
Strategies for Data Abstraction in LISP

Barbara K. Steele

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, Massachusetts 02139

Abstract

The benefits of abstract data types are many and
are generally agreed upon [Liskov and Zilles 1974,
Linden 1976]. New languages are being constructed
which provide for and enforce the use of data
abstractions [Liskov et al 1977, Wulf et al 1976].
However, many of us are not in a position to use these
new languages, but must stick to our installation's
compiler. How then can we obtain the benefits of data
abstraction? We discuss the implementation of data
abstraction in a LISP program and the subtleties
involved in doing so: specifically, how it is possible to
enforce proper data abstraction in a language which
does not provide for abstract data types.

I. INTRODUCTION

Programmers typically write the actual code for a
program after the problem has been defined and
analyzed, and after an appropriate data representation
has been selected. This allows assumptions about the
structure of the data to be shared by all parts of the
code. The knowledge of where to obtain a certain
piece of data or how to construct a given output form
is incorporated in code throughout the program.
Unfortunately, any necessary changes or optimizations
in the structure of the data will therefore require
major revisions in the program in order to correct all
references to that data, as well as to any data
dependent on it [Linden 1976]. Data abstraction is an
alternative to this conventional method of programming
which largely eliminates its unfortunate effects.

This report describes research done at both Argonne
National Laboratory in Argonne, Illinois, and at the
Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. The wt?rk was supported in
part by the National Science Fotmdation and the
Advanced Research Projects Agency.

Data abstraction is a programming strategy which
calls for the separation of data definition from program
definition. All the information about the
representation of the data used in the program is coded
in modules independent from the functions which use
that data in performing the actual computations of the
program. The program is thus decomposed into
program functions (those which perform the actual
computations of the program), and data .modules
(modules that contain information about the
organization of various data structures). We wish to
keep the assumptions each makes about the other to a
minimum. The program functions need know nothing
of the representation of the data structures. Instead,
the representation of each data object is hidden within
a data module. Each module contains the selection
and constn,ction functions which operate on the object.
Regardless of the language we use, we may implement
data abstraction simply by writing functions for
selecting and constructing data, and using these data
module functions within the program functions every
time a piece of data is referenced. In this way we
maintain the separation of program definitiona from
data definition, and accrue all the advantages of data
abstraction even though our language is not specifically
set up to enforce that strategy.

In LISP, for example, instead of writing (CADR
DIRECTORY) to obtain a telephone number which we
know is stored in the second position of the list, we
would write a separate function called GET-TELNO which
alone knew how to o6tain the telephone number from
DIRECTORY. Then if the representation for DIRECTORY
ever changed, only the function GET-TELN0 would have
to be modified. In place of (CAOR 0IRECTORY), we
would write (GET-TELNO DIRECTORY). GET-TELNO then
becomes a member of the data module associated with
the DIRECTORY data object. Every time we wish to
select or construct data which is part of the DIRECTORY
structure, we call the appropriate pre-defined function.
All such functions together form the data module
which define the DIRECTORY structure. To change the
representation of the directory, we need only change
the definitions of the functions in this data module.
Programs which reference functions in the data module
should remain unchanged.

173

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800087.802803&domain=pdf&date_stamp=1980-08-25

Thus, a data module is simply the group of
definit ions of the operations which can be performed
on a given data object. Each time data is to be
manipulated by the program, a call is made to the
desired function within the appropriate data module.
In this way, if the representation of some data object is
to be changed, only the functions in that object's
corresponding data module must be modified. If data
abst ract ion had not been practiced, all those places in
the program where that data object was referred to
would have to be located and changed appropriately.
In significant programs, such a task would discourage
many a programmer, and might inhibit the change to a
perhaps more efficient data representation.

When it actually comes down to writing the data
modules, man 5 , subtle situations arise in which deciding
what the "right thing" to do is is difficult. To aid the
p rogrammer in this process, we have compiled some
guidelines for implementing data abstraction in a
program. We point out some issues that may arise and
discuss various methods of dealing with them. We
have developed these suggestions from our own use of
da ta abstraction in a LISP program of significant size
[Kerns 1977]. They are not to be taken as hard-and-
fast rules, but items to consider when deciding which is
the proper method of abstraction.

II. D A T A ABSTRACTION GUIDELINES
II.1 Sharing Data Modules within a Program

Q: If a function FOO is written to select some
piece of a data object, say, the name field of an
entry in the file STUDENTS, then later it is
observed that some piece of another data object
(perhaps the name field of an entry in the file
PIRDFS) is accessed in the same way, may FO0 be
used to access either piece of data wherever one
or the other is needed in the program?

