or direct
connect ions at 9600 baud. There is a also a
t runk interface board for twisted pairs or
glass fiber cables to interconnect Datakit
switches. We are planning to use these
boards later in 1981; they have been in use
elsewhere at Bell Laboratories for some
time.

Switch Interface on the Hos t

The Datakit switch has been in use at Bell
Laboratories for connection of au tonomous
computer systems running under the UNIX
operating system [Chesson 1979]. The
computers have been connected via the
D R l l - C parallel interface which is a
program-controlled I /O device (non-DMA) .
Its performance, though tolerable for the
application, was of concern to us when we
decided to investigate the design of a
distributed UNIX system with more tightly
coupled computers. Performance
measurements revealed a data transfer rate
in the 10 to 20 Kbyte /sec range with close to
100% CPU, utilization of the host. Standard
DMA devices like the DEC D R l l - B could
not be used due to too low intelligence for
dealing with issues of packetizing, timing,
and protocols. We had prior experience
[Long 1981] with a DEC front-end
processor, the K M C l l - B , a specialized
UNIBUS 4 device with a 200ns instruction
time, 8 Kbytes of program memory and 4
Kbytes of data memory [Digital 1978]. Our
intent was to convert the DRI 1-C program-
controlled interface into a DMA interface
using the KMC front-end processor. We
went through four design versions with
extensive measurement , analysis and
modeling efforts (see below). Figure 5
shows the hardware evolution of our
interface. Starting with the non-DMA
interface (a), we next used the KMC to
drive the D R l l - C interface (b) and ended
up building a special peripheral to the KMC
processor, called KDI, which looks like a
DR11-C to the Datakit switch (c).

4. UN1BUS and PDP are a trademarks of the Digital
Equipment Corporation.

168

(o1

M£MORY BUS (UNIBU~

/ 1 "--.

TO SWITCH INTERFACE MOOUt,.ES

Figure 5. Evolution of Interface between
Switch and Computer

the switch interface, it communicates via
packets of 17 envelopes (Figure 6). Since
the Datakit switch checks for errors and
discards bad packets, there is no need for a
checksum (or CRC) in the packet.

0 I 9 0 1 2 4 5 9 0 1 2 9 0 t 2

ALL-Z~"RO ENVELOPE IF NO DATA

Link Protocol

We assumed that any operating system
would set up a virtual circuit and then ask
for for either transmission of a block of data
or reception in a supplied buffer. Our
communicat ion subsystem therefore had to
provide these capabilities. In terms of a
protocol, that means supplying circuit set-up
and take-down and a link protocol to handle
error and flow control between the
subscriber computer and the switch-sided
interface.

Our measurement and analysis of earlier
implementations led us to the following
insights.

i. The receiver part of the transmission
job tended to be substantially more
complex and t ime-consuming than the
transmission part.

ii. The error behavior of the transmission
medium is very low. (We have
observed one lost packet in six
months.)

iii. The flow control (buffer management)
ought to be of paramount concern.

The Network Kernel (NK) protocol we
designed takes these considerations into
account; in addition the limited code
memory in the front-end processor was
another inducement towards keeping the
protocol simple.

To the operating system, the NK protocol
provides an error-free stream of bytes. To

Figure 6. Packet Format of NK Protocol

Envelope 1 carries the 9-bit circuit number.
Envelope 2 holds control information: a 3-bit
command code and a 5-bit argument.
Envelope 3 through 17 carry up to fifteen 8-
bit data bytes. Absence of data is indicated
by an all-zero envelope. We shall now
describe the protocol algorithm.

1 The transmitter sends an initializing "
command offering a window size, i.e.,
asking the receiver to reserve a certain
number of packet-size buffers.

2 The receiver responds with a buffer size
that is equal or tess than the offered one
and resets its sequence counter. The
transmitter accepts the offer.

3.1 The transmitter may now send a data
packet with a sequence number as
command argument.

3.2 Alternatively, the transmitter may send a
data packet with a sequence number and,
in addition, ask for a response.

3.3 Alternatively, the transmitter may just
ask for a response without sending data.

In case 3.1, the receiver accepts the data
packet only if its counter agrees with the
supplied sequence counter modulo
window size, which is subsequently
incremented. Otherwise, the packet is
flushed. There is no reply.

