
AN EXPANDABLE ~ULTIPROCESSOR ARCHITECTURE FOR VIDEO GRAPHICS
(Preliminary Report)*

Henry Fuchs
The University of North Carolina at Chapel Hill

Brian W. Johnson
The University of Texas at Dallas

Abstract

Presented is the design of a flexible
expandable multi-processor system for
video graphics and image processing. The
design involves a central controller which
broadcasts data to a variable number of
independently executing processing units,
each of which in turn controls a variable
r.lmber of memory units among which the
video (frame buffer) image is distributed.
An interleaved addressing organization of
the video memories guarantees both an even
workload dis trib~ition as well as
maintenance of image coherence for each
processing element. Execution speed and
image resolution can be independently
altered (at any time) by varying the
number of processing and memory units.
Sample applications of the ~cystem -- for
rapid line drawing and "electronic scene
generation" (visible surface algorithms)
-- are described. Variations of the
design for low cost and for powerful,
real-time configurations are outlined.

Int roduc+ ion

A long-standing goal of researchers
in compu+er graphics systems has been the
development of real-time three-dimensional
modeling systems. These systems, which
produce a realistic image of a simulated
three-dimensional environment, have a wide
variety of potential uses -- from
simulators for pilot training to
interactive design of houses and
automobiles. The most sophisticated of
these systems produce, in real-ti~e,
images on color video displays (TV's) of
startling reality. The only limitation to
widespread use of these systems has been
their prohibitive costs (Z500,000 and
up). Thus virtually the only uses today
are those for which there is no real
alternative -- e.g., simulating maneuvers
in gravity-free space or training
simulators for pilots of large (and

This work was partially supported by NSF
Grant ~CS-77-03905, and by Naval
~lectronics Systems Command Contract
N00039-78-C-0431, (through Research
Triangle Institute Grant 43U1667).

expensive) airplanes. If such modeling
systems could be provided at
significiantly lower costs, it is safe to
presume that their use would become
dramatically more widespread.

A short examination of the
computational expense of the problem
suffices to justify the complexity and
expense of current systems which solve it.
A video image to a digital system normally
consists of a matrix of picture elements
("pixels") of between 480 and 512 rows
(scan lines) with from 512 to 6~0 pixels
in each scan line. (Until recently this
size was limited by the resolution of
video monitors. Within the past two
years, monitors with 900 to 1000 scan line
capacity have become available; the factor
of four increase in number of pixels per
image only exacerbates the computational
problem.) The image is then simply a set
of some 300,000 pixels, each of which (for
a color image} contains three independent
components -- Red, Green, Blue -- each
usually to 8-bits of resolution. The
entire problem at hand is simply
calculating these 900,000 values each time
the image is scanned out onto the video
screen, usually 30 times per second.

Fig. 1
(From Sutherland, S proull, 8

Schumacker(1974))

The proper value at each pixel is a
function of the data base (the simulated
environment} , the viewing position and

CH1394-6/79/0000-0058 $00.7501979 IEEE
58

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800090.802893&domain=pdf&date_stamp=1979-04-23

orientation of the simulated viewer, and
the location(s) of the light source(s) in
the simulated environment. ~be
environment is most often d~scribed as a
set of objects in the environment
(~uclidian three-space) coordinate system.
Each object is usually described by a set
o f planar tiles ("polygons") which form
its various surfaces. (Fig. I, from
Sutherland, Sproull, and Schumacker(1974),
shows the boundaries of a set of polygons
defining the surface of a 3-D object.)
(Other methods of object description are
sometirres used -- e.g., as collections of
geome~ tic solids (MP GI (196~)) or curved
surfaces (Catmull (1075) , Blinn and
~ewell(1976)) . Since *he particular
object definition method does not
significantly affect the sys+em
~rchitec+ure, we shall assumt~ hereon that
~he common planar-polygon descriptions are
used.) In order to compute the Red,
Green, and Blue values for a particular
pixel, the system has to determine:

a) which, if any, polygons map onto
this pixel's area,

b) which one from this set is closest
~o the viewer (and thus is the one
visible obscuring all the other
polygons) , and

c) the details about the precise part
of this closest polygon which maps
onto the pixel -- its assigned
color, i~s angle and distance from
the ligh ~ source(s), and its angle
and distance to the viewer.

