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Abstract 

Register allocation schemes are 
presented that effectively use many regis- 
ters in the execution of block-structured 
languages. Simulation statistics for a 
machine with many registers and a conven- 
tional architecture are compared. The 
results indicate that the average operand 
access time and the required memory 
bandwidth of conventional machines can be 
significantly reduced. The implications 
of the register allocation schemes for 
machine architecture are discussed. 

i. Introduction 

Recent advances in semiconductor 
technology have made large register sets 
feasible. By "register set," we mean a 
memory with an access time on the order of 
one tenth that of primary memory; by 
"large," we mean hundreds or thousands of 
words. Methods of using many registers to 
speed up the execution of block-structured 
languages with potentially recursive pro- 
cedures are presented. These methods 
reguire special hardware in addition to 
many registers. Finally, results from a 
simulation study are presented and dis- 
cussed. 

1.1 Background 

Many processors have a small set of 
registers, numbering 4 to 16. These regis- 
ters can be used to contain variables 
which are repeatedly used, thus savinq 
memory accesses and decreasing the average 
operand access time. Unfortunately, much 
of this savinqs is lost in the overhead of 
loading and storing registers. Studies 
have found that about 30% to 40% of all 
instructions executed are simple moves 
between registers and memory. Further- 
more, measurements have shown that com- 
pilers are unable to effectively use more 
than a few registers. If,2,3] This is 
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partially due to the fact that compilers 
almost invariably save and restore regis- 
ters on subroutine calls.[4] A large 
number of registers are provided in the 
CRAY-I computer. A method for efficient 
use of these registers is described in [5] 
and is similar to the technigues to be 
described. This paper is concerned with 
the problem of effectively usinq registers 
to reduce the average operand access time. 
The reduction of primary memory bandwidth 
is also discussed. Our approach only 
deals with the speedup of data references; 
instruction fetches are not considered. 

Let us first consider the traditional 
method of run-time storage administration 
for a block-structured ]anguage. Because 
procedures may be entered recursively, 
memory for variables within each procedure 
is allocated from a common stack. When 
entered, a procedure first allocates an 
activation record on the stack (Figure i). 
The activation record provides storage for 
all the fixed-length variables declared 
within the procedure. Data structures 
whose lengths are not known at compile 
time are separately allocated on the stack 
and are accessed through fixed-length 
descriptors in the activation record. 

In order to access activation records 
themselves, a set of pointers called a 
display is used. The display holds ad- 
dresses of currently accessible activation 
records. Figure 2 illustrates an instance 
of the execution of a program. Procedure 
Q has been called recursivelv, so two 
activation records for 0 are on the stack. 
The semantics of block-structured 

Proc P: 

Local I ,  J 

Local A [ I :N ]  

End P 

i I 
I Storage 

J I I fo r  A 
descr ip tor  

fo r  A 

Ac t i va t ion  Record 
fo r  P 

Figure I .  A procedure and i t s  ac t i va t i on  record. 
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Proc P: 
Activation 

Proc Q: Record 
Proc R: Stack 

body of R 

End R Q 

body of Q 

End Q 

Proc S: 

body of S 

End S 

body of P Display I I ~  
End P LQ_L_ 

Figure 2. Activation records and display during 

an execution of procedure Q 

languages specify that procedure Q can 
only access the most recent activations of 
variables declared in P or 0. Therefore, 
the display only contains pointers to the 
most recently allocated activation records 
for these procedures. Various schemes are 
used to maintain the display and manage 
the stack. Here, we are only concerned 
with the manner in which variables are 
stored and accessed. 

To access a variable in this conven- 
tional scheme, two address fields are 
required. The first selects a display 
pointer. To this pointer is added the 
second address field which is the offset 
of the variable in the activation record. 
Finally, the variable is fetched from the 
computed address. Assuming that the 
display is maintained in registers, ac- 
cessing a simple variable requires the 
fetching of two offsets, a register ac- 
cess, an addition, and a data-memory 
reference. This process is illustrated in 
Figure 3. Several variations of this 
scheme are used. They differ primarily in 
the way the display is maintained and 
accessed. 

