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Abstract

Presented is the design of a flexible
expandable rnulti-processor system for
video qraphics and image processing. The
design involves a central controller which
broadcasts data to a variable number of
independently executing processing units,
each of which in turn controls a variatle
numbher of memory units amonq which the
video (frame buffer) image is dis*tribnted.
An interleaved addressing organization of
the video memories quarantees both an even
workload dis+ribution ac well as
maintenance of image coherence for each
processing element. Execution speed and
image resolution can be independently
altered (at any *ime) by varying the
number of processing and memory unit*s.
sample applications of the cystem -- for
rapid line drawing and ‘"electronic scene
generation®™ (visible surface algorithms)
-- are described. Variations of the
design for low cost and for powerful,
real-time configurations are outlined.

Introduction
A long-standing goal of researchers
in computer graphics systems has been the
development of real-time threec-dimensional
modeling systens. These systems, which
produce a realis+<ic image of a simulated
three-dimensional environment, have a wide

variety of poten+ial uses -- from
simulators for pilot +raining to
interactive design of houses and
au+tomobiles. The most sophisticated of
~hese systems produce, in real-tire,

images on color video displays (TV's) of
star4ling reality. The only limitation o
widespread use of these systems has been
+heir prohibitive costs ($500,000 and
up) . Thus virtually *he only uses today
arte *hose for which +here 1is no real
alternative -- e.g., simulating maneuvers
in gravity-free space or training
simulators for pilots of 1large (and
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Triangle Institute Grant #43U1667).

expensive) airplanes, If such modeling
systems could be provided at
significiantly lover costs, it is safe to
pr esume that their use would become
dramatically more widespread.

A short examination of the
computational expense of the problem
suffices to justify the complexity and
expense of current systems which solve it.
A video image to a digital system normally
consists of a matrix of picture elements
{("pixels") of between 480 and 512 rowvs
{scan 1lines) with from 512 to 640 pixels
in each scan line. (Until recently this
size was limited by the resolution of
video monitors. Within the past tvo
years, monitors with 900 to 1000 scan line
capacity have become available; the factor
of four increase in number of pixels per
image only exacerbates the computational
problem.) The image is then simply a set
of some 300,000 pixels, each of which (for
a color image) contains three independent
components ~- Red, Green, Blue -~-- each
usually to B8-bits of resolution. The
entire problem at hand is simply
calculating these 900,000 values each time
the image is scanned out onto the video
screen, usually 30 times per second.

A=~

(From Sutherland, Sproull, &
Schumacker (1974))

The proper value at each pixel is a
function of ¢the data base (the simulated
environment), the viewing position and
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orienta*ion of the simulated viewer, and
+he 1location(s) of the light source(s) in

the simulazed environment. The
environment 1is most often described as a
se+ of objec*ts in *he environment

("uclidian three-space) coordinate system.
Pach object is usually described hy a set
of planar tiles ("polygons") which form
i+s various surfaces. (Fig. 1, from
Sutherland, Sproull, and Schumacker (1974),
shows *he boundaries of a se® of polyqgons
defining the surface of a 3-D object.)
(deher methods of object description are

sometires used -- e.g., as collections of
qeome*ric solids (MAGI(196R)) or curved
surfaces (Catmull (1975), Plinn and
Vewell (1976)) . Since +he particular
object defini*ion method does not

significantly atfect the system
archi+ecture, wve shall assume hereon +hat
*he common planar-polygon descrip*tions are
nsed.) In order +o compute +he Red,
sreen, and Blue values for a particular
pixel, *he sys*em has *o determine:

a) which, 1if any, polygons map onto
thic pixel's area,

from this set is closest
+5 +he viewer (and thus is the one
visible obscuring all +*he ot her
polygons) , and

b} which one

c) the dezails
of <*his

about the precise part
closes* polygon which maps
onto the pixel -- 1its assigned
color, i*s angle and distance from
the ligh* source(s), and 1its angle
and dis+tance *o *the viever.

When programmed on a conventional
qeneral purpose computer, computing such a
simulated image may well <ake several
minu*es, and easily longer; s=o developing
a sys*em o do it in 1/30 second is a non-
+-ivial task. (The bibliography lists
references %o algorithms and systems which
influenced +he design presented in this
paper.)