When prog rammed on a con ven+ ional
qeneral purpose compueer, com[~uting such a
simulated i, aqe may well rake several
minutes, and easily longer; so developing
a system to do it in 1/30 second is a non-
trivial task. (The bibliography lists
references to algorithms and systems which
influenced ~he design pDesented ir~ this
pa per.)

To unders[and our solution, let us
first e xamir~e the overall sequence of
steps which need to be performed in order
to produce a visible surface image on a
video display.

a) The origina I polygons (in object
coordinate space) are transformed
into the position as seen from the
simulated viewing position. (This
is a sequence of rotations and
translations.)

b) The parts of the environment data
base which are not in the field of
view are discarded from further
consideration by clipping all
polygons against the boundaries of
the field of view.

c) Perspective transformation is
applied to foreshorten the
appropriate environmental parts as a
function of distance.

It is at this point that a visible
surface algorithm is invoked.

Since steps a) , b) , c) can be
achieved in real-time by current
affordable line drawing systems (e.g. ,
Evans and Sutherland (I 976) , Vector
General(1978)) , we will concentrate our
attention on the actual visible surface
computations. (Of course, these line-
drawing systems are affordable partially
because they do not have to perform the
laborious visibility computations for some
300,000 pixels :) Most current real-time
video systems (Evans and Sutherland(1977)
Shohat and Florence(1977)) use a pipeline
architecture to achieve the necessary high
throughput rates. (See fig. 2 from Shohat
and Florence(IS77).) Each module in the
pipeline is typically a highly specialized
processing unit. Thus, these designs do
no% easily lend themselves to substantial
upgrading (to achieve higher capacity) or
downgrading (+o achieve lower cost).

Our own design capitalizes on the
newly plentiful resource of inexpensive
I.Sl circuitry. It allows a significant
but bounded increase in both ~emory and
processing requirements in return for
architectural flexibility. Specifically,
our solution is tailored -- although not
restricted -- to what may be the simplest
visible surface algorithm, the so-called
"Z buffer" algorithm, one so simple that
it seems never to have appeared in print
in its own right. Sutherland, Sproull,

ACTIV~ DATA BP ORBITER POSITION & A'N'ITU OE DATA i

(FRAME
CALCULA' FROM DATA BASE MASS STO ; E I V

~ ~ VIDEO TD CRT DISPLAYS

Courtesy of
Link-Fingers

Fig . 2
(From Shohat & F lorence(1977))

59

and Schumacker(197@) mention it in passing
(p.51) , saying ,,that if a large memory is
available ... This method resul~s in a
computing cost which depends only on ~he
depth number (Dc) and not otherwise on
the environment cor~plexity." (Dc is the
~umber of front-facing polygons ,'pierced,
on the average, by an arbitrary ray from
the viewpoint.") Catmull (Ig75) used the
method as part of a more sophisticated
algorithm for visible display of curved
surfaces. The basic algorithm utilizes
two large buffers each contaiz:ing an entry
for each pixel oz~ the screen, an "image"
buffer which contains the (RGB)
intensities at each pixel, and a "Z"
buffer which con+ains at each pixel the
distance of the closest object encountered
there so far (fig. 3).

/
/

/
/

/ Y /

t L
viewer % %

%%%
%%

%%
%

z=O 5 I0

value is compared with the entry in the Z
buffer for this pixel. If this new value
is smaller than the current entry then
this new polygon is closer to the viewer
at this pixel than the closest previously
encountered polygon and so this new
polygon would now be visible at this
pixel. Thus in this case the new Z valse
is put into the Z buffer and this new
polygon's (RGB) intensity value is
computed and inserted into the image
buffer. If, on the other hand, the new Z
value is greater than the value currently
in the Z buffer at this pixel, then this
polygon is farther than the closest
polygon, and processing is terminated for
this pixel for this polygon without any
changes to the buffers. Processing
continues with the next pixel into which
the current Polygon "falls."

/ - / / , , / / / ,
;,.-//.©,..',./,/.. ,
• / / , , ~ / / . 9 " ; . ' .