One variation always maintains the 
display in high-speed registers. The 
registers are updated on procedure entry 
and exit to maintain the correct display. 
Now, suppose instead of maintaining 
pointers to activation records, we put 
into registers parts of the activation 
records themselves. This would eliminate 
an addition and a memory reference for 
some variable accesses, leaving only a 
register access. Only one offset would be 
required to address the variable. Of 
course,, the overhead of maintaining this 
new "display" is higher than before, and 
more registers are required. 

2. Using Many Registers 

2.1 Register Allocation 

To evaluate the efficiency of this 
concept, several methods of maintaining 
the registers will first be examined. In 
general, the size of an activation record 
could be much too large to be kept entire- 
ly in registers. This is the case when 
large structures (e.g. arrays or records) 
are part of the activation record. The 
approach taken here is a simple one: keep 
all simple variables and structure 
descriptors in registers. Structures 
themselves are kept in primary memory on a 
stack. From here on we will use "vari- 
ables" to refer to both simple variables 
and structure descriptors, but not struc- 
tures. The term "activation record" will 
refer to the set of variables in a pro- 
cedure. We will also assume that separate 
activation records are not created for 
blocks within procedures, but rather the 
procedure's activation record contains 
space for all variables declared inside 
the procedure. This scheme is commonly 
used by conventional compilers because the 
overhead of creating a new activation 
record is unnecessary for block entry. J6] 

It is obvious that our method will 
require many registers. Recent advances 
in semiconductor technology have made this 
feasible. Several manufacturers are now 
producinq 4k bit integrated circuit memory 
chips with access times of less than 
100ns.[7] One thousand 16-bit reqisters 
could be implemented with four chips. 
Information in [8] indicates that one 
thousand reqisters is more than adequate 
for a large program. 

While the basic concept is to keep 
all accessible variables in registers, a 

l) fetch address pair (a,b) 
2) fetch Display[a] 
3) add offset b 
4) fetch memory word at the 

address (Display[a] + b) 

( l )  I a I b i (3) b 
address of X ~ I  

Display 

Activation 
Record 
Stack 

(4) 

Figure 3. Conventional address calculation to 
access a variable in a block-structured 
language. 
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number of variations are possible. 
Several schemes are presented which differ 
in the way registers are statically and 
dynamically allocated. 

2.1.1 Scheme A. Scheme A (Figure 4) 
statically allocates registers for activa- 
tion records such that no registers are 
shared by activation records. At run 
time, only the most recent activation 
record for each procedure is kept in re- 
gisters. When a procedure is entered, the 
contents of the registers are copied into 
a stack in primary memory. When the pro- 
cedure is exited, the contents are re- 
stored from the stack. Registers are 
copied so that register contents are not 
destroyed when a procedure is recursively 
called. Because structures are allocated 
in primary memory, only short descriptors 
need be copied to provide for recursion. 

For example, in Figure 4, suppose R 
is called. R saves L and M in case these 
hold values from another activation of R. 
When R returns, L and M are restored. 
Notice that during the execution of R, all 
accessible variables (I,J,K,L,and M) are 
in registers. 

Proc P: 

Local I ,  J 

Proc Q: 

Local K 

Proc R: 

Local L,M 

End R 

End Q 

Proc S: 

Local N, 0 

End S 

End P 

I 

J 

K 

L 

M 

N 

0 

counter p 

counter q 

counter r 

counter s 

activation records 
do not overlap 

Figure 4. Allocation of registers 
for schemes A and B. 

P 

Q 

R 

S 

used 
only in 
scheme B 

2.1.2 Scheme B. Scheme A can be made 
more efficient by only saving registers 
when a procedure is recursively entered. 
An extra register is associated with each 
procedure as a recursion counter. The 
counter is initialized to zero and incre- 
mented upon procedure entry. If the 
result is greater than one, the registers 
(excluding the counter) are saved in pri- 
mary memory as before. Otherwise, the 

registers do not contain any useful infor- 
mation and need not be saved. On pro- 
cedure exit, the counter is decremented. 
If it is non-zero, registers are restored 
by copyinq values from the stack; other- 
wise, no action is taken. This will be 
refered to as scheme B. 