To nnderstand our solution, let us
firs* examine <+«he overall sequence of
s+eps which need to be performed in order
“o produce a visible surface image on a
video dicplay.

ACTIVE

7 ¥ |DATA BASE
ORBITER POSITION & prie
ATTITUDE DATA

S

a) The original polygons (in object
coordinate space) are transformed
into the position as seen from the
simulated viewing position. (This
is a sequence of rotations and
translations.)

b) The parts of the environment data
base which are not in the field of
view are discarded from further
consideration by clipping all
polygons against the boundaries of
the field of view.

c) Perspective transformation is
applied to foreshorten the
appropriate environmental parts as a
function of distance.

It is at this point <that a visible
surface algorithm is invoked.

Since steps a), b), <©) can be
achieved in real-time by current
affordable lipe__drawing systems (e.qg.,
Evans and Sutherland (1976) , Vector

General(1978)), we will concentrate our
attention on the actual visible surface
computations. (0f course, these line-
drawing systems are affordable partially
because they do not have to perform the
laborious visibility computations for some
300,000 pixels!) Most current real-time
video systems (Evans and Sutherland (1977)
Shoha* and Florence(1977)) use a pipeline
architecture to achieve the necessary high
throughput rates. (See fig. 2 from Shohat
and Florence(1977).) Each module in the
pipeline is typically a highly specialized
processing unit. Thus, these designs do
not easily lend themselves to substantial
upgrading (to achieve higher capacity) or
downgrading (+o achieve lower cost).

Cur own design capitalizes on the
newly plentiful resource of inexpensive
151 circuitry. It allows a significant
but bounded increase in both memory and
processing requirements in return for
architectural flexibility. Specifically,
our solution is tailored -- although not
restricted -- to what may be the simplest
visible surface algorithm, the so-called
"7 buffer" algorithm, one so simple that
i+ seems never to have appeared in print
in its own right. Sutherland, Sproull,
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and Schumacker (1974) mention it in passing
(p-51), saying "tkat if a large memory is
available ... This method results in a
computing cos~ which depends only on the
dep*h number (Dc) and not otherwise on
the environment complexity."™ (Dc is the
numher of front-facing polygons Ypierced,
on +the average, by an arbitrary ray from
the viewpoint,") Catmull{1975) used the
me+thod as part of a more sophisticated
algori+hm for visible display of curved
surfaces. The basic alqgorithm utilizes
two large buffers each contairing an entry
for each pixel on the screen, an "image"
huffer which con*ains the {RGB)
intensities a+ each pixel, and a "iv
buffer which contains at each pixel the
dis*ance of *he closest object encountered
+here so far (fig. 3).

value is compared with the entry in the 2
buffer for this pixel. If this new value
is smaller than the current entry then
this new polygon is closer to the viewer
at this pixel than the closest previously
encountered polygon and so this new
polygon would now be visible at this
pixel. Thus in this case the new Z value
is put into the 2 Dbuffer and this new
polygon's {RGB) intensity value is
computed and inserted into the image
buffer. If, on the other hand, the new 2
value is greater than the value currently
in the 7 buffer at this pixel, then this
polygon is farther than the closest
polygon, and processing is terminated for
this pixel for this polygon without any
changes to the buffers. Processing
continues with the next pixel into which
the current polygon "falls."
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The polygons are processed sequentially,

in any order. Each polygon's processing
starts with determining the pixels upon

which ¢the polygon "falls" in the image.

for each such pixel the distance of the
polvgon from the simulated viewer is
(This is *he "Z" value.) This

computed.

2 2 2 2
2 2 2 2
2 2 2 2
image Buffer
[m(P)=7 Im{Q)=2)

This simple algorithm is seldom used,
principally for two reasons: 1) few
current systems have sufficient memory for
two such large buffers, and 2) every pixel
of every polygon needs to be computed. Yo
understand the potential severity of this



second reason, let us recall t hat
traditionally designers of visible surface
algorithms (e.qg., Wa+tkins (1970)) have
attempted to gain efficiency by avoiding,
whenever possible, consideration of all
but +he (single) nearest polygon. For
example, if all *he polygons potentially
visible on a particular scan line can be
considered toge*her as a set, + hen
deterrining the Z ordering on this set at
just a few key points along *he scan line
is sufficient *o determine the sequence of
visible polygon seqgments along *he entire
line (fig. 4).