In case 3.2, the receiver acts as in case
3.1, except that the sequence number of

4.1

4.2

169

the packet is returned, if the packet is
accepted.

4.3 As response to case 3.3, the receiver just
returns the sequence number of the last
successfully received packet.

Notice that the receiver has only one state; it
handles two registers: window size and
sequence count, and it responds to only
three types of commands. All time-out
processing is left to the transmitter, to the
extent that the receiver even won't answer
to repeated enquiries of type 3.3 if it is busy.

Control Protocol

When this protocol was used to transmit a
circuit set-up request or any other control
message (a one-packet message) to Common
Control, the following situation could arise.
The packet is successfully transmitted and
acknowledged, but thereafter the Common
Control computer could fail. Although the
message was received, the required service
will not be carried out even after the Control
computer is restarted. We therefore varied
the receiver in the Common Control in the
following way. Control delays the
acknowledgement of a control request packet
until after it has replied to the request. Only
then will the request packet be
acknowledged. The caller will repeat its
control request across control failure events.

Host-Front-End Interface

One of the critical design issues turned out
to be the separation of functions between
the host CPU and the front-end processor.
We experimented with various
implementations, including the one used by
the vendor-supplied software. Our final
implementation achieved almost a 50%
throughput improvement. There are two
circular buffer queues:

i. The command queue receives
commands from the host destined for
the front-end.

ii. The status queue receives status
information from the front-end
destined for the host.

The head and tail pointers of the queues are
addresses common to both host and CPU
(control registers). Notice that the flow of
communication guarantees that head or tail
pointer updating is the exclusive
responsibility of either host or front-end.
Pointers to buffers for open read and write
requests are kept in the front-end.

The above actions take place when the host
and front-end are in the operational state.
There are three states: idle when powered
up, initializing, which is entered under
command ' from the host, followed by
operational, reported to the host after
successful initialization, which includes
acquiring the above two circular queues.

Performance Definitions

We think that architects designing a local
network or distributed system should define
performance goals for their system and
moreover, they ought to report performance
measurements of their implementation. We
know of no standards of performance and
have tried to define some experiments that
could be reproduced by most systems. We
assume an idle network with two
communicating subscribers. The
performance measures we suggest are the
following:

1. Data transfer rate: measuring the
error-free transfer of a large enough
amount of data to achieve steady state
and avoid boundary effects; e.g.
bytes/see to transfer 100,000 bytes
from main memory across the network
to main memory.

2. Message turn-around times: sending a
short (say 1 byte) message and
receiving a reply message of the same
length; measured typically in msec.

3. Hosi CPU use: subscriber CPU time
per message exchange and per
transferred byte (instruction counts
may be more descriptive but are

170

usually harder to measure).
Alternatively, the percentage of the
CPU used during data transfer may be
reported.

4. Circuit set-up time: (this measurement
applies only to systems using virtual
circuits) the time it takes to establish a
virtual circuit between two subscribers.

It is evident that these measures depend on
both hardware and software. We found that
the software enters the picture in two ways.
First there is a network component
determined by the architecture of the
communicat ion subsystem. Second, there is
an operating system component which
depends on the structure of the user
environment offered within the subscriber.
As the operating system using the
communicat ion subsystem is changed, the
network component typically remains
unaffected. We are therefore reporting all
our measurements at both the user level
which includes the operating system
overhead, and at the kernel level, which
does not.

This is significant in several ways. If an
exis t ing operating system is augmented to
provide communicat ion facilities, it may in
most cases not be optimized for this
purpose. (This was true in the two cases
reported later). On the other hand, new
system architectures may be designed with
efficient and easy communicat ion in mind.
The kernel level characterization is more
typical for such tasks as down-line loading of
programs or whole operating subsystems
(remote boot-strapping).

Performance Goals

We did not know what performance goals
would be achievable when we started our
work. As a general objective, we took the
file system of a uniprocessor time-sharing
system (UNIX) as a reference point.