2.1.3 Scheme C. A disadvantage of 
schemes A and B is that the number of 
registers needed is approximately the 
total number of variables in all pro- 
cedures. Scheme C introduces a strategy 
which reduces this number, but reguires as 
much copying as scheme A. In scheme C, 
variables within a procedure are assigned 
to successive registers. Given that re- 
gister i is the last register used by pro- 
cedure P, then register i+l is the first 
register used by each procedure declared 
in P. Thus, many variables may be associ- 
ated with a single register (Figure 5). 
Since no two variables accessible to a 
given procedure are assigned to the same 
register, it is still possible to keep all 
accessible variables in registers. The 
copying rule of scheme A is used: save all 
registers upon entry and restore them upon 
exit. Recursion counters are not used 
because registers are shared among dif- 
ferent activation records. 

Consider the previous example where R 
is called. Again, R saves registers for L 
and M. In this case, the registers saved 
may contain parts of other activation 
records (e.g. variable O in procedure S), 
but only variables which are inaccessible 
to R are saved. The register contents are 
restored when R returns to its caller. 

l ili  
J 

K, N 

L, 0 

M 

Note that activation 
records overlap. 

Figure 5. Allocation of registers for scheme C. 
(same program as in figure 4) 

2.1.4 Scheme D. Although similar to 
scheme C, scheme D uses a different copy- 
ing rule. Consider the behavior of scheme 
C when a procedure repeatedly calls a non- 
recursive function (or procedure) declared 
within the procedure. On each function 
call, the function must save all the re- 
gisters corresponding to its activation 
record. The same values are saved and 
restored each time the function is called. 
If instead those registers are saved when 
the procedure is entered, there is no need 
to repeatedly save them when the function 
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is called. Scheme D accomplishes this 
with its copying rule which guarantees 
that whenever control passes from one 
nesting level to the next, no registers 
are saved. Saves are performed only when 
procedures at the same or outer levels are 
called. A variable that serves as a 
counter is added to each procedure con- 
taining other procedure declarations (Fig- 
ure 6). The counter is shared by the pro- 
cedures declared in the same enclosing 
procedure. A counter is also added to the 
level 0 (global) activation record and 
initialized to zero. When a procedure at 
level i is entered, the counter at level 
i-i is incremented. If the result is not 
one, all registers used by the procedure 
and by any enclosed procedures are saved 
on the stack in primary memory. If the 
counter equals i, no copy is performed. 
Finally, if there is a counter at level i, 
it is initialized to zero. To exit a pro- 
cedure at level i, the counter at level 
i-i is decremented and reqisters are re- 
stored if appropriate. 

For example, suppose Q calls pro- 
cedure R. Q has already saved registers 4 
through 7 (Figure 6) and initialized 
counter q to zero. When R is called, 
counter q is incremented; the result indi- 
cates R does not need to save registers 
for its variables L and M. If R then 
calls itself, counter q is incremented 
again. The result is not one (i), indi- 
cating that registers 6 and 7 are in use 
and must be saved. Thus, recursion is 
safely handled, but R does not save regis- 
ters when called by O. 

2.2 Parameter Passing 

Parameters may be passed in a variety 
of ways; the best mechanism will depend 
upon the intended semantics (e.g. call- 
by-value) and features of the instruction 
set. 

I 
J P 

counter p 

K,N 1 
counter q, Q 

L R 
M 

When registers are saved, 
P saves registers l through 7 
Q saves registers 4 through 7 
R saves registers 6 through 7 
S saves registers 4 through 5 

Figure 6. Allocation of registers for scheme D. 
(same program as in figure 4) 

2.2.1 Call-By-Value. Consider an 
architecture w~ch uses an evaluation 
stack for its arithmetic computations, and 
assume non-structured parameters are 
passed by value. Structures are passed by 
reference. The calling procedure simply 
evaluates parameter expressions and leaves 
them on the stack. In the case of 
structured parameters, the corresponding 
descriptor is pushed on the stack. If 
necessary, the called procedure first 
saves the appropriate registers. Then 
parameters are popped from the stack into 
registers in the procedure's activation 
record. This is the mechanism used in our 
simulation study. The evaluation stack is 
distinct from the activation record stack 
and is implemented with a small number of 
fast registers. 