x

viewing

direction lr:

A+ intermedia+e points all the
polygons are simply ignored. A
algorithm, since it handles
separately,
for each

obstructed
"2 buffer"
each polygon
computes every affected pixel
polygon -- a procedure which
certainly seems to be wasteful and
inefficient. A closer examination of the
sitvation, reveals that for multiprocessor
systems the procednre may in fact be very
attractive. Sutherland, Sproull, and
Schumacker (1974) estimate that the average
nuwber of polygons "falling on" a pixel is

only 3; +tha*+ 1is, many (most?) images
contain large areas of sky, water,
ceilings, floors -- areas in which there
are no* too rmany polygons stacked one

hehind the other.

This implies that +the
{in) effiency

of the 7 buffer algorithm is

constant; a*t worst it is some constant
multiple (e.q., 3) of the most efficient
possible algorithm -- one which can

determine with negligible cost the visible
polvgon at each pixel. Since LSI
technology is rapidly diminishing the cost
of simple arithmetic processirg units, a
factor of 3 is no longer burdensome.

System Descripiion

The fundamental system
is as illustrated in fiqure 5.

organizat ion

61

list of

palygoas
\} VIDEO
o | MAGE - SCAN
PROCESSOR "1 BUFFER 1 GENERATOR
z
BUFFER A
VIDED
DISPLAY
Fig. 5
Fiqure £ shows in somewhat greater detail
the organization of the image buffer,
wvhich is accessed by both the processor
and the video scan generator.
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Pigure 7 illustrates the simple time
division multiplexing between the
processor and the video scan denerator.

We note here that the current pixel's data
remains on the video scan generator bus
even during the period which is assigned
to the processor.

If we consider using only commonly
available inexpensive LSI RAM's then the
requirement of the scan generator (needing
to cycle through the entire image in
approximately 30 milliseconds) will 1limit

the wusefulness of this simple design to
very coarse images. To increase the
bandwidth we simply insert additional

memory units onto the system bus.
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of
the

Figure 8 illustrates the organization
this enchancement and figure 9 shows
timing cycles. Given that a scan-line is
drawn on standard video monitors in
approximately 40 microseconds, a video
scan genera*or bus cycle of about 75
nsec. is adeguate for images with up to
512 pixels per scan line. It is important
to note *hat the actual bus o *he scan
generator does not increase in size or
speed. A1l memory wunits are read in
parallel during the scan generator access
times. During the following complete
+iming cyvcle, *he various results are put
onto the video bus by er.abling, in
segunence, the bus drivers of the various
memory units. This enabling is directly
controlled by +the leas* siqrificant bits
of *he video scan generator's X address.
In *his fashion the number of memory units
need not be known to the scal: generator;
if there are fewer uni*ts, some of the
least siqnificant address bits are ignored

and thus consecutive loca%ions on the
video screen will be accessed from +the
same image memory unit's output register.

The result will bhe a coarser image (128 x
128, say, instead of 512 x 512) than the
scan generator is capable of producing.
(I+ will be seen la%ter tha* a somewhat
different resolution-independence scheme
for +he processor side of the memories
vill free the en*ire system both
hardware and software -- from reliance on
a fixed resolution.) The proper ID
selec*ion 1in each memory unit (as seen in
Fig. ?7) is a function of both +*he unit's
ID number and the total number of memory
units currently in the sys*ew. Although
such selection settings are normally set
manually *hrough jumpers or DIP switches,
Ve prefer for them o be set
automatically. This is done through the
following mechanism. In addition to the
processor bus and video scan generator
bus, the system includes a set of lines
for ID numbers and *he "total-units"
number.

2s illustrated in fiq. 10, the ID
lines consist of a set of lines sufficient
*0 represen* the largest possible numter
of memory units in a system. (For
example, for a 1924 maximum memory unit
syster this rumber would be 10.)

fashion the set of lines
) on one side, each board
an increment circuit on it, and <thus ¢the
number on *he backplane ID 1lines is
incremented bky one each time it passes
*hrough a memory unit board (fig. 11).
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A sirilar set of lines is used to return
the 1ID signal value from the end of the
system. (This number is simply the total
number of memory units in the system at
the present time.) With +his technique
boards can be inserted into or extracted
from any position at any time without the
necessity of any hardware (or software!)
modification. Empty backplane slots will
pass on all signals either by the use of
shorting-type PC board connectors or by
“he insertion of dummy boards.