Image

7 7

8 8 8 8

9 9 9 9

10 10 10 8 8 8 8

8 8 8 8

7 7 7 7

7 7 7 7

Z Buffer

The polygons are processed sequentially,
in any order. Each polygon's processing
starts with determining the pixels upon
which the polygon ',falls" in the image.
For each such pixel the distance of the
polygon from the simulated viewer is
computed. (This is the "Z" value.) This

Fig. 5

7

7

7 7

7 7

7 7 7

7 7 7

7 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

Image Bul|er
lira(P)=7 h.(Q)=2~

This simple algorithm is seldom used,
principally for two reasons: I) few
current systems have sufficient memory for
two such large buffers, and 2} every pixel
of every polygon needs to be computed. To
understand the potential severity of this

60

second reason, let us l ecall that
traditionally designers of visible surface
algorithms (e.g., watkins (1970)) have
attempted to gain efficiency by avoiding,
whenever possible, consideration of all
but the (single) nearest polygon. For
example, if all the polygons potentially
visible on a particular scan line can be
considered together as a set, then
determining the Z ordering on this set at
just a few key points along the scan line
is sufficient to determine the sequence of
visible polygon segments along the entire
line (fig. 4).

Y

x

viewing >
direction

_ m_

Fig.

~t intermediate points all the obstructed
polygons are simply ignored. A "Z buffer"
algorithm, since it handles each polygon
separately, computes every affected pixel
for each polygon -- a procedure which
certainly seems to be wasteful and
inefficient. ~ closer examination of the
situation, reveals that for multiprocessor
systems the procedure may in fact be very
attractive. Sutherland, Sproull, and
Schumacker(1974) estimate that zhe average
number of polygons ',falling oz~" a pixel is
only 3; that is, many (most?) images
contain large areas of sky, water,
ceilings, floors -- areas in which there
are not too ~any polygons stacked one
behind the other. This implies that the
(in) effiency of :he Z buffer algorithm is
constant; at worst it is some constant
multiple (e.g., 3) of the most efficient
possible algorithm -- one which can
determine with negligible cost ~h~ visible
polygon at each pixel. Since LSI
technology is rapidly diminishing the cost
of simple arithmetic processit g units, a
factor of 3 is no longer burdensome.

~ystem Descri2~i~1 ~

The fundamental system organization
is as illustrated in figure 5.

list of
polygons

i PROCESSOR
IMAGE

B U F F E..__.R

JFER '1

VIDEO
SCAN

GENERATOR

~-'DVIDE 0
ISPLAY I]

Fig. 5

Figure 6 shows in somewhat greater detail
the organization of the image buffer,
which is accessed by both the processor
and the video scan generator.

IADDRESS

/
/

lmode control

PROCESSOR
]

read/write DATA
;

IMAGE
BUFFER

REOISTER [

r - - ~ - ! BUS OR,VER
,
I I

ADDRESS select/enable DATA J

I
VIDEO SCAN GENERATOR

Fig. 6

Figure 7 illustrates the simple tame
division multiplexing between the
processor and the video scan generator.
We note here that the current pixel's data
remains on the video scan generator bus
even during the period which is assigned
to the processor.

If we consider using only commonly
available inexpensive LSI RAM's then the
requirement of the scan generator (needing
to cycle through the entire image in
approximately 30 milliseconds) will limit
the usefulness of this simple design to
very coarse images. To increase the
bandwidth we simply insert additional
memory units onto the system bus.

61

ACCESS MODE

V I D E O SCAN

G E N E R A T O R

PROCESSOR

Read

00000

ee|d

00001

dlsp~y O00OO

F i g . 7

read

00010

d,$ptey 00001

00011

L
dispby 00010

PROCESSOR

Mem. u n i t O0 Hem. unit 01

DATA
i

ADR ~ write I

I I f

DATA

AOR

Hem. u n i t 10 Hem. u n i t 11

I I -
VIDEO SCAN GENERATOR

F±g. 8

ACCESS M O D E

V I D E O SCAN

G E N E R A T O R

PROCESSOR

Read
; o00oo o
: ooo0o 1

display O000O 0

00001 0
00001 1

00000 I

00010 0
00010 1

J
000010 : 000011

!

