
AN EXPANDABLE ~ULTIPROCESSOR ARCHITECTURE FOR VIDEO GRAPHICS 
(Preliminary Report)* 

Henry Fuchs 
The University of North Carolina at Chapel Hill 

Brian W. Johnson 
The University of Texas at Dallas 

Abstract 

Presented is the design of a flexible 
expandable multi-processor system for 
video graphics and image processing. The 
design involves a central controller which 
broadcasts data to a variable number of 
independently executing processing units, 
each of which in turn controls a variable 
r.lmber of memory units among which the 
video (frame buffer) image is distributed. 
An interleaved addressing organization of 
the video memories guarantees both an even 
workload dis trib~ition as well as 
maintenance of image coherence for each 
processing element. Execution speed and 
image resolution can be independently 
altered (at any time) by varying the 
number of processing and memory units. 
Sample applications of the ~cystem -- for 
rapid line drawing and "electronic scene 
generation" (visible surface algorithms) 
-- are described. Variations of the 
design for low cost and for powerful, 
real-time configurations are outlined. 

Int roduc+ ion 

A long-standing goal of researchers 
in compu+er graphics systems has been the 
development of real-time three-dimensional 
modeling systems. These systems, which 
produce a realistic image of a simulated 
three-dimensional environment, have a wide 
variety of potential uses -- from 
simulators for pilot training to 
interactive design of houses and 
automobiles. The most sophisticated of 
these systems produce, in real-ti~e, 
images on color video displays (TV's) of 
startling reality. The only limitation to 
widespread use of these systems has been 
their prohibitive costs (Z500,000 and 
up). Thus virtually the only uses today 
are those for which there is no real 
alternative -- e.g., simulating maneuvers 
in gravity-free space or training 
simulators for pilots of large (and 
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expensive) airplanes. If such modeling 
systems could be provided at 
significiantly lower costs, it is safe to 
presume that their use would become 
dramatically more widespread. 

A short examination of the 
computational expense of the problem 
suffices to justify the complexity and 
expense of current systems which solve it. 
A video image to a digital system normally 
consists of a matrix of picture elements 
("pixels") of between 480 and 512 rows 
(scan lines) with from 512 to 6~0 pixels 
in each scan line. (Until recently this 
size was limited by the resolution of 
video monitors. Within the past two 
years, monitors with 900 to 1000 scan line 
capacity have become available; the factor 
of four increase in number of pixels per 
image only exacerbates the computational 
problem.) The image is then simply a set 
of some 300,000 pixels, each of which (for 
a color image} contains three independent 
components -- Red, Green, Blue -- each 
usually to 8-bits of resolution. The 
entire problem at hand is simply 
calculating these 900,000 values each time 
the image is scanned out onto the video 
screen, usually 30 times per second. 

Fig. 1 
(From Sutherland, S proull, 8 

Schumacker(1974)) 

The proper value at each pixel is a 
function of the data base (the simulated 
environment} , the viewing position and 
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orientation of the simulated viewer, and 
the location(s) of the light source(s) in 
the simulated environment. ~be 
environment is most often d~scribed as a 
set of objects in the environment 
(~uclidian three-space) coordinate system. 
Each object is usually described by a set 
o f  planar tiles ("polygons") which form 
its various surfaces. (Fig. I, from 
Sutherland, Sproull, and Schumacker(1974), 
shows the boundaries of a set of polygons 
defining the surface of a 3-D object.) 
(Other methods of object description are 
sometirres used -- e.g., as collections of 
geome~ tic solids (MP GI (196~)) or curved 
surfaces (Catmull (1075) , Blinn and 
~ewell(1976)) . Since *he particular 
object definition method does not 
significantly affect the sys+em 
~rchitec+ure, we shall assumt~ hereon that 
~he common planar-polygon descriptions are 
used.) In order to compute the Red, 
Green, and Blue values for a particular 
pixel, the system has to determine: 

a) which, if any, polygons map onto 
this pixel's area, 

b) which one from this set is closest 
~o the viewer (and thus is the one 
visible obscuring all the other 
polygons) , and 

c) the details about the precise part 
of this closest polygon which maps 
onto the pixel -- its assigned 
color, i~s angle and distance from 
the ligh ~ source(s), and its angle 
and distance to the viewer. 

