
AN ARCHITECTURE WITH MANY OPERAND REGISTERS
TO EFFICIENTLY EXECUTE BLOCK-STRUCTURED LANGUAGES m

Roger B. Dannenberg

Department of Systems Engineering,
Computer Enqineering, and Information Sciences

Case Western Reserve University
Cleveland, Ohio 44106

Abstract

Register allocation schemes are
presented that effectively use many regis-
ters in the execution of block-structured
languages. Simulation statistics for a
machine with many registers and a conven-
tional architecture are compared. The
results indicate that the average operand
access time and the required memory
bandwidth of conventional machines can be
significantly reduced. The implications
of the register allocation schemes for
machine architecture are discussed.

i. Introduction

Recent advances in semiconductor
technology have made large register sets
feasible. By "register set," we mean a
memory with an access time on the order of
one tenth that of primary memory; by
"large," we mean hundreds or thousands of
words. Methods of using many registers to
speed up the execution of block-structured
languages with potentially recursive pro-
cedures are presented. These methods
reguire special hardware in addition to
many registers. Finally, results from a
simulation study are presented and dis-
cussed.

1.1 Background

Many processors have a small set of
registers, numbering 4 to 16. These regis-
ters can be used to contain variables
which are repeatedly used, thus savinq
memory accesses and decreasing the average
operand access time. Unfortunately, much
of this savinqs is lost in the overhead of
loading and storing registers. Studies
have found that about 30% to 40% of all
instructions executed are simple moves
between registers and memory. Further-
more, measurements have shown that com-
pilers are unable to effectively use more
than a few registers. If,2,3] This is

~ork partially supported by NSF grant
SPI-7821198.

partially due to the fact that compilers
almost invariably save and restore regis-
ters on subroutine calls.[4] A large
number of registers are provided in the
CRAY-I computer. A method for efficient
use of these registers is described in [5]
and is similar to the technigues to be
described. This paper is concerned with
the problem of effectively usinq registers
to reduce the average operand access time.
The reduction of primary memory bandwidth
is also discussed. Our approach only
deals with the speedup of data references;
instruction fetches are not considered.

Let us first consider the traditional
method of run-time storage administration
for a block-structured]anguage. Because
procedures may be entered recursively,
memory for variables within each procedure
is allocated from a common stack. When
entered, a procedure first allocates an
activation record on the stack (Figure i).
The activation record provides storage for
all the fixed-length variables declared
within the procedure. Data structures
whose lengths are not known at compile
time are separately allocated on the stack
and are accessed through fixed-length
descriptors in the activation record.

In order to access activation records
themselves, a set of pointers called a
display is used. The display holds ad-
dresses of currently accessible activation
records. Figure 2 illustrates an instance
of the execution of a program. Procedure
Q has been called recursivelv, so two
activation records for 0 are on the stack.
The semantics of block-structured

Proc P:

Local I , J

Local A [I :N]

End P

i I
I Storage

J I I fo r A
descr ip tor

fo r A

Ac t i va t ion Record
fo r P

Figure I . A procedure and i t s ac t i va t i on record.

CH1304-6/79/0000-0050 $00.7501979 IEEE

50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800090.802892&domain=pdf&date_stamp=1979-04-23

Proc P:
Activation

Proc Q: Record
Proc R: Stack

body of R

End R Q

body of Q

End Q

Proc S:

body of S

End S

body of P Display I I ~
End P LQ_L_

Figure 2. Activation records and display during

an execution of procedure Q

languages specify that procedure Q can
only access the most recent activations of
variables declared in P or 0. Therefore,
the display only contains pointers to the
most recently allocated activation records
for these procedures. Various schemes are
used to maintain the display and manage
the stack. Here, we are only concerned
with the manner in which variables are
stored and accessed.

To access a variable in this conven-
tional scheme, two address fields are
required. The first selects a display
pointer. To this pointer is added the
second address field which is the offset
of the variable in the activation record.
Finally, the variable is fetched from the
computed address. Assuming that the
display is maintained in registers, ac-
cessing a simple variable requires the
fetching of two offsets, a register ac-
cess, an addition, and a data-memory
reference. This process is illustrated in
Figure 3. Several variations of this
scheme are used. They differ primarily in
the way the display is maintained and
accessed.

