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Abstract 

The benefits of abstract data types are many and 
are generally agreed upon [Liskov and Zilles 1974, 
Linden 1976]. New languages are being constructed 
which provide for and enforce the use of data 
abstractions [Liskov et al 1977, Wulf et al 1976]. 
However, many of us are not in a position to use these 
new languages, but must stick to our installation's 
compiler. How then can we obtain the benefits of data 
abstraction? We discuss the implementation of data 
abstraction in a LISP program and the subtleties 
involved in doing so: specifically, how it is possible to 
enforce proper data abstraction in a language which 
does not provide for abstract data types. 

I. INTRODUCTION 

Programmers typically write the actual code for a 
program after the problem has been defined and 
analyzed, and after an appropriate data representation 
has been selected. This allows assumptions about the 
structure of the data to be shared by all parts of the 
code. The knowledge of where to obtain a certain 
piece of data or how to construct a given output form 
is incorporated in code throughout the program. 
Unfortunately, any necessary changes or optimizations 
in the structure of the data will therefore require 
major revisions in the program in order to correct all 
references to that data, as well as to any data 
dependent on it [Linden 1976]. Data abstraction is an 
alternative to this conventional method of programming 
which largely eliminates its unfortunate effects. 

This report describes research done at both Argonne 
National Laboratory in Argonne, Illinois, and at the 
Artificial Intelligence Laboratory of the Massachusetts 
Institute of Technology. The wt?rk was supported in 
part by the National Science Fotmdation and the 
Advanced Research Projects Agency. 

Data abstraction is a programming strategy which 
calls for the separation of data definition from program 
definition. All the information about the 
representation of the data used in the program is coded 
in modules independent from the functions which use 
that data in performing the actual computations of the 
program. The program is thus decomposed into 
program functions (those which perform the actual 
computations of the program), and data .modules 
(modules that contain information about the 
organization of various data structures). We wish to 
keep the assumptions each makes about the other to a 
minimum. The program functions need know nothing 
of the representation of the data structures. Instead, 
the representation of each data object is hidden within 
a data module. Each module contains the selection 
and constn,ction functions which operate on the object. 
Regardless of the language we use, we may implement 
data abstraction simply by writing functions for 
selecting and constructing data, and using these data 
module functions within the program functions every 
time a piece of data is referenced. In this way we 
maintain the separation of program definitiona from 
data definition, and accrue all the advantages of data 
abstraction even though our language is not specifically 
set up to enforce that strategy. 

In LISP, for example, instead of writing (CADR 
DIRECTORY) to obtain a telephone number which we 
know is stored in the second position of the list, we 
would write a separate function called GET-TELNO which 
alone knew how to o6tain the telephone number from 
DIRECTORY. Then if the representation for DIRECTORY 
ever changed, only the function GET-TELN0 would have 
to be modified. In place of (CAOR 0IRECTORY), we 
would write (GET-TELNO DIRECTORY). GET-TELNO then 
becomes a member of the data module associated with 
the DIRECTORY data object. Every time we wish to 
select or construct data which is part of the DIRECTORY 
structure, we call the appropriate pre-defined function. 
All such functions together form the data module 
which define the DIRECTORY structure. To change the 
representation of the directory, we need only change 
the definitions of the functions in this data module. 
Programs which reference functions in the data module 
should remain unchanged. 
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Thus,  a data module is simply the group of 
definit ions of the operations which can be performed 
on a given data object. Each time data is to be 
manipulated by the program, a call is made to the 
desired function within the appropriate data module. 
In this way, if the representation of some data object is 
to be changed, only the functions in that object's 
corresponding data module must be modified. If data 
abst ract ion had not been practiced, all those places in 
the program where that data object was referred to 
would have to be located and changed appropriately. 
In significant programs, such a task would discourage 
many  a programmer, and might inhibit the change to a 
perhaps more efficient data representation. 

When it actually comes down to writing the data 
modules,  man 5 , subtle situations arise in which deciding 
what  the "right thing" to do is is difficult. To aid the 
p rogrammer  in this process, we have compiled some 
guidelines for implementing data abstraction in a 
program. We point out some issues that may arise and 
discuss various methods of dealing with them. We 
have developed these suggestions from our own use of 
da ta  abstraction in a LISP program of significant size 
[Kerns  1977]. They are not to be taken as hard-and- 
fast rules, but items to consider when deciding which is 
the proper  method of abstraction. 