When prog rammed on a con ven+ ional 
qeneral purpose compueer, com[~uting such a 
simulated i, aqe may well rake several 
minutes, and easily longer; so developing 
a system to do it in 1/30 second is a non- 
trivial task. (The bibliography lists 
references to algorithms and systems which 
influenced ~he design pDesented ir~ this 
pa per. ) 

To unders[and our solution, let us 
first e xamir~e the overall sequence of 
steps which need to be performed in order 
to produce a visible surface image on a 
video display. 

a) The origina I polygons (in object 
coordinate space) are transformed 
into the position as seen from the 
simulated viewing position. (This 
is a sequence of rotations and 
translations.) 

b) The parts of the environment data 
base which are not in the field of 
view are discarded from further 
consideration by clipping all 
polygons against the boundaries of 
the field of view. 

c) Perspective transformation is 
applied to foreshorten the 
appropriate environmental parts as a 
function of distance. 

It is at this point that a visible 
surface algorithm is invoked. 

Since steps a) , b) , c) can be 
achieved in real-time by current 
affordable line drawing systems (e.g. , 
Evans and Sutherland (I 976) , Vector 
General(1978)) , we will concentrate our 
attention on the actual visible surface 
computations. (Of course, these line- 
drawing systems are affordable partially 
because they do not have to perform the 
laborious visibility computations for some 
300,000 pixels :) Most current real-time 
video systems (Evans and Sutherland(1977) 
Shohat and Florence(1977)) use a pipeline 
architecture to achieve the necessary high 
throughput rates. (See fig. 2 from Shohat 
and Florence(IS77).) Each module in the 
pipeline is typically a highly specialized 
processing unit. Thus, these designs do 
no% easily lend themselves to substantial 
upgrading (to achieve higher capacity) or 
downgrading (+o achieve lower cost). 

Our own design capitalizes on the 
newly plentiful resource of inexpensive 
I.Sl circuitry. It allows a significant 
but bounded increase in both ~emory and 
processing requirements in return for 
architectural flexibility. Specifically, 
our solution is tailored -- although not 
restricted -- to what may be the simplest 
visible surface algorithm, the so-called 
"Z buffer" algorithm, one so simple that 
it seems never to have appeared in print 
in its own right. Sutherland, Sproull, 
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Fig .  2 
(From Shohat & F lorence(1977))  

59 



and Schumacker(197@) mention it in passing 
(p.51) , saying ,,that if a large memory is 
available ... This method resul~s in a 
computing cost which depends only on ~he 
depth number (Dc) and not otherwise on 
the environment cor~plexity." (Dc is the 
~umber of front-facing polygons ,'pierced, 
on the average, by an arbitrary ray from 
the viewpoint.") Catmull (Ig75) used the 
method as part of a more sophisticated 
algorithm for visible display of curved 
surfaces. The basic algorithm utilizes 
two large buffers each contaiz:ing an entry 
for each pixel oz~ the screen, an "image" 
buffer which contains the (RGB) 
intensities at each pixel, and a "Z" 
buffer which con+ains at each pixel the 
distance of the closest object encountered 
there so far (fig. 3). 
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value is compared with the entry in the Z 
buffer for this pixel. If this new value 
is smaller than the current entry then 
this new polygon is closer to the viewer 
at this pixel than the closest previously 
encountered polygon and so this new 
polygon would now be visible at this 
pixel. Thus in this case the new Z valse 
is put into the Z buffer and this new 
polygon's (RGB) intensity value is 
computed and inserted into the image 
buffer. If, on the other hand, the new Z 
value is greater than the value currently 
in the Z buffer at this pixel, then this 
polygon is farther than the closest 
polygon, and processing is terminated for 
this pixel for this polygon without any 
changes to the buffers. Processing 
continues with the next pixel into which 
the current Polygon "falls." 
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The polygons are processed sequentially, 
in any order. Each polygon's processing 
starts with determining the pixels upon 
which the polygon ',falls" in the image. 
For each such pixel the distance of the 
polygon from the simulated viewer is 
computed. (This is the "Z" value.) This 

Fig. 5 
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This simple algorithm is seldom used, 
principally for two reasons: I) few 
current systems have sufficient memory for 
two such large buffers, and 2} every pixel 
of every polygon needs to be computed. To 
understand the potential severity of this 
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second reason, let us l ecall that 
traditionally designers of visible surface 
algorithms (e.g., watkins (1970)) have 
attempted to gain efficiency by avoiding, 
whenever possible, consideration of all 
but the (single) nearest polygon. For 
example, if all the polygons potentially 
visible on a particular scan line can be 
considered together as a set, then 
determining the Z ordering on this set at 
just a few key points along the scan line 
is sufficient to determine the sequence of 
visible polygon segments along the entire 
line (fig. 4). 
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Fig. 