A: Although the data objects STUDENTS and PROFS may
share the same representation, each object should have
its own set of operations since their representations
may change independently. If the representation of
PROFS changed, then a new data module full of
operat ions would have to be written, and modifications
would have be made to the program to point references
to data in the PROFS file to operations in the new data

module, thus violating the whole purpose of data
modules.

It is important for the programmer to distinguish
be tween instances of the same data type, and two
complete ly different types of data that might happen to
cur ren t ly use the same representation. Entries in the
Quux ton telephone book, for instance, constitute
instances of the OUUXENTRY data type. They may of

course use the same accessing and constructing
operat ions defined for them. But just because the
Quux ton telephone book and the Quuxton Electric
Co m p an y use the same format for their data does not
mean they should use the same data module full of
operations. Either of their representations may change
independent ly of the other. If that happened, a
program meant to correlate information from the two
o f them would be in trouble.

In order to guarantee that two different kinds of
da ta do not use any of the same selector or constructor
functions, all those functions which select or construct
pieces of the same data object should be grouped
toge ther into one data module. Although some
languages (like P L / I) provide a way to enforce such
groupings by implementing them as a procedure with
en t ry points for each of the functions in the module, in
LISP we must be content with an informal "logical"
grouping of the functions, as discussed above.
Funct ions belonging to one data module should be
independent and distinct from functions in another
da ta module. The distinction should be such that any
change in representation made to a given data object
should require changes to be made within only one
da ta module. The program may then remain
unchanged and oblivious to the fact that any data
representat ion has been altered.

II.2 Sharing Functions within a Data Module

Q: It is sometimes difficult to know when not to
reuse a function within a data module. Consider
the following example: we are given a list which
represents a function call (here we consider the
representation of the function call as data, as it
would be to a compiler, for exalnple). The first
e lement of the list is the function itself, and the
remaining elements are the arguments to be
passed. We wish to obtain the list of arguments
f rom the function call, so a selector function is
wri t ten to do this:

(DEFUN GETARGS (DATA)
(CDR DATA))

Th e list of arguments is passed to l)rogram
function which requested it. The program
function processes the first argument, then calls
itself recursively on the remainder of the list.
T h a t means we need two more selector functions;
one to obtain the first argument in a list of
arguments, and one to select the list of all but
the first argument. Can we use the selector
function GETARGS to obtain the list of ;ill but the
first argument from the list of arguments?

174

A: If it has been decided to represent the function call
as a list before the program has been coded, it may be
a temptat ion to use the same function to obtain both
the entire argument list from the function call, and all
but the first argument from the argument list. If two
separate functions are written, one notices that both
functions return all but the first element in the list
they are passed, and both return a list of arguments.
But they are passed different kinds of data, and
fur thermore , one returns the entire argument list, while
the other returns only part of it. Consider the
si tuation if this data had been represented as a tree,
with the name of the function as the head node and
each of its arguments as subtrees. It is clear that
distinct functions would be required; a function to
produce the entire argument list would return a list of
the subtrees of a tree, and the function to produce all
but the first argument from an argument list would
re turn all but the first tree in a list of trees (or
"forest") .

Note that one might simply define the first
funct ion to return a list of arguments, while making no
commi tmen t as to whether that list is part of the
internal representation of a function call; i.e., the list
may or may not be freshly consed. This allows one to
legitimately use CAR, CDR, MAPCAR, etc. on the list. Or
does it? We address this question in section II.4.

In any case, in order to avoid the mistake of
reusing a function when a different one should be
wri t ten, it is necessary for the programmer to
completely free his mind of the current representation
o f the data. If possible, the data representation should
not be chosen until after the program is coded.
Whe the r the data representation has been chosen or
not, keeping in mind an alternative data representation
while writing the program is helpful. Hierarchial
naming of data module functions can be very helpful
also. Consider renaming GETARGS to FCALL!ARGS,
mear~ing "here is a function call, return the arguments."
T o strengthen the intended purpose of the function in
the
programmer 's mind, consider this definition of
FCALL ! ARGS:

(OEFUN FCALL!ARGS (FUNCTION-CALL)
(CDR FUNCTION-CALL)}

T h a t is, instead of the obscure name "DATA", we use
"FUNC T I 0N-CALL" as the dummy argumenl.
Unfor tunate ly , LISP has no built-in provision for user-
defined object types, but it certainl), isn't difficult to
cons them up and write functions to do type checking
if one is so inclined. In many cases it will severely
damage programming bugs.