Call-by-value/result can be imple- 
mented by returning the results on the 
evaluation stack in a similar manner. 

~.2.2 Call-B~-Reference. Two prob- 
lems are encountered with call-by- 
reference parameters. First, a reference 
parameter must exist in a single address- 
able location for the duration of the pro- 
cedure call. Secondly, if the actual 
parameter is a global variable, we must be 
able to refer to the same location as a 
global or as a parameter. (This is known 
as aliasing.) To do this, we propose 
associating a bit with each register indi- 
catinq "reference" or "value". When the 
bit indicates "value", the content of the 
register is the value of a simple variable 
or structure descriptor. "Reference" 
indicates that the value is at the primary 
memory location addressed by the contents 
of the register. When an instruction 
accesses a register and the bit indicates 
"reference", a memory fetch is automati- 
cally initiated to retrieve the value. 
Special instructions are provided which 
ignore the bit, so that references can be 
manipulated. 

An instruction, REF, takes a register 
with a "value" and pushes it onto the 
structure memory stack, replacing the 
register contents with the address of the 
value and setting the bit to "reference" 
(Figure 7). Another instruction, UNREF, 
performs the inverse operation. Bits are 
initialized to "value" when the activation 
record is allocated at run-time. 

To pass the variable in register i as 
a reference parameter, we execute "REF i" 
which puts the value into a location which 
is fixed for the duration of the procedure 
call. Register i now has an address which 
is passed to the procedure. When the pro- 
cedure returns, "UNREF i" can be used to 
restore the variable value to register i 
and set bit i back to "value". Suppose 
reqister i holds a global variable used by 

53 



the called procedure. Any instruction 
which accesses register i will find bit i 
set to "reference", and the operation will 
be directed to the memory location where 
the value is stored. Thus, aliasing is 
correctly handled. 

If aliasing is not allowed, the 
simpler value/result scheme is eouivalent 
to call-by-reference. 

2.3 Implementation 

2.3.1 Block Transfers. All of these 
schemes can reauire copying blocks of 
reqisters into a stack and back again; 
single instructions should be provided to 
effect these transfers. The transfers 
could be combined with subroutine call 
instructions. Registers can be saved on 
the same stack that structures are allo- 
cated on. Alternatively, registers can be 
saved on a separate stack. If this ap- 
proach is used, the stack is accessed in a 
strict first-in, first-out manner. No 
references are made to data below the top 
of the stack. This allows the memory 
stack to be buffered by a simple hardware 
scheme. Because the average number of 
parameters and local variables is small 
[9], a small buffer should greatly reduce 
the number of memory references due to 
saving and restoring registers, although 
measurements presented below indicate that 
this may not make up a significant part of 
the total memory references. 

2.3.2 Instruction Set. Aside from 
the special save and restore instructions, 
conventional instruction sets are suitable 
for the proposed architecture. The in- 
struction set will rarely address memory 
directly, so most instructions will not 
need large address fields. Register-to- 
register operations may be provided, or 

"I i - I  

i 

i+l 

REF i 

 NRE i 
registers 

value 

stack 

registers 

tag bi t  indicates 
"val ue" 

tag b i t  indicates 
"reference" 

Figure 7. The operation of REF and UNREF 
instructions. 

operations may be based on a single accu- 
mulator or an evaluation stack. Some come 
bination of the above may also be used. 