~t intermediate points all the obstructed 
polygons are simply ignored. A "Z buffer" 
algorithm, since it handles each polygon 
separately, computes every affected pixel 
for each polygon -- a procedure which 
certainly seems to be wasteful and 
inefficient. ~ closer examination of the 
situation, reveals that for multiprocessor 
systems the procedure may in fact be very 
attractive. Sutherland, Sproull, and 
Schumacker(1974) estimate that zhe average 
number of polygons ',falling oz~" a pixel is 
only 3; that is, many (most?) images 
contain large areas of sky, water, 
ceilings, floors -- areas in which there 
are not too ~any polygons stacked one 
behind the other. This implies that the 
(in) effiency of :he Z buffer algorithm is 
constant; at worst it is some constant 
multiple (e.g., 3) of the most efficient 
possible algorithm -- one which can 
determine with negligible cost ~h~ visible 
polygon at each pixel. Since LSI 
technology is rapidly diminishing the cost 
of simple arithmetic processit g units, a 
factor of 3 is no longer burdensome. 

~ystem Descri2~i~1 ~ 

The fundamental system organization 
is as illustrated in figure 5. 

list of 
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Fig. 5 

Figure 6 shows in somewhat greater detail 
the organization of the image buffer, 
which is accessed by both the processor 
and the video scan generator. 
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Fig. 6 

Figure 7 illustrates the simple tame 
division multiplexing between the 
processor and the video scan generator. 
We note here that the current pixel's data 
remains on the video scan generator bus 
even during the period which is assigned 
to the processor. 

If we consider using only commonly 
available inexpensive LSI RAM's then the 
requirement of the scan generator (needing 
to cycle through the entire image in 
approximately 30 milliseconds) will limit 
the usefulness of this simple design to 
very coarse images. To increase the 
bandwidth we simply insert additional 
memory units onto the system bus. 
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Figure 8 illustrates the organization of 
this enchancement and figure 9 shows the 
timing cycles. Given that a scan-line is 
drawn on standard video monitors in 
approximately 40 microseconds, a video 
scan genera+or bus cycle of about 75 
nsec. is adequate for images with up to 
512 pixels per scan line. It is important 
to note that the actual bus to the scan 
generator does not increase in size or 
speed. All memory units are read in 
parallel during =he scan generator access 
times. During the followix~g complete 
timing cvcle, the various re~ults are put 
onto the video bus by eLabling, in 
sequence, the bus drivers of the various 
memory units. This enabling is directly 
controlled by the least sigLificanz bits 
of the video scan generator's X address. 
In this fashion the number of memory units 
need not be known ~o the scal~ generator: 
if there are fewer units, some of the 
least significant address bits are ignored 
and +bus consecutive locations on the 
video screen will be accessed from the 
same image memory unit's out[Jut register. 
The result will be a coarser image (128 x 
128, say, instead of 512 x 512) than the 
scan generator is capable of producing. 
(It will be seen later that a somewhat 
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11 i!!; will free the entire system -- both 
hardware and software -- from reliance on 

Memory .L]ii.... H a~l Unit Max Hemory Max a Fixed resolution.} The proper ID o ~ ~"°'Y 
selection in each mentory unit (as seen in ~ -z ( .... 2) - 
Fig. ",) is a @unction of both the unit's 
ID number and the total number of memory M.~------- ~-""" 4" = Max l 
units currently in the system. Although ---r-- 
such selection settings are normally set | 
manually through jumpers or DIP switches, . l /  ~ 
we prefer for them t o  be set | VIDEO SCAN GENERATOR 8U$ 
automatically. This is done through the 
following mechanism. In addition to the 
processor bus and video scan generator 
bus, the system includes a set of lines 
for ID ~ numbers and the "total-units,' 
number. 

As illustrated in fig. 10, the ID 
lines consist of a set of lines sufficient 
to represent the largest possible number 
of memory units in a system. (For 
example, for a 1024 maximum memory unit 
~yste~ this number would be !0.) 

In +his eashion the set of lines are 
started at 0 on one side, each board has 
an increment circuit on it, ax:d thus the 
number on the backplane ID lines is 
incremented hy one each time it passes 
through a memory unit board (fig. 11). 