II. D A T A  ABSTRACTION GUIDELINES 
II.1 Sharing Data Modules within a Program 

Q: If  a function FOO is written to select some 
piece of a data object, say, the name field of an 
entry  in the file STUDENTS, then later it is 
observed that some piece of another data object 
(perhaps the name field of an entry in the file 
PIRDFS) is accessed in the same way, may FO0 be 
used to access either piece of data wherever one 
or the other is needed in the program? 

A: Although the data objects STUDENTS and PROFS may 
share the same representation, each object should have 
its own set of operations since their representations 
may  change independently. If the representation of 
PROFS changed, then a new data module full of 
operat ions would have to be written, and modifications 
would have be made to the program to point references 
to  data  in the PROFS file to operations in the new data 

module,  thus violating the whole purpose of data 
modules.  

It is important for the programmer to distinguish 
be tween instances of the same data type, and two 
complete ly  different types of data that might happen to 
cur ren t ly  use the same representation. Entries in the 
Quux ton  telephone book, for instance, constitute 
instances of the OUUXENTRY data type. They may of 

course use the same accessing and constructing 
operat ions defined for them. But just because the 
Quux ton  telephone book and the Quuxton Electric 
Co m p an y  use the same format for their data does not 
mean  they should use the same data module full of 
operations.  Either of their representations may change 
independent ly  of the other. If that happened, a 
program meant to correlate information from the two 
o f  them would be in trouble. 

In order  to guarantee that two different kinds of 
da ta  do not use any of the same selector or constructor 
functions,  all those functions which select or construct 
pieces of  the same data object should be grouped 
toge ther  into one data module. Although some 
languages (like P L / I )  provide a way to enforce such 
groupings by implementing them as a procedure with 
en t ry  points for each of the functions in the module, in 
LISP we must be content with an informal "logical" 
grouping of  the functions, as discussed above. 
Funct ions  belonging to one data module should be 
independent  and distinct from functions in another 
da ta  module. The distinction should be such that any 
change in representation made to a given data object 
should require changes to be made within only one 
da ta  module. The program may then remain 
unchanged and oblivious to the fact that any data 
representat ion has been altered. 

II.2 Sharing Functions within a Data Module 

Q: It is sometimes difficult to know when not to 
reuse a function within a data module. Consider 
the following example: we are given a list which 
represents a function call (here we consider the 
representation of the function call as data, as it 
would be to a compiler, for exalnple). The first 
e lement  of the list is the function itself, and the 
remaining elements are the arguments to be 
passed. We wish to obtain the list of arguments 
f rom the function call, so a selector function is 
wri t ten to do this: 

(DEFUN GETARGS (DATA) 
(CDR DATA)) 

Th e  list of arguments is passed to l)rogram 
function which requested it. The program 
function processes the first argument, then calls 
itself recursively on the remainder of the list. 
T h a t  means we need two more selector functions; 
one to obtain the first argument in a list of 
arguments,  and one to select the list of all but 
the first argument. Can we use the selector 
function GETARGS to obtain the list of ;ill but the 
first argument from the list of arguments? 
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A: If  it has been decided to represent the function call 
as a list before the program has been coded, it may be 
a temptat ion to use the same function to obtain both 
the entire argument list from the function call, and all 
but  the first argument from the argument list. If two 
separate functions are written, one notices that both 
functions return all but the first element in the list 
they are passed, and both return a list of arguments. 
But they are passed different kinds of data, and 
fur thermore ,  one returns the entire argument list, while 
the other  returns only part of it. Consider the 
si tuation if this data had been represented as a tree, 
with the name of the function as the head node and 
each of  its arguments as subtrees. It is clear that 
distinct functions would be required; a function to 
produce the entire argument list would return a list of 
the subtrees of a tree, and the function to produce all 
but  the first argument from an argument list would 
re turn  all but the first tree in a list of trees (or 
"forest") .  

Note  that one might simply define the first 
funct ion to return a list of arguments, while making no 
commi tmen t  as to whether that list is part of the 
internal  representation of a function call; i.e., the list 
may  or may not be freshly consed. This allows one to 
legitimately use CAR, CDR, MAPCAR, etc. on the list. Or 
does it? We address this question in section II.4. 