One variation always maintains the
display in high-speed registers. The
registers are updated on procedure entry
and exit to maintain the correct display.
Now, suppose instead of maintaining
pointers to activation records, we put
into registers parts of the activation
records themselves. This would eliminate
an addition and a memory reference for
some variable accesses, leaving only a
register access. Only one offset would be
required to address the variable. Of
course,, the overhead of maintaining this
new "display" is higher than before, and
more registers are required.

2. Using Many Registers

2.1 Register Allocation

To evaluate the efficiency of this
concept, several methods of maintaining
the registers will first be examined. In
general, the size of an activation record
could be much too large to be kept entire-
ly in registers. This is the case when
large structures (e.g. arrays or records)
are part of the activation record. The
approach taken here is a simple one: keep
all simple variables and structure
descriptors in registers. Structures
themselves are kept in primary memory on a
stack. From here on we will use "vari-
ables" to refer to both simple variables
and structure descriptors, but not struc-
tures. The term "activation record" will
refer to the set of variables in a pro-
cedure. We will also assume that separate
activation records are not created for
blocks within procedures, but rather the
procedure's activation record contains
space for all variables declared inside
the procedure. This scheme is commonly
used by conventional compilers because the
overhead of creating a new activation
record is unnecessary for block entry. J6]

It is obvious that our method will
require many registers. Recent advances
in semiconductor technology have made this
feasible. Several manufacturers are now
producinq 4k bit integrated circuit memory
chips with access times of less than
100ns.[7] One thousand 16-bit reqisters
could be implemented with four chips.
Information in [8] indicates that one
thousand reqisters is more than adequate
for a large program.

While the basic concept is to keep
all accessible variables in registers, a

l) fetch address pair (a,b)
2) fetch Display[a]
3) add offset b
4) fetch memory word at the

address (Display[a] + b)

(l) I a I b i (3) b
address of X ~ I

Display

Activation
Record
Stack

(4)

Figure 3. Conventional address calculation to
access a variable in a block-structured
language.

51

number of variations are possible.
Several schemes are presented which differ
in the way registers are statically and
dynamically allocated.

2.1.1 Scheme A. Scheme A (Figure 4)
statically allocates registers for activa-
tion records such that no registers are
shared by activation records. At run
time, only the most recent activation
record for each procedure is kept in re-
gisters. When a procedure is entered, the
contents of the registers are copied into
a stack in primary memory. When the pro-
cedure is exited, the contents are re-
stored from the stack. Registers are
copied so that register contents are not
destroyed when a procedure is recursively
called. Because structures are allocated
in primary memory, only short descriptors
need be copied to provide for recursion.

For example, in Figure 4, suppose R
is called. R saves L and M in case these
hold values from another activation of R.
When R returns, L and M are restored.
Notice that during the execution of R, all
accessible variables (I,J,K,L,and M) are
in registers.

Proc P:

Local I , J

Proc Q:

Local K

Proc R:

Local L,M

End R

End Q

Proc S:

Local N, 0

End S

End P

I

J

K

L

M

N

0

counter p

counter q

counter r

counter s

activation records
do not overlap

Figure 4. Allocation of registers
for schemes A and B.

P

Q

R

S

used
only in
scheme B

2.1.2 Scheme B. Scheme A can be made
more efficient by only saving registers
when a procedure is recursively entered.
An extra register is associated with each
procedure as a recursion counter. The
counter is initialized to zero and incre-
mented upon procedure entry. If the
result is greater than one, the registers
(excluding the counter) are saved in pri-
mary memory as before. Otherwise, the

registers do not contain any useful infor-
mation and need not be saved. On pro-
cedure exit, the counter is decremented.
If it is non-zero, registers are restored
by copyinq values from the stack; other-
wise, no action is taken. This will be
refered to as scheme B.