TIMING - 2 MEMORY UNITS

00010 0

00011 o
00011 1

L
ooo10 1

V I D E O SCAN

G E N E R A T O R

PROCESSOR

00003 00
00000 01

] 00000'10
o
: 0oooo 11

display

00000

oo ! Ol

00001 O0
00001 01
00001 10
00001 11

00O00

lO ~ 11

00601

O0 ! 01

00010 OO
00010 Ol
00010 lO
0OOLO I1

0OOOl o0o|o

l o I I I oo] oi

lIMING -4M[M, ORY UNITS

Fig. 9

00011 O0

00011 01
00011 10
00011 11

L
00010

IO 11 '

62

Figure 8 illustrates the organization of
this enchancement and figure 9 shows the
timing cycles. Given that a scan-line is
drawn on standard video monitors in
approximately 40 microseconds, a video
scan genera+or bus cycle of about 75
nsec. is adequate for images with up to
512 pixels per scan line. It is important
to note that the actual bus to the scan
generator does not increase in size or
speed. All memory units are read in
parallel during =he scan generator access
times. During the followix~g complete
timing cvcle, the various re~ults are put
onto the video bus by eLabling, in
sequence, the bus drivers of the various
memory units. This enabling is directly
controlled by the least sigLificanz bits
of the video scan generator's X address.
In this fashion the number of memory units
need not be known ~o the scal~ generator:
if there are fewer units, some of the
least significant address bits are ignored
and +bus consecutive locations on the
video screen will be accessed from the
same image memory unit's out[Jut register.
The result will be a coarser image (128 x
128, say, instead of 512 x 512) than the
scan generator is capable of producing.
(It will be seen later that a somewhat

Max

I0

L
ECT

"l INCREMENTER~-- --

FIEI]ISTER J

TRI-STATE r
BUS D,IIlVE R I

VIDEO SCAN GENERATOR I~US

-/ Max

"-~---,,." i + ;

PROCESSOR BUS Fiq. 10 \

different resolution-independence scheme I [1 , l

11 i!!; will free the entire system -- both
hardware and software -- from reliance on

Memory .L]ii.... H a~l Unit Max Hemory Max a Fixed resolution.} The proper ID o ~ ~"°'Y
selection in each mentory unit (as seen in ~ -z (.... 2) -
Fig. ",) is a @unction of both the unit's
ID number and the total number of memory M.~------- ~-""" 4" = Max l
units currently in the system. Although ---r--
such selection settings are normally set |
manually through jumpers or DIP switches, . l / ~
we prefer for them t o be set | VIDEO SCAN GENERATOR 8U$
automatically. This is done through the
following mechanism. In addition to the
processor bus and video scan generator
bus, the system includes a set of lines
for ID ~ numbers and the "total-units,'
number.

As illustrated in fig. 10, the ID
lines consist of a set of lines sufficient
to represent the largest possible number
of memory units in a system. (For
example, for a 1024 maximum memory unit
~yste~ this number would be !0.)

In +his eashion the set of lines are
started at 0 on one side, each board has
an increment circuit on it, ax:d thus the
number on the backplane ID lines is
incremented hy one each time it passes
through a memory unit board (fig. 11).

VIDEO ~1 I VIDEO
SCAN I DISPLAY GENERATOR

Fig. 1 1

A similar set of lines is used to return
the ID signal value from the end of the
system. (This number is simply the total
number of memory units in the system at
the present time.) With this technique
boards can be inserted into or extracted
from any position at any time without the
necessity of any hardware (or software:}
modification. Empty backplane slots will
pass on all signals either by the use of
shorting-type PC board connectors or by
the insertion of dummy boards.

we also note at this point that
neither the video scan generator nor the
image memories rely on any ~echanism for
altering the contents of the image

63

memories. Th us we can distribute
responsiblit y for computing the image
memories contents to a number of different
processors.

Fig. 12 illustrates a modified
organization which achieves this increased
capability, virtually the only addition
has been the introduc÷ion of a central
broadcast controller (CBC) which
"announces" the description of each new
polygon to all the processing element s
(RE's). The system is designed to operate
a~ follows:

I CENTRAL BROADCAST CONTROLLER (C8C)

o _ }
Max

Proc

GENERATOR

Fig. 12

a) Immediately upon power-on, the CBC
broadcasts the (possibly new)
software to all the processing
elements. (~ii P~'s execute the
same proqram, but each has a
separate copy of i~ and each may be
executing different parts of it at
any instant.)

b) The CBC instructs the DE's to survey
the memory units under their
control. This consists simply of
each PF attempting to read and write
a single word into each possible
memory unit un@er its control.
(~ach knows (from the ID lines), I)
the total number of units in the
system at this ÷ime, and 2) the
first memory unit that is under its
control: it simply needs to find the
upper limit of its domain.)