In any case, in order to avoid the mistake of 
reusing a function when a different one should be 
wri t ten,  it is necessary for the programmer to 
completely free his mind of the current representation 
o f  the data. If possible, the data representation should 
not  be chosen until after the program is coded. 
Whe the r  the data representation has been chosen or 
not,  keeping in mind an alternative data representation 
while writing the program is helpful. Hierarchial 
naming of data module functions can be very helpful 
also. Consider renaming GETARGS to FCALL!ARGS, 
mear~ing "here is a function call, return the arguments." 
T o  strengthen the intended purpose of the function in 
the 
programmer 's  mind, consider this definition of 
FCALL ! ARGS: 

(OEFUN FCALL!ARGS (FUNCTION-CALL) 
(CDR FUNCTION-CALL)} 

T h a t  is, instead of the obscure name "DATA", we use 
"FUNC T I 0N-CALL" as the dummy argumenl. 
Unfor tunate ly ,  LISP has no built-in provision for user- 
defined object types, but it certainl), isn't difficult to 
cons them up and write functions to do type checking 
if  one is so inclined. In many cases it will severely 
damage programming bugs. 

II.3 Hierarchy of  Functions in the Data Modules 

Q: When a function is written to select a piece 
of  data, how much data should be passed to it 
f rom which to obtain the desired piece? That is, 
should the selector function be passed an entire 
file, or just a record, or what? 

A: We don' t  need to worry about the volume of data 
passed between functions since LISP just passes 
pointers. However, there are two disadvantages of 
passing entire data structures. If one requires that the 
ent i re  data object be passed to a function regardless of 
the piece of  data to be obtained, then: (1) functions 
become less modular. Consider the file/record 
example. If  a program function PROCESS-RECORD deals 
only  with a record and requests pieces of information 
f rom it occasionally, but we have written operations 
tha t  can access that information only when handed the 
ent i re  file it is found in, then PROCESS-RECORD can only 
deal with with records in the context of a file (which is 
p re t ty  silly). (2) there is a loss of efficiency, since 
funct ions may have to perform the same work over and 
over. At  one point in a selector function, we may 
refer  to a certain record, in which case work is done to 
obta in  the record from the file. Then later we may 
refer  to a particular field in that record, in which case 
the field selector function must find the record all o v e r  
again and then find the field. 

Instead, we may choose to pass only the relavent 
piece of  data; for example, the desired record for 
PROCESS-RECORD instead of the whole file. This leaves 
us with the problem of telling a selector function 
exact ly  how much data it is receiving from which to 
obta in  the desired piece. Suppose we wish to obtain 
the last name of the person whose record we are now 
processing. Although we could easily write a function 
to accept the record and return the last name from the 
name field of the record, it may be that in another 
program function we have just the name field and wish 
to obtain the last name from that. Rather than write 
as many  functions to obtain the last name as there are 
types of  data to obtain it from, we restrict ourselves to 
funct ions which obtain a piece of data "x" from the 
smallest piece of data "y" which contains x. That is, to 
obta in  x, we pass to the function the data y, where x is 
a subset of  y and there are no subsets of y containing 
x o ther  than x. A "subset" here is defined to be an  
accessible piece of data, where the degree to which 
da ta  is broken down into "accessible" pieces depends on 
the requirements of the program. 

Similarly for those data module functions which 
cons t ruc t  data, we pass a first name and last name to a 
funct ion which returns the name field. This field is 
then passed with the other fields to a function to 
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const ruc t  the record, and so on, gradually building the 
file up section by section. The alternative would be to 
require every individual piece of data to be ready at 
the same time, and then pass them to a function which 
would construct  the resultant file all at once. 

Just one comment on our comments: the strategy 
suggested above may in some cases "give the 
representat ion away." It can at least reveal the 
hierarchial  structure of the data; if this is undesirable, 
the programmer must decide what canonical pieces of 
da t a  to pass from which to obtain smaller pieces. In 
any  case, we strongly recommend that the selector and 
cons t ruc tor  functions be named in such a way as to 
remind the programmer what type of data the function 
expects  to receive (such as "AROLIST!FIRST-ARG" tO 
select the first argument from a list of arguments, 
"CONDI TIONAL !CLAUSES" to obtain the list of clauses 
f rom a condtional expression, etc). 

Q: What  about intersecting subsets of data, for 
example, rows anti columns of a matrix? 