The analog of the data transfer rate across
the network is the maximum sustained rate
at which the file system can supply or absorb
data. A UNIX system on a DEC PDP-11/45
can attain about 25 Kbytes/sec in an ad-hoc

experiment; the CPU utilization is then
about 50%. This equates to 10ms of CPU
time per 512-byte block. To get a short i tem
from the disk (16 ms rotation), provided
one knows where it is, thus takes in the
order of 20 ms. Such an action may be
likened to a message exchange. Finally, a
good counterpart to the circuit set-up time is
opening a file, which takes upwards from 40
ms depending on the depth of the name
search. In summary, our initial performance
goals can be stated as follows:

1. a data transfer rate on the order of 25-
50 Kbytes/sec,

2. a host utilization of not more than 50%
at the above rate or an overhead of
about 10 msec per block transfer,

3. a message exchange rate of about 20
m s .

4. a circuit set-up time of about 50 ms.

At the kernel level, we have exceeded all
four objectives. At the user level, they have
been reached except that we can attain 50
Kbyte /sec at a CPU utilization of about 75%.

Exper imenta l Condi t ions

All measurements were made between two
DEC PDP-11/45 computers which are of the
0.3 MIPS category. One computer is
approximately 10% slower because of core
memory (the other 's is of the semiconductor
type). Both computers are connected via
KMC II -B front-end processors and
specially designed line cards (KDI) to a
single-backplane Datakit switch, except in
those measurements where we compared the
interface to a program-controlled DR11-C or
a KMC l l - B / D R l l - C combination. CPU
time was measured by using a ' soaker ~
program, that runs at low priority and
reports its CPU usage based on a 16ms cycle
system clock [Feder 1980].

For more accurate t ime measurements , we
ins t rumented the systems by planting write-
operations to a (another) DR11-C device at
strategic points in the code. A multi-channel
oscilloscope or logical analyzer provided a
make-shift hardware monitor to graphically

171

display event sequences of interest.

It is perhaps worth reporting, that these
measurements and efforts to derive a model
from the observations led to a series of code
corrections and improvements .

Measurement Results

Figure 7 shows the in tercomputer data
transfer rate at the user level, i.e. a user
process on one computer writing data to a
process on another computer who discards
them. For comparison, two intracomputer
transfer measurements have been included.
One is the UNIX pipe, which is (on an
otherwise idle system) an in-memory
transfer between two processes. The other
exper iment writes data into a local file, i.e.
onto an RP06 disk (3600 rpm, 809 Kbyte /s
transfer rate). The disk as well as the
network curve flatten out beyond the block
size of 512 bytes which is not only the native
disk sector size but also the system buffer
size used by network transfers.

IN MEMORY PIPE

60 [K BY TE/se¢] / 5"r 1KB/$
~ j ~ NETWORK

, , ~ 48 0 KB/$
50 M

!°
$ ~ 3o

IC

4 16 64 256 t024 2048

BLOC,, S,ZE [BYTES]

Figure 7. User-Level Data Transfer Rates

Figure 8 shows the data rate as a function of
the block size at the kernel level for the
three different interface configurations of
Figure 5.

140

120

100

t . 8C

n,.

(n
z 6c

40

20

K BYTE/SeC]

KMC/DRII-C

DRII-C

8 6 , 5,z 4o96 32,~=

BLOCK s,zE IBY'rEs]

Figure 8. Kernel-Level Data Transfer Rates

The flattening out of the kernel-level KDI
curve at 127 Kbyte /s (circa 1 Mbit /s) is due
to the front-end being fully busy. As shown
below, the front-end needs l l6~,~s for each
packet with a payload of 15 bytes).

Let us now turn to the host CPU resource
usage. As an integral raw measurement ,
Figure 9 shows the host CPU utilization at
the kernel level for the experiments of
Figure 8.

172

e o

~o
N

[',.]

KMC-KDI

KMC -DR'f1 -C

O ~
t B 64 512 4096 32,768

BLOCK SIZE [BYTES]

The CPU utilization has to be considered in
relation to the obtained throughput. For
example, one could plot % CPU usage per
Kbytes/sec transfer, which would avoid the
somewhat misleading intersection of curves
in Figures 9 and 10. However, we preferred
to present the raw measurements.