It is a property of the described 
register allocation schemes that the run- 
time address of a variable in a register 
is known at compile time. Therefore, no 
run-time address translation need be used 
when accessing variables. Operand access 
time is decreased because no address cal- 
culations are needed. However, there are 
reasons for using address translation. 
Eirst, data in [9] indicates that few 
address bits are needed on the average if 
variables are addressed relative to 
pointers to local and global activation 
records. A set of 1024 registers would 
reauire 10 bits to directly address all 
registers. A significant savings might be 
obtained if registers were addressed rela- 
tive to one or more pointers, initialized 
on procedure entry. Secondly, address 
mapping can allow the registers to be par- 
titioned among several users in a mul- 
tiprogramminq environment. This should 
allow context-switching without the over- 
head of saving many registers. 

2.3.3 Interrupts. Interrupts can be 
handled in the same way as ordinary 
subroutine calls. The interrupt routine 
must allocate registers for its activation 
area, but a complete context swap is not 
necessary. Various protection and memory 
mapping schemes are possible to guard 
against interference between processes. 

3. Evaluation 

3.1 Terminology 

To evaluate this type of architec- 
ture, measurements of program behavior are 
used. We would like to measure the reduc- 
tion of averaqe operand access time as a 
result of register usage. Three parame- 
ters affect this: 

i) Save/Restore overhead: The ratio 
of memory references due to saves and 
restores to total memory references. 
2) Register usage ratio: The ratio of 
register accesses to total storage 
accesses (exclHsive of saves and 
restores). 
3) Register speed: The ratio of 
register access time to memory access 
time. 

To make the definitions of the first 
two parameters more precise, let R be the 
total number of bytes referenced in regis- 
ters, and let M be the total number of 
bytes referenced in primary memory. Let r 
be the number of register bytes referenced 
to perform saves and restores, and let m 
be the number of primary memory bytes 
referenced due to reqister savinq and res- 
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toting. Both instruction fetches and data 
references are included in m. The 
save/restore overhead is then given by: 

Save/restore overhead = 
m 

M 

and the register usaqe ratio is given by: 

Register usage ratio = 
(R-r) 

(R-r) + (M-m) 

The register usaqe ratio is analagous to 
the hit ratio of cache memory systems. 
Both give the ratio of storage references 
satisfied by high-speed storage to the 
total storage references, iqnoring refer- 
ences that are made to maintain data in 
the high-speed store. The register usage 
ratio is independent of the allocation 
scheme used provided that all accessible 
variables are kept in registers. 

3.2 Methodology 

A simulation has been performed to 
measure the first two parameters. An 
interpreter was used to emulate a 16-bit 
processor with many registers. The regis- 
ters of this processor are 16 bits wide, 
and a 16-bit-wide evaluation stack is used 
for virtually all arithmetic operations. 
Primary memory is byte-addressable, and 
most instructions are 8 bits long. The 
most frequently executed instructions, 
push-register and pop-register, are encod- 
ed in single bytes, including the register 
address. The tag bits proposed to allow 
call-by-reference parameters were not 
included in the simulation. 

The interpreter is instrumented to 
record the number of memory accesses for 
both the instructions and data. Register 
accesses and procedure calls are counted. 
Separate counts are kept for each pro- 
cedure. References to the evaluation 
stack are not included in the count for 
register accesses. The intent is to meas- 
ure "useful" register references, not the 
reference overhead of the stack mechanism. 
For example, "PUSH A; PUSH B; ADD; POP C" 
references only 3 registers but the stack 
is accessed 6 times. On the other hand, 
if a three-address instruction format were 
used, i.e. "ADD A,B,C", no stack refer- 
ences would be made. Given the number of 
calls on each procedure, we can compute 
the number of register saves and restores 
used by schemes A and C. If counts are 
obtained for recursive calls, we can cal- 
culate the save/restore overhead of scheme 
B. The particular procedures measured are 
not recursive, so the save/restore over- 
head associated with scheme B in our 
results is just the overhead due to fetch- 
ing save/restore instructions. These 

instructions update the recursion 
counters, but this adds an insignificant 
overhead. In general, the overhead in- 
creases roughly in proportion to the 
number of recursive calls. By counting 
the number of calls to locally declared 
(nested) procedures, the save/restore 
overhead of scheme D can be calculated. 