A: As mentioned before, the degree to which data is 
b roken  down depends on the requirements of the 
program. For this example, one would of course want 
a funct ion to obtain some row from the matrix, and 
ano the r  to obtain some column. Then naturally, to 
obta in  certain values in the matrix, one could write 
funct ions to obtain these values from either a row or a 
column,  or both, thus making the path for data 
acquisit ion non-unique. If it is necessary in a program 
to be able to access data in more than one way, 
funct ions can be written for each of them. Remember, 
though,  that this means that if the representation 
changes,  more than one function definition within the 
da ta  module will have to be changed. The alternative 
would be to write only one function which could be 
passed a flag in addition to the data, telling it what 
kind of  data was being received. For example, one 
could write a function to obtain a value from either a 
row or a column of a matrix, and then pass it both the 
row or column and a flag identifying which it was that 
you were giving it. The function would then do the 
right thing to obtain the desired value. This method is 
somewhat  awkward, and undesirable in that the flag 
spoken of  is just the kind of thing which makes 
connect ions  between modules strong, a property we 
wish to minimize. Furthermore, unless there is some 
reason to compute the flag at run time, it is really just 
par t  o f  the name of the selector: 

(FETCH 'ROW data) <==> (FETCH-FROM-ROW data). 

II.4 Inherent  Data Structures 

Q: LISP operates only on atoms and lists, and all 
user defined structures must be designed using 
these inherent structures. Furthermore, there 
exist built-in functions to construct and select 
pieces of lists. Must functions be written to 
select pieces of data which are represented as 
lists, even though CAR, COR, CONS, MAPCAR, and 
others are pre-defined and available? 

A: Data  module functions are still relevant in this 
envi ronment ,  since the data which is currently 
represented using a built-in structure may change and 
use some other  structure, perhaps user defined. Often, 
however,  the program works with a list of data in 
which each element is the same data type; for 
example,  a list of arguments as discussed in section II.2. 
T h e r e  really is no better way to represent such a list of 
homogeneous  data than as a list, and since LISP 
contains built-in functions for selecting and 
construct ing lists, it seems pointless to hide the obvious 
representat ion by writing special data module functions. 
But  perhaps we can argue the point by suggesting that, 
in this case, the access within or construction of such 
"real"  lists can be hidden in a program function. 
Consider  the case in which a change must be made to 
the program (motivated perhaps by some data 
representat ion modification, or an actual modification 
to the logic in the program) where each time the 
selection of  some element of a "real" list occurs, a 
cer ta in  procedure is to be performed. If access to the 
e lements  were not hidden, the programmer would have 
to search diligently through the program for every 
occurence  of  that event. However, it is a simple task 
to add a procedure call (or even to embed the actual 
procedure)  in the program function which performs the 
selection or construction of the "real" list. 

II.5 Addit ional  Data 

Q: What  if a program is altered to accept data 
types in addition to data types it already 
processes? Not just more data, but a new kind of 
data  containing different information. For 
example, say that a record in the DIRECTORY file is 
current ly  represented as: (<name> <house number> 
< s t r e e t >  <c i  tg> <phone no,>)  and the data 
module for the DIRECTORY structure contains the 
appropriate selector functions. Now suppose that 
the program which builds the DIRECTORY file 
begins handing our program file records of the 
form: ( < i n d e x >  <name> <house number> <street> 
<c i  tt.J> <phone no,>) where <index> iS some 

obscure piece of information that our program 
doesn' t  care about. 
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A: Although the program can be made immune from 
changes in the representation of the data via data 
modules,  it can not always be protected from 
additional data, when this new data is a different type 
than  what had been processed in the past. If it is 
merely a matter  of accessing original data in a new 
representat ion containing additional data, such a 
change can be compensated for in the data modules. 
But if the program is expected to process the additional 
data ,  then this constitutes a change in the program, 
and the data modules can not be counted on to handle 
it. Processing additional data constitutes a change in 
the specification of the program, not in the internal 
implementation.  Analogous statements can be made 
about  the removal of data. 

II.6 Internal Data 

Q: What  about data which is internal to the 
program? That  is, data which is selected and 
constructed from values determined internally 
according to execution conditions and passed 
within or between functions. For example, a 
program flmction may wish to return two values, 
and so it conses them together. Should the 
functions receiving this pair simply take CAR and 
coo of  it, or must a data module be created with 
selector functions for obtaining pieces of it and a 
constructor  function for forming it in the first 
place? 