This raises the question of the usefulness of
the CPU utilization measurement . For
purposes of design analysis, one would like a
finer breakdown of the resources expended.
Such a measurement has been conducted
and is reported below under response time
measurement. Another viewpoint is that of
the system engineer sizing a system for an
application. Given a block size and a
required d~ta transfer rate, how much of the
host CPU is taken up by communicat ion
work? Notice that a similar question could
be asked with regard to local I /O traffic i.e.
file system activity. Figure 11 illustrates
both situations.

100

8O
Z
O
I -

< 6o
Q
. J

40
n
¢ J

p -

Figure 9. Kernel-Level Host CPU
Utilization

The CPU utilization comparing kernel-level
transfer and user- level transfer is shown in
Figure 10.

0 1 I I I I J
4 16 64 256 1024 4 0 9 6

BLOCK SIZE [BYTES]

Figure 1O. User-Level Host CPU Utilization

100

z
o 80
r-

N

u 4 0

0
Z

20

[%] 512 BYTES/BLOCK

I I I I I I
tO 20 30 4 0 50 60

DATA TRANSFER RATE [KBYTE/sec]

Figure 11. Operating Characteristic: CPU
Use Versus Data Traffic

For the block size of 512 bytes, we show
CPU utilization as a function of network
data traffic or local disk I /O traffic. The
latter uses the measurement result that each
disk block access requires an average of 10
ms CPU time. One could use this "operating
characteristic" for scheduling purposes, for
example to set a limit on the amount of
permitted network traffic such that a certain

173

fraction of the CPU is available for local
work.

Response Time

The time it takes a user process to send a
short message to another process on a
different computer and to receive an
acknowledgement has been measured as 10.6
ms. We have found that 8.8 ms of that time
is actually spent in the UNIX file system, i.e.
is operating system dependent. Our special
attention has been directed at the kernel-
level breakdown of the operating-system-
independent component. Using the
hardware monitoring technique explained
above, we obtained the timing diagram
(Gantt Chart) of Figure 12.

5O 80

dkkin__t_ [,] t45 45

d_ ~_~_ _~_d_ V ~
C ~
XMIT-KMC

I ~ XMIT-DK INTERFACE
RCV-KMC

L I RCV-DK INTERFACE
DK BUS

D

IO0 80

Ca5

[] []
I I I I I I I I t I I
O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 t .0

m s

Figure 12. Timing Diagram for Short
Message

The Kernel-level exchange takes 1.8 ms.
Figure 12 shows a 1 ms interval for the
processing of one message going through the
following components.

a. The host CPU sending the first
message, with five layers of software
indicated on the left,

b. the KMC front-end on the above CPU,

c. the Datakit interface logic (KDI) of
this KMC,

d. the front-end KMC on the receiving
CPU,

e. the Datakit interface logic (KDI) of
this KMC,

f. the Datakit bus with up-link and
down-link packet cycle.

The sequence of events is as follows. The
host enters the trap handler as the result of
an interrupt (previous cycle reported
complete) and processes the interrupt (kmc-
int, dkk-int). It prepares the message to be
transmitted (dk-xmit) and hands it off to the
front-end (dk-cmd). Going from left to
right, we see the following devices become
active: (1~) the sending KMC, (2) its
peripheral, (3) the Datakit bus, (4) the
receiving KMC's peripheral, (5) the
receiving KMC's peripheral, (6) the
receiving KMC, (7) its peripheral again for
the acknowledging packet, (8) the Datakit
bus, (9) the peripheral on the first KMC
again, (10) the first KMC, which finally at
900ps interrupts the host to complete the
cycle). The message processing is actually
completed somewhat later, in dkk-int, but we
have accounted for that time earlier .when we
processed the previous message.

Notice that the total cycle takes about 900jus,
of which the host CPU is active during
800as. Transferring a larger message would
not increase this activity, since only pointers
are passed at the kernel level. However, the
activity of the front-ends, of their
peripherals, and of the switch would
proportionately increase.

To put the above diagram into perspective,
notice that it shows the interaction of a 0.3
MIPS host with a 5 MIPS front-end. In such
a configuration, we observe that the kernel
level transfer rate is mainly determined by
the speed of the front-end, whereas the host
speed is the dominating factor for the
responsiveness of the communication.