II.3 Hierarchy of Functions in the Data Modules

Q: When a function is written to select a piece
of data, how much data should be passed to it
f rom which to obtain the desired piece? That is,
should the selector function be passed an entire
file, or just a record, or what?

A: We don' t need to worry about the volume of data
passed between functions since LISP just passes
pointers. However, there are two disadvantages of
passing entire data structures. If one requires that the
ent i re data object be passed to a function regardless of
the piece of data to be obtained, then: (1) functions
become less modular. Consider the file/record
example. If a program function PROCESS-RECORD deals
only with a record and requests pieces of information
f rom it occasionally, but we have written operations
tha t can access that information only when handed the
ent i re file it is found in, then PROCESS-RECORD can only
deal with with records in the context of a file (which is
p re t ty silly). (2) there is a loss of efficiency, since
funct ions may have to perform the same work over and
over. At one point in a selector function, we may
refer to a certain record, in which case work is done to
obta in the record from the file. Then later we may
refer to a particular field in that record, in which case
the field selector function must find the record all o v e r
again and then find the field.

Instead, we may choose to pass only the relavent
piece of data; for example, the desired record for
PROCESS-RECORD instead of the whole file. This leaves
us with the problem of telling a selector function
exact ly how much data it is receiving from which to
obta in the desired piece. Suppose we wish to obtain
the last name of the person whose record we are now
processing. Although we could easily write a function
to accept the record and return the last name from the
name field of the record, it may be that in another
program function we have just the name field and wish
to obtain the last name from that. Rather than write
as many functions to obtain the last name as there are
types of data to obtain it from, we restrict ourselves to
funct ions which obtain a piece of data "x" from the
smallest piece of data "y" which contains x. That is, to
obta in x, we pass to the function the data y, where x is
a subset of y and there are no subsets of y containing
x o ther than x. A "subset" here is defined to be an
accessible piece of data, where the degree to which
da ta is broken down into "accessible" pieces depends on
the requirements of the program.

Similarly for those data module functions which
cons t ruc t data, we pass a first name and last name to a
funct ion which returns the name field. This field is
then passed with the other fields to a function to

175

const ruc t the record, and so on, gradually building the
file up section by section. The alternative would be to
require every individual piece of data to be ready at
the same time, and then pass them to a function which
would construct the resultant file all at once.

Just one comment on our comments: the strategy
suggested above may in some cases "give the
representat ion away." It can at least reveal the
hierarchial structure of the data; if this is undesirable,
the programmer must decide what canonical pieces of
da t a to pass from which to obtain smaller pieces. In
any case, we strongly recommend that the selector and
cons t ruc tor functions be named in such a way as to
remind the programmer what type of data the function
expects to receive (such as "AROLIST!FIRST-ARG" tO
select the first argument from a list of arguments,
"CONDI TIONAL !CLAUSES" to obtain the list of clauses
f rom a condtional expression, etc).

Q: What about intersecting subsets of data, for
example, rows anti columns of a matrix?

A: As mentioned before, the degree to which data is
b roken down depends on the requirements of the
program. For this example, one would of course want
a funct ion to obtain some row from the matrix, and
ano the r to obtain some column. Then naturally, to
obta in certain values in the matrix, one could write
funct ions to obtain these values from either a row or a
column, or both, thus making the path for data
acquisit ion non-unique. If it is necessary in a program
to be able to access data in more than one way,
funct ions can be written for each of them. Remember,
though, that this means that if the representation
changes, more than one function definition within the
da ta module will have to be changed. The alternative
would be to write only one function which could be
passed a flag in addition to the data, telling it what
kind of data was being received. For example, one
could write a function to obtain a value from either a
row or a column of a matrix, and then pass it both the
row or column and a flag identifying which it was that
you were giving it. The function would then do the
right thing to obtain the desired value. This method is
somewhat awkward, and undesirable in that the flag
spoken of is just the kind of thing which makes
connect ions between modules strong, a property we
wish to minimize. Furthermore, unless there is some
reason to compute the flag at run time, it is really just
par t o f the name of the selector:

(FETCH 'ROW data) <==> (FETCH-FROM-ROW data).

II.4 Inherent Data Structures

Q: LISP operates only on atoms and lists, and all
user defined structures must be designed using
these inherent structures. Furthermore, there
exist built-in functions to construct and select
pieces of lists. Must functions be written to
select pieces of data which are represented as
lists, even though CAR, COR, CONS, MAPCAR, and
others are pre-defined and available?