A: One might argue that a change to this data is a 
change to the program, and so hiding it in a data 
module  is pointless. This is true to some degree; 
however,  abstracted data is always easier to deal with. 
It makes the program easier to understand and verify: 
ICONS F00 BAR) stuck in the middle of a program is 
probably more confusing than (RETURN-rlULTIPLE-VALUES 
F00 BAR). It makes the program easier to modify: 
suppose A creates internal data, and B and C use it. 
T h e n  C needs additional information. If the 
representat ion of this internal data is hidden, only A 
and C must be modified. Or take the example given in 
the question. If three values nmst be passed, the CONS 
must be changed to LISI or some other more complex 
s tructure.  The necessary changes are simplified if the 
internal  data has been abstracted from the program. 
T h e  point here is that it is a mistake to think of "the 
program" as monolithic. Abstraction of all data, 
regardless of where it comes from, always eases 
modification. 

III. BENEFITS 

At least ' four of the benefits of implementing data 
abstract ion in a program are: (1) it allows greater 
flexibility in choice of data representation, (2) it 
enhances self-documentation, (3) it encourages one to 
consider the data at an abstract level, apart from 
program specification, and (4) it facilitates proving 
program correctness. 

III. 1 Flexibility 

Data representations are easily changed when all 
that  needs to be done to compensate for the change is 
to rewrite a few functions. One might decide against 
conver t ing to a more optimal data representation if it 
nleans completely revising an existing program, but if 
da ta  abstraction has been practiced, the necessary 
changes are simple and quickly made. In addition, 
because of  the ease of conversion from one data 
representat ion to another, it is possible to confirm 
experimental ly which is best for the program. 

III.2 Self-Documentation 

A program is self-documenting if the functions 
used are given appropriate names that aid a reader in 
identifying the piece of data being selected or 
constructed.  This increased readability helps to reduce 
programnfing errors. Coding the program is facilitated 
as well, since each time a piece of data is needed, the 
programmer  need not take time to recall the procedure 
needed to obtain it, but simply codes the appropriate 
apt ly-named function call. 

III.3 Abstract  Data 

In distinguishing data modules from program 
functions,  dat;l abstraction allows the programmer to 
disregard the details of data representation during 
program specification and to handle them, instead, 
when programming has been completed. Thus, not 
only is he encouraged to think of the data at an 
abst ract  level, but once programming is done, a more 
rat ional  decision concerning optimal data representation 
can be made [Baizer 1967]. 
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III.4 Proving Program Correctness 

The task of proving program ,correctness is 
simplified when a program has been decomposed into 
program functions and data modules functions. That 
all of the functions it uses are correct can be taken as 
a set of axioms in proving a given function correct, 
thus breaking down the work that must be done to 
prove the entire program correct [Parnas 1971]. Of 
course, modularization other than that done in 
abstracting the data should be practiced in order to 
obtain the full benefits, but data abstraction will 
facilitate proofs of correct data selection and 
construction. 

IV. PROBLEMS AND PARTING THOUGHTS 

Run time for the decomposed program will 
undoubtedly prove to be much greater than for the 
original program due to the frequency of calls made to 
the data module functions. To avoid this overhead, a 
compile-time pre-processor which replaces each call by 
the appropriate in-line code is desirable [Parnas 1972, 
G. Steele 1977]. We have developed a set of 
optimizing transformations to be used with a source-to- 
source transformation system, discussed in [B. Steele 
1980]. 

Although ideally one should not be concerned 
with efficiency while implementing data abstraction in 
a program, more pragmaticaUy, it behooves one to take 
into consideration the capabilities of automatic 
optimizations when coding the program. For example, 
perhaps the same piece of data is selected more than 
once within a program function. Depending on how 
complicated the selection fimction is, the returned 
value would perhaps be best bound in a lambda 
expression to avoid having to select it again. The 
overhead of assignment should be avoided if possible, 
however. If the optimizer to be used has the power to 
note multiple uses of functions and perform a binding 
if the complexity of the function definition 
recommends it, the programmer need not be concerned 
with the issue of common sub-expression [Geschke 
1972, Wulf et al 1975]. But if the optimizer is only 
capable of procedure integration for the numerous calls 
to data module functions, then the programmer might 
wish to give some thought to lambda binding the 
results of a call himself. There is program readability 
on the one hand, and speed of execution oh the other. 
Clearly, program optimization and data abstraction go 
hand in hand; together they ease the programming 
task and bring us closer to the ultimate goal of 
automatic program synthesis. 
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