Setting Up Virtual Circuits

In order to understand the following
measurements of setting up a virtual circuit
between two computers, one has to consider

174

the steps involved in this activity. There are
two UNIX processes on different computers,
one "dialing" the other for a connection. At
first the calling process opens a special "dial"
file and obtains a file descriptor (the process'
end of the circuit to be set up). This step is
equivalent to getting dial tone on a phone
system. Next the process issues an I/O
control command on this file descriptor with
the name of the called subscriber as an
argument. Finally, the process issues a read
command on this file descriptor and waits,
i.e. listens. In the meantime, the local
driver has allocated a free (odd-numbered)
circuit to the file descriptor and sent a
message over the signaling circuit (1) to
Common Control that contains the newly
allocated circuit and the name (or address, as
explained above) of the called party. The
called party has been listening for signal
messages on its circuit 1, and is informed of
the call as explained above. Finally, the
called process issues an open command with
the circuit number taken from the signaling
call. This entire sequence has been timed
for three different computers in the role of
Common Control. Figure 13 shows the
results.

Common Control
Computer

LSI- 11

PDP- 11/23

PDP- 11/45

Elapsed
Time

100 ms

62 ms

50 ms

Figure 13. Circuit Set-Up Times

Again we have noticed that over 50% of the
time is spent in the UNIX operating system.

actually shared with a monitor and
maintenance program, see above). During
15 months of operation, we have not had ~[
single hardware failure of this computer, but
many software failures.

The highlights of our Common Control are:

i. Warmbooting: During a Common
Control failure, the existing circuits
remain unaffected. During the failure,
circuits cannot be set up or taken
down. Rebooting Common Control
preserves the circuits existing before
the failure.

ii. Control Protocol: As explained above,
pending control requests from
subscribers survive Common Control
failures; they will automatically be
reissued after a restart.

iii. Hot Stand-by: A spare Control
computer acting as a stand-by monitors
the active Common Control, which has
to send periodic sanity messages.
When the stand-by notices that the
active Common Control is failing, it
takes over the Common Control
function by rerouting all circuits from
the failing to the stand-by computer.
The whole process takes one minute;
actually, the switchover is
accomplished in 2 seconds, but the
new Common Control has to make
sure that it knows about all active
interface modules, even those that may
temporarily or inadvertently have no
terminating circuit. To that end,
Common Control has to wait one or
two complete maintenance polling
cycles (the clocks poll every module
for status periodically).

Common Control Reliability

The Common Control of the switch
represents a single point of failure in the
node, which is an undesirable property. We
have taken special efforts to minimize the
impact, of such a failure. The program runs
on a dedicated DEC LSI-II/02 computer
with no secondary storage (the computer is

Connection of UNIX Systems

In our laboratory, we are operating a
network of eight computers: DEC PDP-
11/23's, PDP-11/45's, a PDP-11/70, and a
VAX 11/780. The last two provide time-
sharing service; the others are used for
special development. All run under the
UNIX Version 7 operating system, which is
unchanged except for the addition of drivers

175

to interconnect the computers through the
Datakit switch. A separate DEC LSI-11/02
computer holds the Common Control and
Network Monitor programs (not under a
UNIX system). We shall now explain how
our communicat ion subsystem is used for
this purpose.

After each UNIX system has been booted, a
network server process is started in each
computer as part of the initialization
procedure. Each server opens circuit 1 on
the network link and reports to Common
Control that it is willing to accept service of
type n on its circuit 3. N is a different
number for each computer . The network
server stays alive permanently waiting for
service requests. At the higher protocol
level, it understands two commands; dcon
for direct connection, and rexec for remote
execution.

When a user on any of the UNIX systems
types the command

dcon system-name

where system-name is the name of a remote
system in the network (ours have have
bird's names like Eagle or Owl), the user 's
terminal appears to be connected to the
remote system until a log-out command is
given, which returns the session to the local
system.

Alternatively, a user may type

rexec system-name command-line

and the named command-line only will be
executed on the remote system, with the
network server acting as the remote user.
Eventual output from the command ' s
execution will be returned to the user.