c) The Z and image buffers are
initialized by each PE.

d} The actual processing proceeds now
with the CPC broadcasting
description of one or more polygons

to be processed. A polygon
description may consist of the
sequence of the polygon's vertices,
with each vertex being described by
its X,Y,Z location and its
calculated color/intensity val~e.
Broadcasting additional information
(to be described later) will speed
up processing by eliminating the
need for calculating certain common
values in each of the 9E's. Since
each PE knows which MU's are under
its responsibility and how many MU's
are in the system, it can easily
compute the location of each of its
pixels on the screen. For each
polygon it does the appropriate Z
buffer algorithm computations (as
outlined before) for all its pixels
affected by this current polygon.
When done, each PE signals to the
CBC. When all the PE's are done,
the CBC broadcasts the next polygon
(or set of polygons). The procedure
continues until the complete set of
polygons in the scene is exhausted.

By having the MU's and the PE's
intplemented on the same size PC cards and
utilizing the same connectors , all the PE
bus lines can be i~ple~ented on a single
set of backplane lines. APE ignores any
such signals coming in from its left, and
generates its own signals on the lines to
its right. (ME's pass these signals
through.) Thus a PE controls all the MU's
between it and the next PE on its right.
Configurations can be altered by simply
repositioning the boards.

Fig. 13 illustrates that regular
interlacing is possible for both the MU's
and the PE's. Fig. 13a illustrates the
physical backplane ordering of PE and MU
boards in a typical configuration.
Fig. 13b shows part of this raster
configuration's image; each rectangle is
an individual pixel, with the integer
enclosed indicating the MU in which its
value is stored and the letter indicating
the PE which calculates the pixel's value.
The regular interlacing increases the
efficiency of processing, in two ways: I)
it guarantees that for practically any
polygon the pixels on which it lies will
be located in the domains of a number of
different PE's, so that the workload will
always be distributed, and 2) the regular
pattern of affected pixels in any one MU
allows rapid incremental computatib66 ~or
z, and eventually for RGB. (Recall that
all these polygons are planar; so the
amount of change per each pixel step will
be constant.) Also, the same regular
pattern occurs in each affected MU; for
example, if adjacent pixels in a
particular MU are 2 units apart in X and q
units in Y, then they will be that way for
every affected memory unit. This allows

64

the CBC to compute the appropriate
incremental change values during the time
the P~'s are processing ~he previous
polygon. The CBC can then broadcast these
values directly, thereby avoiding a
computation step in each PF.

I CENTRAL
BROADCAST

CONTROLLER

I
 ll ll ll lllli l I l l I 11

0A 2B

8E |0F

4C 6D

12G 14H

0A 2B

8E 10F

4C 6D

12G 14H

(a)

IA 3D

9E 11F

5C 70

13G 15H

IA 3B

9E 11F

5C 70

13G 15H

l
I VIDEO.

SCAN
GENERATOR

A, B , It=Prncessing
Elements

0.1 15~Memory
Units

(b)

Fig. 13

Fig. I~ shows how particular
configurations can be modified to increase
or decrease image resolution or processing
speed. The grids again illus~rate a small
raster-image area and how its PE and MU
assignment varies with different
configuratior~3. Note that not only pixel
size, but pixel aspect ratio can be
con~rolled by the MU allocation and
mapping. (The variations in processor-
memory assignment3 from those of fig. 13
reflect the computations performed by the
memory ID select modules illustrated in
fig. 10.) Fig. 15 illustrates the
physical organization corresponding to the
various resolution/speed configurations of
fig. 14.

Determining the size of MU's for a
particular system involves balancing a
number of conflicting demaz:ds. Larger
MU's allow larger (say, 16K) LSI chips to
he utilized, and allow fewer MU's to
realize a reasonably high resolution (say,
512 x 512 pixel) image. Since only a
single word can be accessed from any chip
in a given memory cycle, however, and
since words correspond to pixels in this
design, only a single ~!~! can be
accessed in a chip in a single memory

cycle: larger RU's thus need faster memory
cycles to keep up with the raster-scanning