4. Results and Discussion 

Two programs, an assembler and an 
editor were measured. Both of these pro- 
grams are written in a block-structured 
language and compiled by hand. Very lit- 
tle optimization was performed in the 
translation. A total of 654,855 instruc- 
tion were executed. 

4.1 Save/Restore Overhead 

Figure 8 summarizes the dynamic pro- 
gram measurements. Static counts of the 
number of registers used by each scheme 
for each program are also presented in 
Figure 8. Schemes A and B use signifi- 
cantly more registers than either C or D 
because the latter two allow activation 
records to overlap. Figure 9 presents the 

Measurements for Programs ASM and ED 

Parameter ASM ED total 

Number of Instructions 
Executed* 321766 333089 654855 

Number of Instruction 
Bytes Fetched* 574985 594555 I079540 

Data Bytes Referenced 
In Primary Memory* 33959 53616 87575 

Number of Registers 
Referenced 124701 150293 274994 

Number of Procedure 
Calls 2444 1680 4224 

Number of Calls to 
Nested Procedures 807 1400 2207 

Average Number of Registers in 
Activation Records (static) 3.2 2.9 3.1 

Average Number of Registers in (av) 
Activation Records(dynamic) 2.6 3.3 3.0 

(av) 

Not including save and restore operations. 

Total Registers Used 

scheme A B C D 
program 

ASM 71 93 22 23 

ED 35 47 15 16 

Figure 8. Program Measurements. 
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computed save/restore overhead and regis- 
ter usage ratio parameters for schemes B, 
C, and D. Scheme A is omitted because it 
is identical to scheme C in all respects 
except the number of reqisters used is 
greater. These figures include 6 bytes of 
instructions per call to specify which 
registers are to be saved and restored. 
The largest save/restore overhead measured 
is 6.27%. We would expect this number to 
be quite high since our purpose is to use 
a large amount of copying to keep vari- 
ables in registers. Lunde remarks in [4] 
that for a particular "highly subroutine- 
structured large program" running on a 
DECsysteml0, 9% of the instructions exe- 
cuted are used to save and restore regis- 
ters. Although this figure is not 
presented in terms of memory bandwidth, it 
indicates that conventional machines can 
suffer from equally large (if not greater) 
save/restore overheads. 

The average overhead of scheme B, 
1.94% is the lowest measured, however, 
this scheme uses significantly more regis- 
ters than schemes C or D. These have 
higher average overheads of 5.56% and 
4.45%, respectively. Scheme C is the sim- 
plest to implement, but has the highest 
measured overhead. Although scheme D had 
a lower measured overhead than C in the 
simulations, programs can easily be writ- 
ten where this is not the case. Simula- 
tions of a broader class of programs 
should be made to fully evaluate these 
schemes. 

It is interesting to compare the 
register allocation schemes presented here 
with conventional register allocation 
techniques. As mentioned in the introduc- 

Save/Restore Overhead -- ratio of save/restore 
memory references to total memory references 
(in percent). 

scheme: B C D 

program 

ASM 2.35% 6.27% 5.50% 

ED 1.53% 4.78% 3.40% 

average 1.94% 5.56% 4.45% 

Register Usage Ratio -- ratio of register 
references to total storage references, 
excluding saves/restores (in percent). 

program re~ister usage ratio 

ASM 29.06% 

ED 31.68% 

average 30.37% 

Figure 9. Results of simulations. 

tion, studies have shown compilers are 
unable to effectively use more than 4 to 
10 registers in conventional architec- 
tures.[l,2,3] The method presented here 
allows many registers to be used. Furth- 
ermore, the registers are mainly used to 
hold program variables and structure 
descriptors. No registers are used to 
address activation records since these are 
kept in registers at fixed locations. 
Conventional register allocation algo- 
rithms are quite complex, making efficient 
compilation difficult and time-consuming. 
Algorithms that allocate registers for any 
of the schemes described here are trivial 
by comparison. 