Having presented the functionality of remote
connection and execution, we need to
digress into some of the UNIX architecture
to explain our implementation. The UNIX
process is exceptionally well suited to exploit
the virtual circuit concept. All process I /O is
modeled after the file I /O where a file is an
unformated stream of bytes. This includes
terminal and device I/O. For a process (i.e.
command) to communicate with the outside
world, it usually opens a standard input file
and a standard output file. The command
language interpreter known as the shell

allows great freedom in redirecting these
streams [Ritchie 1974]. When a process is
created, it inherits all the open files of its
parent. Normally, the shell is the parent of
executing commands.

The dcon command acquires a local odd-
numbered circuit and issues a service request
on circuit 1 to Common Control, who
forwards it to the named remote network
server. The server is informed via its circuit
3 that it has a service request on a newly-
allocated even-numbered circuit. The server
converses with dcon across this circuit to
identify the remote user and then logs this
user into the remote system (accounting and
current-user file, etc.). The server then
spawns a .~hell which is connected with its
standard input and output to the newly
allocated circuit. The dcon command takes
the user 's terminal input processing (i.e. line
editing) and forwards the input to the
remote shell which in turn automatically
redirects all the standard output back to
dcon.

The remote execution is much simpler.
When the rexec command is issued, similar
action as above is taken except that the
server receives a whole command line
instead of the dcon request. The server
simply executes the command and returns
the resulting output.

Besides the network servers in each system,
one system is initialized with a boot server,
which announces its service to Common
Control as of type N-----0. We have a ROM
bootstrap program on the PDP- I1 /23
computers which asks for service type 0 and
understands the higher level bootstrap
protocol managed by the boot server.

A Distributed UNIX System

We have also built a distributed operating
system based on UNIX which uses our
communicat ion subsystem. Figure 14 shows
the configuration.

176

I I ml lip I I q Ip .Ip a l I I

T"f T-'f

i ! /
FILE ~ • o~,~)-~ SERVICE i

\

Figure 14. Distributed UNIX System

Rather than having a network of
autonomous UNIX systems as described
above, the S /F-UNIX system combines
computers which receive file service (top-
row) and file servers (bot tom row) in a
single system. Users are logged into the top
row computers which run under the S-UNIX
operating subsystem. The file servers in the
bottom row run under the E-UNIX operating
subsystem and together present a global file
system view, i.e. a singly-rooted tree as the
file name space (Figure 15).

i' ,qt, ",, ,," ",,
I . . - d i n I | l i t

t @1 k .)

I ~ I X k,.' ~ I X ;
I I

Figure 15. File Name Space of a 2/2 System

The name space is constructed at
initialization t ime when each S-UNIX
subsystem issues a "mount file server"
request to each of the F-UNIX subsystems.

The details of the architecture and
implementat ion are reported elsewhere
[Luderer 1981]. We will restrict ourselves
here to issues of using the communicat ion
subsystem.

In our first implementat ion, we established a
single permanent virtual circuit between
each S-UNIX subsystem and each F-UNIX
subsystem. In the file servers, the endpoint
of each circuit was served by a file server
process. Thus, each file server computer
had as many server processes as there were
S-UNIX subsystems having mounted its file
space. We exper imented with various ways
of multitasking file service requests, on both
the S-UNIX and the F-UNIX side, until we
found that the circuit facility itself could
help with this problem.

In the current implementat ion, the S-UNIX
side sets up several circuits, each with a file
server process on the F-UNIX side, which
offers us a cheap way of multitasking in the
file server.

One yet unattainable objective is to dedicate
a virtual circuit to each open remote file.

177

We are prevented from currently doing this
since our interfaces do not support a
sufficiently large number of virtual circuits,
New hardware interfaces would be required,
and we would also like to see an operating
system architecture that supports more
flexible memory management than the
current PDP-11 family. With the era of
VLSI upon us, we are looking for
opportunities to identify functions that could
be implemented in hardware. An efficient
interface for a large number of circuits that
"demultiplexes" incoming data right into user
process space would be our objective.

Conc lus ions

We have built a data communication system
around a virtual circuit switch. We have
used this system to interconnect a local
network of autonomous systems and also to
form the foundation for a distributed system
which relies on fast file transfer. We believe
that our contributions lie in three areas:
First, the achieved performance of the host-
to-switch interface has been increased and
knowledge about the operation of this
interface has been added. Second, we have
shown a number of steps that can improve
the reliability and recoverability of a central
switch. Third, we have shown how virtual
circuit switching service can be used to
connect existing systems or to provide a
foundation for a distributed system.