We also note at this point that
neither the video scan generator nor the
image memories rely on any wmechanism for
altering the contents of the image



memories. Thus we can distribute
responsiblity for computing +he image
memories contents to a number of different
pPrOCessors.

Tig. 12 illustrates a modified
organiza+ion which achieves this increased

capability. Virtually the only addition
has been the introduction of a central
broadcas+ controller (CBC) which
"announces” the description of each new
polygon *o all the processing elements

{(PE's). The system is designed to operate
as follows:

CENTRAL BROADCAST CONTROLLER {CBC)

0—»]

Max ~—

ya
7
Memory units

r
)

Processing elements)

3
VIDEO 233
DISPLAY GENERATOR

Fig. 12

a) Immediately
broadcasts
software

upon power-on, *the CBC
the (possibly new)
all the process ing
elements. (All PFE's execute +the
same proqgram, but each has a
separate copy of it and each may be
executing differen* parrts of it at
any ins+ant.) :

to

b) The CBC instructs the PE's to survey
the emory units under their
control. This <consists simply of
each PF a*tempting to read and vwrite
a single word into each possible
memory uni+t under its control.
{(Tach knows (from the ID lines), 1)
the *o*tal number of units in the
system at <this +ime, and 2) the
first memory unit 4hat is under its
control; it simply needs to find the
upper limit of its domain.)

buffers

c) The Z and 1image are

inirialized by each PE.

d) The actual processing proceeds now
with the cBC broadcast ing
description of one or more polygons
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to be processed. A polygon
description may consist of the
sequence of the polygon's vertices,
with each vertex being described by
its X,Y,2 location and its
calculated color/intensity value.
Broadcasting additional information
(to be described later) will speed
up processing by eliminating the
need for calculating certain common
values in each of the PE's. Since
each PE knows which MU's are under
its responsibility and how many MU's
are in the system, it can easily
compute the location of each of its
pixels on the screen. For each
polygon it does the appropriate 2
buffer algorithm computations (as

outlined before) for all its pixels
affected by +this current polygon.
When done, each PE signals to the
CBC. When all the PE's are done,

the CBC broadcasts the next polygon
(or set of polygons). The procedure
continues until the complete set of
polygons in the scene is exhausted.

By having the MU's and the PE's
implemented on the same size PC cards and
utilizing the same connectors , all the PE
bus 1lines can be implemented on a single
set of backplane lines. A PE ignores. any
such signals coming in from its left, and
generates its own signals on the lines to
its right. (ME's pass these signals
through.) Thus a PE controls all the NU's
between it and the next PE on its right.
Configurations can be altered by simply
repositioning the boards.

Fig. 13 illustrates that regular
interlacing is possible for both the MU's
and the P¥%'s. FPig. 13a illustrates the
physical backplane ordering of PE and MU
boards in a typical configuration.
Fig. 13b shows part of this raster
configuration's image; each rectangle is
an individual pixel, with the integer
enclosed indicating the MU in which its
value 1is stored and the letter indicating
the PE which calculates the pixel's value.
The regular interlacing increases the
efficiency of processing, in two ways: 1)
it guarantees that for practically any
polygon the pixels on which it 1lies will
be 1located in the domains of a number of
different PE's, so that the workload will
always be distributed, and 2) the regular
pattern of affected pixels in any one HNU
allovs rapid incremental computations for
Z, and eventually for RGB. {(Recall that
all these polygons are planar; so the
amount of change per each pixel step will
be constant.) Also, the same regular
pattern occurs in each affected H8U; for
example, if adjacent pixels in a
particular MU are 2 units apart in X and 4
units in Y, then they will be that way for
every affected memory unit. This allovs



+he CcBC to compute +the appropriate
incremental change values during *he time
the PR's are processing the previous
polygon. The CBC can then broadcast these
values directly, *hereby avoiding a
computation step in each PE.
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Fig. 14 shows how particular

configura*ions can be modified to increase
or decrease image resolution or processing
speed. The grids again illustrate a small
ras*er~image area and how i*ts PE and NU
assignment varies with different
configurations. Note that not only pixel
size, but pixel aspect ratio can be
con*rolled by the HNU allocation and
mapping. {The variations in processor-
memory assignments from those of fig. 13

reflect <+the computations performed by the
memory ID select modules illustrated in
fig. 10.) Fig. 15 illustrates the

physical organization corresponding to the
various resolution/speed configurations of
fig. 14.