2.1.3 Scheme C. A disadvantage of
schemes A and B is that the number of
registers needed is approximately the
total number of variables in all pro-
cedures. Scheme C introduces a strategy
which reduces this number, but reguires as
much copying as scheme A. In scheme C,
variables within a procedure are assigned
to successive registers. Given that re-
gister i is the last register used by pro-
cedure P, then register i+l is the first
register used by each procedure declared
in P. Thus, many variables may be associ-
ated with a single register (Figure 5).
Since no two variables accessible to a
given procedure are assigned to the same
register, it is still possible to keep all
accessible variables in registers. The
copying rule of scheme A is used: save all
registers upon entry and restore them upon
exit. Recursion counters are not used
because registers are shared among dif-
ferent activation records.

Consider the previous example where R
is called. Again, R saves registers for L
and M. In this case, the registers saved
may contain parts of other activation
records (e.g. variable O in procedure S),
but only variables which are inaccessible
to R are saved. The register contents are
restored when R returns to its caller.

l ili
J

K, N

L, 0

M

Note that activation
records overlap.

Figure 5. Allocation of registers for scheme C.
(same program as in figure 4)

2.1.4 Scheme D. Although similar to
scheme C, scheme D uses a different copy-
ing rule. Consider the behavior of scheme
C when a procedure repeatedly calls a non-
recursive function (or procedure) declared
within the procedure. On each function
call, the function must save all the re-
gisters corresponding to its activation
record. The same values are saved and
restored each time the function is called.
If instead those registers are saved when
the procedure is entered, there is no need
to repeatedly save them when the function

52

is called. Scheme D accomplishes this
with its copying rule which guarantees
that whenever control passes from one
nesting level to the next, no registers
are saved. Saves are performed only when
procedures at the same or outer levels are
called. A variable that serves as a
counter is added to each procedure con-
taining other procedure declarations (Fig-
ure 6). The counter is shared by the pro-
cedures declared in the same enclosing
procedure. A counter is also added to the
level 0 (global) activation record and
initialized to zero. When a procedure at
level i is entered, the counter at level
i-i is incremented. If the result is not
one, all registers used by the procedure
and by any enclosed procedures are saved
on the stack in primary memory. If the
counter equals i, no copy is performed.
Finally, if there is a counter at level i,
it is initialized to zero. To exit a pro-
cedure at level i, the counter at level
i-i is decremented and reqisters are re-
stored if appropriate.

For example, suppose Q calls pro-
cedure R. Q has already saved registers 4
through 7 (Figure 6) and initialized
counter q to zero. When R is called,
counter q is incremented; the result indi-
cates R does not need to save registers
for its variables L and M. If R then
calls itself, counter q is incremented
again. The result is not one (i), indi-
cating that registers 6 and 7 are in use
and must be saved. Thus, recursion is
safely handled, but R does not save regis-
ters when called by O.

2.2 Parameter Passing

Parameters may be passed in a variety
of ways; the best mechanism will depend
upon the intended semantics (e.g. call-
by-value) and features of the instruction
set.

I
J P

counter p

K,N 1
counter q, Q

L R
M

When registers are saved,
P saves registers l through 7
Q saves registers 4 through 7
R saves registers 6 through 7
S saves registers 4 through 5

Figure 6. Allocation of registers for scheme D.
(same program as in figure 4)

2.2.1 Call-By-Value. Consider an
architecture w~ch uses an evaluation
stack for its arithmetic computations, and
assume non-structured parameters are
passed by value. Structures are passed by
reference. The calling procedure simply
evaluates parameter expressions and leaves
them on the stack. In the case of
structured parameters, the corresponding
descriptor is pushed on the stack. If
necessary, the called procedure first
saves the appropriate registers. Then
parameters are popped from the stack into
registers in the procedure's activation
record. This is the mechanism used in our
simulation study. The evaluation stack is
distinct from the activation record stack
and is implemented with a small number of
fast registers.

Call-by-value/result can be imple-
mented by returning the results on the
evaluation stack in a similar manner.