A c k n o w l e d g m e n t s

We acknowledge gratefully the help provided
by A. G. Fraser and G. L. Chesson to give
us access to Datakit hardware and software.
Special thanks is due our colleagues J. P.
Haggerty and P. A. Kirslis, who designed
and implemented the S/F-UNIX system thus
becoming the first users of our
communication system. We have also
benefited from the work of L. E. McMahon
and D. M. Ritchie. E. Sirota from Brown
University built the KMC/Datakit interface
under the direction of R. C. Haight while
here on a summer job. Our measurement

work was aided by facilities developed by J.
Feder and D. A. De Graaf. P. F. Long and
C. Mee III helped us with learning about the
intricacies of the KMC font-end processor.
We had several enlightening discussions with
A. S. Tanenhaum. J. F. Reiser provided
helpful suggestions on the design of the
host/front-end interface.

D. L. Bayer, R. H. Canaday, E. N. Pinson, J.
M. Scanlon, C. F. Simone, and B. A. Tague
deserve our thanks for encouraging and
furthering this work.

Finally, we appreciate the efforts of the
reviewers and of V. Walsh, who gave us
excellent turn-around time when the final
version of,this paper had to be typed in a
rush.

References

[Chesson 1979] G. L. Chesson, "Datakit
Software Architecture", Proc. ICC 79,
June 1979, Boston Ma., pp.20.2.1-20.2.5

[Closs 1980] F. Closs, R. P. Lee, "A
Multistar Broadcast Network for Local
Area Communication", IBM Research
Report, RZ 1052 (//37705) 12/31/80,
20pp. Yorktown Heights, NY

[Croft 80] W. J. Croft, "UNIX Networking
at Purdue", ,UNIX Usenix Conference,
University of Delaware, June 1980.

[Digital 1978] Digital Equipment
Corporation, Maynard, Mass., pdpl l
peripherals handbook, 1978, pp.331-
339.
- - , "KMC11-B Unibus Microprocessor",
YM-C093C-00, January 1979.
- - , "COMM IOP-DUP Programming
Manual", No. AA-5670A-TC.
- - "Terminals and Communications
Handbook", 1979.

[Feder 1980] Communication with J. Feder
of Bell Laboratories

[Fraser 1979] A. G. Fraser, "Datakit - A
Modular Network for Synchronous and
Asynchronous Traffic", Proc. ICC 1979,
June 1979, Boston, Ma., pp.20.1.1-20.1.3

178

[Long 1981] Conversations with P. F. Long
and C. Mee III of Bell Laboratories

[Luderer 1981] G. W. R. Luderer, H. Che,J.
P. Haggerty, P. A. Kirslis, W. T.
Marshall, "A Distributed UNIX System
Based on A Virtual Circuit Switch", to be
presented at 8th Symposium on
Operating Systems Principles, acm
SIGOPS, December 14-16, 1981.

[Pouzin 1978] L. Pouzin, H. Zimmermann,
"A Tutorial On Protocols", Proceedings
IEEE, Vol.66, No. 11, November 1978,
pp. 1346-1370.

[Pouzin 1977] Louis Pouzin, "The Pop Art
of Public Data Networks ~, in "Data
Communication Networks", Online
Conferences, Uxbridge, Middlesex,
England, 1977

[Rawson 1978] E. G. Rawson, R. M.
Metcalfe, "Fibernet: Multimode Optical
Fibers for Local Computer Networks",
IEEE Trans. Comm. Vol. COM-26,
No.7, 1978

[Ritchie 1974] D. M. Ritchie and K. L.
Thompson, "The UNIX Time-sharing
System," Communications of the ACM,
Vol. 17, No. 7, July 1974, pp. 365-375.

[Shoch 1979] J. F. Shoch, rAn Annotated
Bibliography on Local Computer
Networks ~, IFIP WG 6.4, Working Paper
79-1, Xerox PARC Technical Report
SS-79-5, 1979

[Thurber 1979] Kenneth J. Thurber and
Gerald M. Masson, Distributed
Processor Communication Architecture,
Lexington Books, D. C. Heath and
Company, Lexington, Mass., 1979.

179