VIDEO ~1 I VIDEO 
SCAN I DISPLAY GENERATOR 

Fig. 1 1 

A similar set of lines is used to return 
the ID signal value from the end of the 
system. (This number is simply the total 
number of memory units in the system at 
the present time.) With this technique 
boards can be inserted into or extracted 
from any position at any time without the 
necessity of any hardware (or software:} 
modification. Empty backplane slots will 
pass on all signals either by the use of 
shorting-type PC board connectors or by 
the insertion of dummy boards. 

we also note at this point that 
neither the video scan generator nor the 
image memories rely on any ~echanism for 
altering the contents of the image 
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memories. Th us we can distribute 
responsiblit y for computing the image 
memories contents to a number of different 
processors. 

Fig. 12 illustrates a modified 
organization which achieves this increased 
capability, virtually the only addition 
has been the introduc÷ion of a central 
broadcast controller (CBC) which 
"announces" the description of each new 
polygon to all the processing element s 
(RE's). The system is designed to operate 
a~ follows: 

I CENTRAL BROADCAST CONTROLLER (C8C) 

o _  } 
Max 

Proc 

GENERATOR 

Fig. 12 

a) Immediately upon power-on, the CBC 
broadcasts the (possibly new) 
software to all the processing 
elements. (~ii P~'s execute the 
same proqram, but each has a 
separate copy of i~ and each may be 
executing different parts of it at 
any instant.) 

b) The CBC instructs the DE's to survey 
the memory units under their 
control. This consists simply of 
each PF attempting to read and write 
a single word into each possible 
memory unit un@er its control. 
(~ach knows (from the ID lines), I) 
the total number of units in the 
system at this ÷ime, and 2) the 
first memory unit that is under its 
control: it simply needs to find the 
upper limit of its domain.) 

c) The Z and image buffers are 
initialized by each PE. 

d} The actual processing proceeds now 
with the CPC broadcasting 
description of one or more polygons 

to be processed. A polygon 
description may consist of the 
sequence of the polygon's vertices, 
with each vertex being described by 
its X,Y,Z location and its 
calculated color/intensity val~e. 
Broadcasting additional information 
(to be described later) will speed 
up processing by eliminating the 
need for calculating certain common 
values in each of the 9E's. Since 
each PE knows which MU's are under 
its responsibility and how many MU's 
are in the system, it can easily 
compute the location of each of its 
pixels on the screen. For each 
polygon it does the appropriate Z 
buffer algorithm computations (as 
outlined before) for all its pixels 
affected by this current polygon. 
When done, each PE signals to the 
CBC. When all the PE's are done, 
the CBC broadcasts the next polygon 
(or set of polygons). The procedure 
continues until the complete set of 
polygons in the scene is exhausted. 

By having the MU's and the PE's 
intplemented on the same size PC cards and 
utilizing the same connectors , all the PE 
bus lines can be i~ple~ented on a single 
set of backplane lines. APE ignores any 
such signals coming in from its left, and 
generates its own signals on the lines to 
its right. (ME's pass these signals 
through.) Thus a PE controls all the MU's 
between it and the next PE on its right. 
Configurations can be altered by simply 
repositioning the boards. 

Fig. 13 illustrates that regular 
interlacing is possible for both the MU's 
and the PE's. Fig. 13a illustrates the 
physical backplane ordering of PE and MU 
boards in a typical configuration. 
Fig. 13b shows part of this raster 
configuration's image; each rectangle is 
an individual pixel, with the integer 
enclosed indicating the MU in which its 
value is stored and the letter indicating 
the PE which calculates the pixel's value. 
The regular interlacing increases the 
efficiency of processing, in two ways: I) 
it guarantees that for practically any 
polygon the pixels on which it lies will 
be located in the domains of a number of 
different PE's, so that the workload will 
always be distributed, and 2) the regular 
pattern of affected pixels in any one MU 
allows rapid incremental computatib66 ~or 
z, and eventually for RGB. (Recall that 
all these polygons are planar; so the 
amount of change per each pixel step will 
be constant.) Also, the same regular 
pattern occurs in each affected MU; for 
example, if adjacent pixels in a 
particular MU are 2 units apart in X and q 
units in Y, then they will be that way for 
every affected memory unit. This allows 
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the CBC to compute the appropriate 
incremental change values during the time 
the P~'s are processing ~he previous 
polygon. The CBC can then broadcast these 
values directly, thereby avoiding a 
computation step in each PF. 
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Fig. I~ shows how particular 
configurations can be modified to increase 
or decrease image resolution or processing 
speed. The grids again illus~rate a small 
raster-image area and how its PE and MU 
assignment varies with different 
configuratior~3. Note that not only pixel 
size, but pixel aspect ratio can be 
con~rolled by the MU allocation and 
mapping. (The variations in processor- 
memory assignment3 from those of fig. 13 
reflect the computations performed by the 
memory ID select modules illustrated in 
fig. 10.) Fig. 15 illustrates the 
physical organization corresponding to the 
various resolution/speed configurations of 
fig. 14. 