I
increase

speed

r 0,
0A IB: 4A 5B -'4E 5El 12E "13F,q

- zc 3D: zoc zi~
2C 3D 6C 7D 6G 7H 14C 15n

0A iB 8A 9B

OA IB 4A 5B --4E-- 5F 12E 13F

,° i I
-- 2C 31) lOCl lid-

2C 3D 6C -- - , 6G 7}{ , 14G 15H, --

8 memories 16 memories
4 processors 8 processors

_I i I]
OA iB 4A 5B

2A 3B 6A

OA 1B 4A 5B

2A 3B 6A 7B

-I
8 memories
2 processors

Memories: 0,i,...15
Processors: A,B,...H

0A iB 8A 9B

4C 5D 12C 131)

- 2A 3B IOA liB

7B i 6C 7D 1~C iSD

OA [B 8A 9B

4C 5D 12C 13D

. ~ 3B iOA liB

6C 7D 14C 15D

i j V I I
16 memories
4 processors

- - increase resolution

_1 I i
>

0A IB 8A i 9B

4A 5B 12A 13B

2A 3B 10A liB

6A 7B 14A 15B

OA IB 8A 9B

4A 5B 12A 13B

6A 7B lea lib

2A 3B 14A 15B

16 memories
2 processors

Fig. 14

of the image. In addition, since no more
than one PE can control any MU, smaller
MU's allow more PE's and thus a faster
system. Cue configuration currently under
investigation uses 8K pixel MU's with 300
nsec. cycle times.

Let us consider some of the
capabilities of this kind of organization.
At this point we limit our comments to
structural, qualitative issues, since we
cannot yet give an accurate quantitative
assessment. (We are just beginning
performance prediction simulations:
preliminary results indicate that an
execution time of 50 microseconds per
pixel per polygon can be achieved.) The
basic design allows significant
flexibility in tradeoff between power and
economy. On the one extreme there can be
systems with only one PE and one MU. Of
course such a system would exhibit a very
coarse image, but it may be suitable for
simple video games, for instance. On the
other extreme one can configure a system
with high resolution and very high
throughput. Such high-resolution and high
powered systems would be appropriate, for
instance, for interactive pilot-training
simulators. The only difference, however,

65

Processing

Ill Illll]ll

IIII]1111
increase
speed

IiIiiilli

increase resolution

simply be removed from a system.

Me"'orYl~ These systems should also degrade
u.its gracefully. Some current real-time

systems encounter difficulty due to

~ l [J l [I '' " "''''[" " computations being done "on the fly" as
the video beam scans the image. These

II II [[systems thus avoid using an image buffer
between the processing and scanning-out

IIII

lllllillllllIIiill

Fig. 15

between these two extreme configurations
would be the number of PE boards and the
number of ~U boards. The software in the
P~'s of both systems would be identical.
The CBC's would be identical. (The
polygons are broadcast in highest
resolution units.) The video scan
generators could also be identical. (They
assume a high-resolution system: since
both BU and image resolutions are powers
of 2, small systems' MU's ignore some
least significant bits of the VSG.) It is
reasonable to speculate that a large
computing facility may have a number of
machines, each with a different number of
~U and PE boards -- many small
configurations for program development, a
few large ones for interactive simulation,
and some high resolution but slow ones for
non-time-critical applications. For
special occasions, larger configurations
could easily be constructed by simply
consolidating several small
configurations. Also, faulty boards could

modules. If a certain spot in the image
is particularly complex, however, the scan
either has to wait, or it "paints"
incorrect data. The design presented here
would not exhibit such behavior. The
system would simply take slightly longer
to compute the new image. If the memories
were double buffered, the switch between
the old image and the new one would be
made slightly after the start of the
second scan of the old image -- or if the
situation were really complex, the switch
would be made after two or more complete
scans of the (old) image.

O__th__eE_~qations

It is easy to see at this point that
the system is not restricted to executing
a Z-buffer visible surface algorithm.
Software could be loaded into the PE's,
for instance, to perform digital vector
generation and rapidly create line
drawings on the video screen. In this
case, the CBC would simply broadcast
endpoint information, each of the PE's
would determine the pixels under its
control which are affected by the new line
segment: it would then set each of these
pixels appropriately.

We are currently in the process of
implementing various aspects of the above
design. We have prototyped simple
versions of each module and plan to have a
small, but complete prototype system in
the near future.