~.2.2 Call-B~-Reference. Two prob-
lems are encountered with call-by-
reference parameters. First, a reference
parameter must exist in a single address-
able location for the duration of the pro-
cedure call. Secondly, if the actual
parameter is a global variable, we must be
able to refer to the same location as a
global or as a parameter. (This is known
as aliasing.) To do this, we propose
associating a bit with each register indi-
catinq "reference" or "value". When the
bit indicates "value", the content of the
register is the value of a simple variable
or structure descriptor. "Reference"
indicates that the value is at the primary
memory location addressed by the contents
of the register. When an instruction
accesses a register and the bit indicates
"reference", a memory fetch is automati-
cally initiated to retrieve the value.
Special instructions are provided which
ignore the bit, so that references can be
manipulated.

An instruction, REF, takes a register
with a "value" and pushes it onto the
structure memory stack, replacing the
register contents with the address of the
value and setting the bit to "reference"
(Figure 7). Another instruction, UNREF,
performs the inverse operation. Bits are
initialized to "value" when the activation
record is allocated at run-time.

To pass the variable in register i as
a reference parameter, we execute "REF i"
which puts the value into a location which
is fixed for the duration of the procedure
call. Register i now has an address which
is passed to the procedure. When the pro-
cedure returns, "UNREF i" can be used to
restore the variable value to register i
and set bit i back to "value". Suppose
reqister i holds a global variable used by

53

the called procedure. Any instruction
which accesses register i will find bit i
set to "reference", and the operation will
be directed to the memory location where
the value is stored. Thus, aliasing is
correctly handled.

If aliasing is not allowed, the
simpler value/result scheme is eouivalent
to call-by-reference.

2.3 Implementation

2.3.1 Block Transfers. All of these
schemes can reauire copying blocks of
reqisters into a stack and back again;
single instructions should be provided to
effect these transfers. The transfers
could be combined with subroutine call
instructions. Registers can be saved on
the same stack that structures are allo-
cated on. Alternatively, registers can be
saved on a separate stack. If this ap-
proach is used, the stack is accessed in a
strict first-in, first-out manner. No
references are made to data below the top
of the stack. This allows the memory
stack to be buffered by a simple hardware
scheme. Because the average number of
parameters and local variables is small
[9], a small buffer should greatly reduce
the number of memory references due to
saving and restoring registers, although
measurements presented below indicate that
this may not make up a significant part of
the total memory references.

2.3.2 Instruction Set. Aside from
the special save and restore instructions,
conventional instruction sets are suitable
for the proposed architecture. The in-
struction set will rarely address memory
directly, so most instructions will not
need large address fields. Register-to-
register operations may be provided, or

"I i - I

i

i+l

REF i

 NRE i
registers

value

stack

registers

tag bi t indicates
"val ue"

tag b i t indicates
"reference"

Figure 7. The operation of REF and UNREF
instructions.

operations may be based on a single accu-
mulator or an evaluation stack. Some come
bination of the above may also be used.

It is a property of the described
register allocation schemes that the run-
time address of a variable in a register
is known at compile time. Therefore, no
run-time address translation need be used
when accessing variables. Operand access
time is decreased because no address cal-
culations are needed. However, there are
reasons for using address translation.
Eirst, data in [9] indicates that few
address bits are needed on the average if
variables are addressed relative to
pointers to local and global activation
records. A set of 1024 registers would
reauire 10 bits to directly address all
registers. A significant savings might be
obtained if registers were addressed rela-
tive to one or more pointers, initialized
on procedure entry. Secondly, address
mapping can allow the registers to be par-
titioned among several users in a mul-
tiprogramminq environment. This should
allow context-switching without the over-
head of saving many registers.

2.3.3 Interrupts. Interrupts can be
handled in the same way as ordinary
subroutine calls. The interrupt routine
must allocate registers for its activation
area, but a complete context swap is not
necessary. Various protection and memory
mapping schemes are possible to guard
against interference between processes.

3. Evaluation

3.1 Terminology

To evaluate this type of architec-
ture, measurements of program behavior are
used. We would like to measure the reduc-
tion of averaqe operand access time as a
result of register usage. Three parame-
ters affect this:

i) Save/Restore overhead: The ratio
of memory references due to saves and
restores to total memory references.
2) Register usage ratio: The ratio of
register accesses to total storage
accesses (exclHsive of saves and
restores).
3) Register speed: The ratio of
register access time to memory access
time.