Determining the size of
particular system involves
number of conflicting
MUt's allow larger (say, 16K) LSI chips to
be wutilized, and allow fewer NU's o
realize a reasonably high resolution (say,
512 x 512 pixel) image. Since only a
single word can be accessed from any chip
in a given wmemory cycle, however, and
since words correspond to pixels in this
design, only a single pixel can be
accessed in a chip in a single memory

MU's for a
balancing a
demanrds. Lar ger
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cycle; larger MU's thus need faster memory
cycles to keep up with the raster-scanning
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of the image. 1In addition, since no more
than one PE can control any MU, smaller
MU's allow more PE's and thus a faster
syster. Cne configuration currently under

investigation uses 8K pixel ND's with 300
nsec. cycle times.
Le* us consider some of the

capabilities of this kind of organization.
At this point we 1limit our comments to
structural, gqualitative issues, since we
cannot yet give an accurate quantitative
assessment. (Ve are just beginning
performance prediction sirmulations;
preliminary results indicate that an
execution time of 50 microseconds per
pixel per polygon can be achieved.) The
basic design allows significant
flexibility in tradeoff between pover and
economy. On the one extreme there can be
systems with only one PE and oné NU. Of
course such a system would exhibit a very
coarse image, but it may be suitable for
simple video games, for instance. On ‘the
other extreme one can configure a system
with high resolution and very high
throughput. Such high-resolution and high
powered systems would be appropriate, for
instance, for interactive pilot-training
simulators. The only difference, however,
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between these two extreme configurations

would be
number of MU boards.

The software in
PE's of both systems would be identical.

The CBC's would be identical.
polygons are broadcast in
resolution units.) The video

generators could also be identical.
a high-resolution system;
and image resolutions are

assume

both MU
of 2, small

systems*

MU's

least significant bits of the VSG.)
reasonable to speculate

computing
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simply be removed from a system.

These systems should also degrade
gracefully. Some current real-time
systems encounter difficulty due to
computations being done "on the fly" as
the video beam scans the image. These
systems thus avoid using an image buffer
between the processing and scanning-out
modules. If a certain spot in the image
is particularly complex, however, the scan
either has to wait, or it T"paints"
incorrect data. The design presented here
would not exhibit such behavior. The
system would simply take slightly 1longer
to compute the newv image. If the memories
were double buffered, the switch betwveen
the o0ld image and the nev one would be
made slightly after the start of the
second scan of the old image -- or if the
situation were really complex, the switch
would be made after two or more complete
scans of the (old) image.

Other Applications

It is easy to see at this point that
the system is not restricted to executing
a 2Z-buffer visible surface algorithm.
Softwvare could be loaded into the PE's,
for instance, to perform digital vector
generation and rapidly create line
drawings on the video screen. In this
case, the CBC would simply broadcast
endpoint information, each of the PE's
would determine the pixels under its
control which are affected by the new line
segment; i%* would then set each of these
pixels appropriately.

Implementation

We are currently in the process of
implementing various aspects of the above
design. We have prototyped simple
versions of each module and plan to have a
small, but complete prototype system in
the near future.

We are currently generalizing the
scope of the present design. For example,
the simple selection and multiplexing for
both memories and processors is most
easily achieved vhen the number of units
is an even power of 2. Although some sorc
of processor-memory-image assignment can
easily be achieved for an arbitrary number
of units of each, an optimal generalized
mapping algorithm still remains to be
developed.

Fault-tolerant and "highly reliable"®
versions of the current design may also be
guite useful. Although some of ¢this |is



presently available with the capakility to
remove faulty modules, other capabilities
can perhaps be added. For example,
configuring the system %0 generate a
higher resolution image (say, 1024 x 1024)
+han the one being displayed (512 x 512)
would allov the scan generator to consider
{in this case 4) separate sources from
which to determine each single pixel.
Such redundancy should easily allow
significant number of faulty memory and
processor modules without noticeable image
or performance degradation.
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