4.2 Reduction of Memory Accesses 

Architectures may also be compared on 
the basis of reduction of primary memory 
accesses as a result of reqister usage. 
Several studies of instruction utilization 
have been reported [1,10], but it is dif- 
ficult to use these reports to compare the 
register usage of two architectures. 
Instructions are used to process data and 
to access data. Because registers hog 
both addresses and "useful" data, instruc- 
tion traces indicate that most operands 
are found in registers, even if few of 
these operands correspond to proqram vari- 
ables. Lunde suggests computing a "D- 
ratio" [4] as a measure of instructions 
used in data-structuring. An alternative 
is to compute ratios of primary memory 
references that access data to the total 
of data accesses and instruction fetches. 
We will call this the data reference ra- 
tio. Let D be the number of data bytes 
referenced in primary memory, and let I be 
the number of bytes referenced for in- 
struction fetching. If M is the total 
number of primary memory bytes referenced, 
then 

M=I+D 
and 

D 
Data reference ratio ..... 

M 
It is assumed that a high ratio indicates 
that few operands are retrieved from re- 
gisters. Results in [4] indicate that 
this ratio for the DECsysteml0 varies from 
about 0.28 to 0.36. A value of about 0.36 
is obtained from the Gibson mix [10], and 
0.45 for th IBM 360.[11] The average 
obtained from our simulation is only 0.10. 
This figure includes memory references for 
saving and restoring registers in the 
worst case (scheme C) . This ratio is 
small because th local variables are kept 
in registers, reducing memory accesses for 
data. This demonstrates that the use of 
many registers can significantly decrease 
references to memory for data. It follows 
that the average access time for operands 
is lower than in a conventional architec- 
ture. One might ask if the ratio is small 
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because the instruction set is not effi- 
ciently encoded, increasing the memory 
accesses for instructions. Because regis- 
ters are addressed with short addresses, 
and because indexing is only done to ac- 
cess arrays (not activation records), we 
feel this is not the case. 

4.3 Usage Ratio 

The register usage ratio is computed 
from the simulation and tabulated in Fig- 
ure 9. The average indicates that regis- 
ters account for about 30% of total 
storage references. This figure is quite 
high considering that registers are essen- 
tially used only for program variables. 
For example, execution of the program 
statement "I := J + K" would result in 3 
registers (6 bytes) being referenced. A 
register usage ratio computed for a con- 
ventional architecture would not have the 
same meaning since registers are commonly 
used for address calculations and holding 
temporary results. Our measurements indi- 
cate that the access time of a significant 
fraction of storage references can be 
reduced through the use of many registers. 

Other methods of reducing effective 
operand access times include operand pre- 
fetching and cache memories. The IBM 360 
model 91 is an example of a machine that 
prefetches instructions and data. Ill] 
This method is expensive to implement 
because of the data-dependent nature of 
control. Special hardware is required to 
keep track of instances of variables. 
However, the prefetching of only instruc- 
tions might be useful in and architecture 
with many registers. 

4.3.1 Comparison With Cache Memories. 
The cache memory offers fast access to 
instructions and data. This can result in 
higher performance than that of other 
schemes, but at a higher cost than a large 
register set. Thus, the use of many re- 
gisters might be most cost effective on 
small computers. In general, a cache 
memory is slower than registers because of 
the associative search time. Furthermore, 
a cache cannot take advantage of program 
structure to reduce memory accesses, or to 
prefetch operands. Our technique also 
eliminates a level of indirection to ac- 
cess variables, which decreases access 
time. In a very fast computer, the two 
techniques might be combined, using many 
registers for variables and a cache for 
other storage. 

5. Conclusion 

The use of many registers can signi- 
ficantly decrease the average operand 
access time as compared to conventional 
register machines. Simple register allo- 
cation schemes can be used to effectively 

utilize many registers. Simulation 
results indicate that all accessible sim- 
ple variables and structure descriptors 
can be maintained in registers with very 
little overhead. References to registers 
account for about 30% of all storage 
references, resultinq in a lower primary 
memory bandwidth requirement. 
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