To make the definitions of the first
two parameters more precise, let R be the
total number of bytes referenced in regis-
ters, and let M be the total number of
bytes referenced in primary memory. Let r
be the number of register bytes referenced
to perform saves and restores, and let m
be the number of primary memory bytes
referenced due to reqister savinq and res-

54

toting. Both instruction fetches and data
references are included in m. The
save/restore overhead is then given by:

Save/restore overhead =
m

M

and the register usaqe ratio is given by:

Register usage ratio =
(R-r)

(R-r) + (M-m)

The register usaqe ratio is analagous to
the hit ratio of cache memory systems.
Both give the ratio of storage references
satisfied by high-speed storage to the
total storage references, iqnoring refer-
ences that are made to maintain data in
the high-speed store. The register usage
ratio is independent of the allocation
scheme used provided that all accessible
variables are kept in registers.

3.2 Methodology

A simulation has been performed to
measure the first two parameters. An
interpreter was used to emulate a 16-bit
processor with many registers. The regis-
ters of this processor are 16 bits wide,
and a 16-bit-wide evaluation stack is used
for virtually all arithmetic operations.
Primary memory is byte-addressable, and
most instructions are 8 bits long. The
most frequently executed instructions,
push-register and pop-register, are encod-
ed in single bytes, including the register
address. The tag bits proposed to allow
call-by-reference parameters were not
included in the simulation.

The interpreter is instrumented to
record the number of memory accesses for
both the instructions and data. Register
accesses and procedure calls are counted.
Separate counts are kept for each pro-
cedure. References to the evaluation
stack are not included in the count for
register accesses. The intent is to meas-
ure "useful" register references, not the
reference overhead of the stack mechanism.
For example, "PUSH A; PUSH B; ADD; POP C"
references only 3 registers but the stack
is accessed 6 times. On the other hand,
if a three-address instruction format were
used, i.e. "ADD A,B,C", no stack refer-
ences would be made. Given the number of
calls on each procedure, we can compute
the number of register saves and restores
used by schemes A and C. If counts are
obtained for recursive calls, we can cal-
culate the save/restore overhead of scheme
B. The particular procedures measured are
not recursive, so the save/restore over-
head associated with scheme B in our
results is just the overhead due to fetch-
ing save/restore instructions. These

instructions update the recursion
counters, but this adds an insignificant
overhead. In general, the overhead in-
creases roughly in proportion to the
number of recursive calls. By counting
the number of calls to locally declared
(nested) procedures, the save/restore
overhead of scheme D can be calculated.

4. Results and Discussion

Two programs, an assembler and an
editor were measured. Both of these pro-
grams are written in a block-structured
language and compiled by hand. Very lit-
tle optimization was performed in the
translation. A total of 654,855 instruc-
tion were executed.

4.1 Save/Restore Overhead

Figure 8 summarizes the dynamic pro-
gram measurements. Static counts of the
number of registers used by each scheme
for each program are also presented in
Figure 8. Schemes A and B use signifi-
cantly more registers than either C or D
because the latter two allow activation
records to overlap. Figure 9 presents the

Measurements for Programs ASM and ED

Parameter ASM ED total

Number of Instructions
Executed* 321766 333089 654855

Number of Instruction
Bytes Fetched* 574985 594555 I079540

Data Bytes Referenced
In Primary Memory* 33959 53616 87575

Number of Registers
Referenced 124701 150293 274994

Number of Procedure
Calls 2444 1680 4224

Number of Calls to
Nested Procedures 807 1400 2207

Average Number of Registers in
Activation Records (static) 3.2 2.9 3.1

Average Number of Registers in (av)
Activation Records(dynamic) 2.6 3.3 3.0

(av)

Not including save and restore operations.

Total Registers Used

scheme A B C D
program

ASM 71 93 22 23

ED 35 47 15 16

Figure 8. Program Measurements.