Determining the size of MU's for a 
particular system involves balancing a 
number of conflicting demaz:ds. Larger 
MU's allow larger (say, 16K) LSI chips to 
he utilized, and allow fewer MU's to 
realize a reasonably high resolution (say, 
512 x 512 pixel) image. Since only a 
single word can be accessed from any chip 
in a given memory cycle, however, and 
since words correspond to pixels in this 
design, only a single ~!~! can be 
accessed in a chip in a single memory 

cycle: larger RU's thus need faster memory 
cycles to keep up with the raster-scanning 
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of the image. In addition, since no more 
than one PE can control any MU, smaller 
MU's allow more PE's and thus a faster 
system. Cue configuration currently under 
investigation uses 8K pixel MU's with 300 
nsec. cycle times. 

Let us consider some of the 
capabilities of this kind of organization. 
At this point we limit our comments to 
structural, qualitative issues, since we 
cannot yet give an accurate quantitative 
assessment. (We are just beginning 
performance prediction simulations: 
preliminary results indicate that an 
execution time of 50 microseconds per 
pixel per polygon can be achieved.) The 
basic design allows significant 
flexibility in tradeoff between power and 
economy. On the one extreme there can be 
systems with only one PE and one MU. Of 
course such a system would exhibit a very 
coarse image, but it may be suitable for 
simple video games, for instance. On the 
other extreme one can configure a system 
with high resolution and very high 
throughput. Such high-resolution and high 
powered systems would be appropriate, for 
instance, for interactive pilot-training 
simulators. The only difference, however, 
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between these two extreme configurations 
would be the number of PE boards and the 
number of ~U boards. The software in the 
P~'s of both systems would be identical. 
The CBC's would be identical. (The 
polygons are broadcast in highest 
resolution units.) The video scan 
generators could also be identical. (They 
assume a high-resolution system: since 
both BU and image resolutions are powers 
of 2, small systems' MU's ignore some 
least significant bits of the VSG.) It is 
reasonable to speculate that a large 
computing facility may have a number of 
machines, each with a different number of 
~U and PE boards -- many small 
configurations for program development, a 
few large ones for interactive simulation, 
and some high resolution but slow ones for 
non-time-critical applications. For 
special occasions, larger configurations 
could easily be constructed by simply 
consolidating several small 
configurations. Also, faulty boards could 

modules. If a certain spot in the image 
is particularly complex, however, the scan 
either has to wait, or it "paints" 
incorrect data. The design presented here 
would not exhibit such behavior. The 
system would simply take slightly longer 
to compute the new image. If the memories 
were double buffered, the switch between 
the old image and the new one would be 
made slightly after the start of the 
second scan of the old image -- or if the 
situation were really complex, the switch 
would be made after two or more complete 
scans of the (old) image. 

O__th__eE_~qations 

It is easy to see at this point that 
the system is not restricted to executing 
a Z-buffer visible surface algorithm. 
Software could be loaded into the PE's, 
for instance, to perform digital vector 
generation and rapidly create line 
drawings on the video screen. In this 
case, the CBC would simply broadcast 
endpoint information, each of the PE's 
would determine the pixels under its 
control which are affected by the new line 
segment: it would then set each of these 
pixels appropriately. 

We are currently in the process of 
implementing various aspects of the above 
design. We have prototyped simple 
versions of each module and plan to have a 
small, but complete prototype system in 
the near future. 

We are currently generalizing the 
scope of the present design. For example, 
the simple selection and multiplexing for 
both memories and processors is most 
easily achieved when the number of units 
is an even power of 2. Although some sort 
of processor-memory-image assignment can 
easily be achieved for an arbitrary number 
of units of each, an optimal generalized 
mapping algorithm still remains to be 
developed. 

Fault-tolerant and "highly reliable" 
versions of the current design may also be 
quite useful. Although some of this is 
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presently available with the capability to 
remove faulty modules, other capabilities 
can perhaps be added. For example, 
configuring the system to generate a 
higher resolution image (say, I024 x ~024) 
than the one being displayed (512 x 512) 
would allow the scan generator to consider 
(in this case 4) separate sources from 
which to determine each single pixel. 
Such redundancy should e~sily allow 
significant number of faulty memory and 
processor modules without noticeable image 
or performance degradation. 
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