A: Data module functions are still relevant in this
envi ronment , since the data which is currently
represented using a built-in structure may change and
use some other structure, perhaps user defined. Often,
however, the program works with a list of data in
which each element is the same data type; for
example, a list of arguments as discussed in section II.2.
T h e r e really is no better way to represent such a list of
homogeneous data than as a list, and since LISP
contains built-in functions for selecting and
construct ing lists, it seems pointless to hide the obvious
representat ion by writing special data module functions.
But perhaps we can argue the point by suggesting that,
in this case, the access within or construction of such
"real" lists can be hidden in a program function.
Consider the case in which a change must be made to
the program (motivated perhaps by some data
representat ion modification, or an actual modification
to the logic in the program) where each time the
selection of some element of a "real" list occurs, a
cer ta in procedure is to be performed. If access to the
e lements were not hidden, the programmer would have
to search diligently through the program for every
occurence of that event. However, it is a simple task
to add a procedure call (or even to embed the actual
procedure) in the program function which performs the
selection or construction of the "real" list.

II.5 Addit ional Data

Q: What if a program is altered to accept data
types in addition to data types it already
processes? Not just more data, but a new kind of
data containing different information. For
example, say that a record in the DIRECTORY file is
current ly represented as: (<name> <house number>
< s t r e e t > <c i tg> <phone no,>) and the data
module for the DIRECTORY structure contains the
appropriate selector functions. Now suppose that
the program which builds the DIRECTORY file
begins handing our program file records of the
form: (< i n d e x > <name> <house number> <street>
<c i tt.J> <phone no,>) where <index> iS some

obscure piece of information that our program
doesn' t care about.

176

A: Although the program can be made immune from
changes in the representation of the data via data
modules, it can not always be protected from
additional data, when this new data is a different type
than what had been processed in the past. If it is
merely a matter of accessing original data in a new
representat ion containing additional data, such a
change can be compensated for in the data modules.
But if the program is expected to process the additional
data , then this constitutes a change in the program,
and the data modules can not be counted on to handle
it. Processing additional data constitutes a change in
the specification of the program, not in the internal
implementation. Analogous statements can be made
about the removal of data.

II.6 Internal Data

Q: What about data which is internal to the
program? That is, data which is selected and
constructed from values determined internally
according to execution conditions and passed
within or between functions. For example, a
program flmction may wish to return two values,
and so it conses them together. Should the
functions receiving this pair simply take CAR and
coo of it, or must a data module be created with
selector functions for obtaining pieces of it and a
constructor function for forming it in the first
place?

A: One might argue that a change to this data is a
change to the program, and so hiding it in a data
module is pointless. This is true to some degree;
however, abstracted data is always easier to deal with.
It makes the program easier to understand and verify:
ICONS F00 BAR) stuck in the middle of a program is
probably more confusing than (RETURN-rlULTIPLE-VALUES
F00 BAR). It makes the program easier to modify:
suppose A creates internal data, and B and C use it.
T h e n C needs additional information. If the
representat ion of this internal data is hidden, only A
and C must be modified. Or take the example given in
the question. If three values nmst be passed, the CONS
must be changed to LISI or some other more complex
s tructure. The necessary changes are simplified if the
internal data has been abstracted from the program.
T h e point here is that it is a mistake to think of "the
program" as monolithic. Abstraction of all data,
regardless of where it comes from, always eases
modification.

III. BENEFITS

At least ' four of the benefits of implementing data
abstract ion in a program are: (1) it allows greater
flexibility in choice of data representation, (2) it
enhances self-documentation, (3) it encourages one to
consider the data at an abstract level, apart from
program specification, and (4) it facilitates proving
program correctness.

III. 1 Flexibility

Data representations are easily changed when all
that needs to be done to compensate for the change is
to rewrite a few functions. One might decide against
conver t ing to a more optimal data representation if it
nleans completely revising an existing program, but if
da ta abstraction has been practiced, the necessary
changes are simple and quickly made. In addition,
because of the ease of conversion from one data
representat ion to another, it is possible to confirm
experimental ly which is best for the program.

III.2 Self-Documentation

A program is self-documenting if the functions
used are given appropriate names that aid a reader in
identifying the piece of data being selected or
constructed. This increased readability helps to reduce
programnfing errors. Coding the program is facilitated
as well, since each time a piece of data is needed, the
programmer need not take time to recall the procedure
needed to obtain it, but simply codes the appropriate
apt ly-named function call.