55

computed save/restore overhead and regis-
ter usage ratio parameters for schemes B,
C, and D. Scheme A is omitted because it
is identical to scheme C in all respects
except the number of reqisters used is
greater. These figures include 6 bytes of
instructions per call to specify which
registers are to be saved and restored.
The largest save/restore overhead measured
is 6.27%. We would expect this number to
be quite high since our purpose is to use
a large amount of copying to keep vari-
ables in registers. Lunde remarks in [4]
that for a particular "highly subroutine-
structured large program" running on a
DECsysteml0, 9% of the instructions exe-
cuted are used to save and restore regis-
ters. Although this figure is not
presented in terms of memory bandwidth, it
indicates that conventional machines can
suffer from equally large (if not greater)
save/restore overheads.

The average overhead of scheme B,
1.94% is the lowest measured, however,
this scheme uses significantly more regis-
ters than schemes C or D. These have
higher average overheads of 5.56% and
4.45%, respectively. Scheme C is the sim-
plest to implement, but has the highest
measured overhead. Although scheme D had
a lower measured overhead than C in the
simulations, programs can easily be writ-
ten where this is not the case. Simula-
tions of a broader class of programs
should be made to fully evaluate these
schemes.

It is interesting to compare the
register allocation schemes presented here
with conventional register allocation
techniques. As mentioned in the introduc-

Save/Restore Overhead -- ratio of save/restore
memory references to total memory references
(in percent).

scheme: B C D

program

ASM 2.35% 6.27% 5.50%

ED 1.53% 4.78% 3.40%

average 1.94% 5.56% 4.45%

Register Usage Ratio -- ratio of register
references to total storage references,
excluding saves/restores (in percent).

program re~ister usage ratio

ASM 29.06%

ED 31.68%

average 30.37%

Figure 9. Results of simulations.

tion, studies have shown compilers are
unable to effectively use more than 4 to
10 registers in conventional architec-
tures.[l,2,3] The method presented here
allows many registers to be used. Furth-
ermore, the registers are mainly used to
hold program variables and structure
descriptors. No registers are used to
address activation records since these are
kept in registers at fixed locations.
Conventional register allocation algo-
rithms are quite complex, making efficient
compilation difficult and time-consuming.
Algorithms that allocate registers for any
of the schemes described here are trivial
by comparison.

4.2 Reduction of Memory Accesses

Architectures may also be compared on
the basis of reduction of primary memory
accesses as a result of reqister usage.
Several studies of instruction utilization
have been reported [1,10], but it is dif-
ficult to use these reports to compare the
register usage of two architectures.
Instructions are used to process data and
to access data. Because registers hog
both addresses and "useful" data, instruc-
tion traces indicate that most operands
are found in registers, even if few of
these operands correspond to proqram vari-
ables. Lunde suggests computing a "D-
ratio" [4] as a measure of instructions
used in data-structuring. An alternative
is to compute ratios of primary memory
references that access data to the total
of data accesses and instruction fetches.
We will call this the data reference ra-
tio. Let D be the number of data bytes
referenced in primary memory, and let I be
the number of bytes referenced for in-
struction fetching. If M is the total
number of primary memory bytes referenced,
then

M=I+D
and

D
Data reference ratio

M
It is assumed that a high ratio indicates
that few operands are retrieved from re-
gisters. Results in [4] indicate that
this ratio for the DECsysteml0 varies from
about 0.28 to 0.36. A value of about 0.36
is obtained from the Gibson mix [10], and
0.45 for th IBM 360.[11] The average
obtained from our simulation is only 0.10.
This figure includes memory references for
saving and restoring registers in the
worst case (scheme C) . This ratio is
small because th local variables are kept
in registers, reducing memory accesses for
data. This demonstrates that the use of
many registers can significantly decrease
references to memory for data. It follows
that the average access time for operands
is lower than in a conventional architec-
ture. One might ask if the ratio is small

56

because the instruction set is not effi-
ciently encoded, increasing the memory
accesses for instructions. Because regis-
ters are addressed with short addresses,
and because indexing is only done to ac-
cess arrays (not activation records), we
feel this is not the case.