We are currently generalizing the
scope of the present design. For example,
the simple selection and multiplexing for
both memories and processors is most
easily achieved when the number of units
is an even power of 2. Although some sort
of processor-memory-image assignment can
easily be achieved for an arbitrary number
of units of each, an optimal generalized
mapping algorithm still remains to be
developed.

Fault-tolerant and "highly reliable"
versions of the current design may also be
quite useful. Although some of this is

66

presently available with the capability to
remove faulty modules, other capabilities
can perhaps be added. For example,
configuring the system to generate a
higher resolution image (say, I024 x ~024)
than the one being displayed (512 x 512)
would allow the scan generator to consider
(in this case 4) separate sources from
which to determine each single pixel.
Such redundancy should e~sily allow
significant number of faulty memory and
processor modules without noticeable image
or performance degradation.

Acknowledqem~

We thank ~r. Joe Parks of the
Department of Computer Science, University
of North Carolina, for assistance in
analyzing the performance of Z-buffer
algorithms.

Appel A.(1967) The notion of quanitative
invisibility in the machine rendering
of solids. ~E- ~M Annual
Conference 387-393.

Blinn, J.F. and M. E. Newell(1976)
Texture and reflection in computer
generated images. ~2~- A CM 19(I0):
5 ~ 2 - 5 ~ .

Bouknight, W. J. (1969) An improved
procedure for generation of half-tone
computer graphics representations.
University of Illinois, Coordinated
Science Laboratory, R-432.

Catmull, E. A. (1975) Computer display
of curved surfaces. ~9~- Conference
2~ ~9~ uter ~ i ~ : Pattern
~n~e~ni!!en and Data ~Xuctures (IEEE
Cat. No. 75CH0981-1C): 11-17.

Despain, A. M. and D. A. Patterson(1978)
X-tree: a tree-structured multi-
processor computer architecture. ~Eg~-
Fifth Annual S~_~gsium on ~gm~ste~
Architecture 144-150.

Evans and Sutherland Computer
Corporation(1976) Picture System 2.
Salt Lake City, Utah.

Evans and Sutherland Computer
Corporation(1977) Improved scene
generation capability. Final report,
NASA contract No. NAS 9-14010.

Rirschberg,, D.S.(1978) Fast parallel
sorting algorithms. Con. ~M 2 1 (8) :
657 -66~ .

RAGI (1978} Mathematical Applications

Group, Inc. Elmsford, NY. Promotional
literature.

Newell M. A., R.G. Newell, and
T. L. Sancha(1972) & new approach to
the shaded picture problem. Prgq~. A_~M
Annual Conferenc. e

Roberts, £. G. (1963) Machine perception
of three-di~ensional solids. MIT
Lincoln Laboratory, TR 315. Also in
~i~! ~ ~!~9-Optica--! ~for~i~
Processing , Tipper, et al., eds. MIT
Press, 159.

Rougelot, R.S. and R. Schumacker(1969)
G.E. real time display. NASA Report
NAS 9-3916. General Electric Co.,
Syracuse, NY.

Shohat, M. and J. Florence(1977)
Application of digital image generation
to the shuttle mission simulation.
~ R ~ - !~Z~ ~eE c--omp~e--r ~i~ulat i°n
conference.

Schumacker, R.A., B. Brand,
M. Guilliland, and R. Sharp(1969) Study
for applying computer-generated images
to visual simulation. U.S. &it Force
Human Resources Laboratory. AFHRL-TR-
69-14.

Sutherland, I.E., R.F. Sproull, and
~. A. Schumacker(197~) "A
Characterization of Ten Hidden-Surface
Algorithms." AC.M ~om~i~ Su~x ~,
6(I): 1-55 (Figure I reprinted by
permission of ~M).

Vector General, Inc.(1978) System 3~00,
Woodland Hills, CA.

garnock, J. E.(1969) A hidden surface
algorithm for computer-generated
halftone pictures. Computer Science
Department, University of Utah, TR q-
15.

Watkins, G. S. (1970) "A real-time visible
surface algorithm". Computer Science
Department, The University of Utah:
UTECH-CSC-70-101o

gieler, K. and P. &therton (1977) Hidden
surface removal using polygon area
sorting. Pr~. ~.qur t h Annual ACM-
SIGGRAPH C onferenqe - o~ Co_.m u ~
Graphics and Interactive Tech~_~u~ :
214-222.

67