III.3 Abstract Data

In distinguishing data modules from program
functions, dat;l abstraction allows the programmer to
disregard the details of data representation during
program specification and to handle them, instead,
when programming has been completed. Thus, not
only is he encouraged to think of the data at an
abst ract level, but once programming is done, a more
rat ional decision concerning optimal data representation
can be made [Baizer 1967].

177

III.4 Proving Program Correctness

The task of proving program ,correctness is
simplified when a program has been decomposed into
program functions and data modules functions. That
all of the functions it uses are correct can be taken as
a set of axioms in proving a given function correct,
thus breaking down the work that must be done to
prove the entire program correct [Parnas 1971]. Of
course, modularization other than that done in
abstracting the data should be practiced in order to
obtain the full benefits, but data abstraction will
facilitate proofs of correct data selection and
construction.

IV. PROBLEMS AND PARTING THOUGHTS

Run time for the decomposed program will
undoubtedly prove to be much greater than for the
original program due to the frequency of calls made to
the data module functions. To avoid this overhead, a
compile-time pre-processor which replaces each call by
the appropriate in-line code is desirable [Parnas 1972,
G. Steele 1977]. We have developed a set of
optimizing transformations to be used with a source-to-
source transformation system, discussed in [B. Steele
1980].

Although ideally one should not be concerned
with efficiency while implementing data abstraction in
a program, more pragmaticaUy, it behooves one to take
into consideration the capabilities of automatic
optimizations when coding the program. For example,
perhaps the same piece of data is selected more than
once within a program function. Depending on how
complicated the selection fimction is, the returned
value would perhaps be best bound in a lambda
expression to avoid having to select it again. The
overhead of assignment should be avoided if possible,
however. If the optimizer to be used has the power to
note multiple uses of functions and perform a binding
if the complexity of the function definition
recommends it, the programmer need not be concerned
with the issue of common sub-expression [Geschke
1972, Wulf et al 1975]. But if the optimizer is only
capable of procedure integration for the numerous calls
to data module functions, then the programmer might
wish to give some thought to lambda binding the
results of a call himself. There is program readability
on the one hand, and speed of execution oh the other.
Clearly, program optimization and data abstraction go
hand in hand; together they ease the programming
task and bring us closer to the ultimate goal of
automatic program synthesis.

References

Balzer, R. M.
"Dataless Programming." Proc. AFIPS 1967 FJCC,
Vol. 31, AFIPS Press (Montvale, NJ, 1967), 535-
544.

Geschke, C. M.
Global Program Optimizations. Ph.D. thesis.
Carnegie-Mellon University (Pittsburgh, October
1972).

Kerns, B.
An Experiment in Information Hiding. B.A. Thesis,
Greenville College, Greenville, IL, (May 1977)

Linden, T. A.
"The Use of Abstract Data Types to Simplify
Program Modifications." Proc. of Conference on
Data, ACM Sigplan Notices, 8:2 (1976), 12-23

Liskov, B., Snyder, A., Atkinson, R. and Schaffert, C.
"Abstraction Mechanisms in CLU." CACM, Voi.
20, No. 8 (1977), 564-576

Liskov, B., and Zilles, S.
"Programming with Abstract Data Types." Proc.
Syrup. on Very High Level Languages. SIGPLAN
Notices (April 1974).

Myers, O. J.
"Composite Design Facilities of Six Programming
Languages." IBM Systems Journal, Vol. 15, No. 3,
(1976), 212-224.

Parnas, D. L.
Information Distribution Aspects of Design
Methodology. Tech. Report, Dept. of Computer
Science, Carnegie-Mellon University (Pittsburgh,
1971)

Parnas, D. L.
"On the Criteria to be Used in Decomposing
Systems into Modules." CACM 15 (December
1972), 1053-1058.

Steele, B. K.
An Accountable Source-to-Source Transformation
System. S.M. Thesis, Massachusetts Institute of
Technology, in preparation.

Steele, G. L. Jr.
"Debunking the 'Expensive Procedure Call' Myth."
Proc. ACM National Conference (Seattle, October
1977), 153-162. Revised as MIT AI Memo 443
(Cambridge, October 1977).

Wulf, W. A., et al.
The Design of an Optimizing Compiler. American
Elsevier (New York, 1975).

Wulf, W., London, R. and Shaw, M.
Abstraction and Verification in ALPHARD:
Introduction to Language and Methodology. Tech.
Report, Dept. of Computer Science, Carnegie-
Mellon University (Pittsburgh, 1976)

178