4.3 Usage Ratio

The register usage ratio is computed
from the simulation and tabulated in Fig-
ure 9. The average indicates that regis-
ters account for about 30% of total
storage references. This figure is quite
high considering that registers are essen-
tially used only for program variables.
For example, execution of the program
statement "I := J + K" would result in 3
registers (6 bytes) being referenced. A
register usage ratio computed for a con-
ventional architecture would not have the
same meaning since registers are commonly
used for address calculations and holding
temporary results. Our measurements indi-
cate that the access time of a significant
fraction of storage references can be
reduced through the use of many registers.

Other methods of reducing effective
operand access times include operand pre-
fetching and cache memories. The IBM 360
model 91 is an example of a machine that
prefetches instructions and data. Ill]
This method is expensive to implement
because of the data-dependent nature of
control. Special hardware is required to
keep track of instances of variables.
However, the prefetching of only instruc-
tions might be useful in and architecture
with many registers.

4.3.1 Comparison With Cache Memories.
The cache memory offers fast access to
instructions and data. This can result in
higher performance than that of other
schemes, but at a higher cost than a large
register set. Thus, the use of many re-
gisters might be most cost effective on
small computers. In general, a cache
memory is slower than registers because of
the associative search time. Furthermore,
a cache cannot take advantage of program
structure to reduce memory accesses, or to
prefetch operands. Our technique also
eliminates a level of indirection to ac-
cess variables, which decreases access
time. In a very fast computer, the two
techniques might be combined, using many
registers for variables and a cache for
other storage.

5. Conclusion

The use of many registers can signi-
ficantly decrease the average operand
access time as compared to conventional
register machines. Simple register allo-
cation schemes can be used to effectively

utilize many registers. Simulation
results indicate that all accessible sim-
ple variables and structure descriptors
can be maintained in registers with very
little overhead. References to registers
account for about 30% of all storage
references, resultinq in a lower primary
memory bandwidth requirement.

Acknowledgements

The comments and criticisms of Pro-
fessor Alexander Thomasian throughout the
development of this paper are gratefully
acknowledged.

References

[I] Lunde, A. "Empirical Evaluation of
Some Features of Instruction Set Pro-
cessor Architectures," CACM Vol. 20,
No. 3 (Mar 1977), pp. 143-153.

[2] Yuval, G. "Is Your Register Really
Necessary?," Software -- Practice and
Experience, Vol. 7 (1977), p. 295.

[3] Yuval, G. "The Utility of the CDC 6000
Registers," Software -- Practice and
Experience, Vol. 7 (1977), pp.
535-536.

[4] Lunde, A. "More data on the O/W ra-
tios, A note an a paper by Flynn,"
Computer Architecture News, Vol. 4,
No. i (Mar 1975), pp. 9-~.

[5] Baskett, F. "More on Microprocessors
of the Future," Computer Architecture
News, Vol. 6, No. 5 (Dec 1977), pp.
14-17.

[6] Gries, D. Compiler Construction for
Digital Computers, John Wiley & Sons,
Inc., New York, 1971, pp. 193-211.

[7] Smith, S. and Garen, E. R. "Technology
Status Report On Recent NMOS
Processes," Computer Design, Aug.
1978, pp. 160-162.

[8] Wilner, W. T. "Bourroughs B1700 Memory
Utilization," AFIPS FJCC Proc. Vol.
41, Part 1 (1972), pp. 579-586.

[9] Tannenbaum, A. S. "Implications of
Structured Programming for Machine
Architecture," CACM Vol. 21, No. 3
(Mar 1978), pp. 237-246.

[10] Gibson, J. C. "The Gibson Mix," Rep.
TR 00.2043, IBM Systems Development
Div., Poughkeepsie, N.Y., 1970.

[ii] Anderson, D. W., et. al., "The IBM
System/360 Model 91: Machine Philoso-
phy and Instruction Handling," IBM
Journal of Research and Development,
Vol. ii, No. 1 (Jan 1967), pp. 8-24.

57

