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ABSTRACT 

In this paper, a comparison of the 
performance of optimally designed computer systems 
with and without virtual memory is made. The 
computer systems in question are modeled by closed 
queuing networks of the central server type. The 
design of the systems is formulated as a nonlinear 
optimization problem where the objective function 
is to maximize the throughput subject to a 
nonlinear cost constraint. The decision variables 
are the speec~ of the individual devices. This 
optimization problem is then solved by use of the 
Lagrange multiplier technique. The comparisons of 
the systems demonstrate the affect on performance 
of the addition of another I/O device to handle 
paging and the affect on performance of the 
additional overhead generated by the page fault 
handler. Also, the optimal amount of money to be 
spent on main memory is investigated. 

I. Introduction 

Recently, an increasing amount of effort has 
been directed toward the development of models to 
aid the computer system designer in his work. Of 
particular concern in this paper are the efforts 
in the area of the optimization of closed queuing 
networks which are suitable for modeling 
multiprogrammed computer systems [1,2,3]. Trivedi 
and Wagner [4] have recently shown that the 
problem of maximizing the throughput in a closed 
queuing network subject to a rich class of 
nonlinear cost constraints has only one local 
maximum which is, therefore, the global optimum. 
They also show that the cost constraint must be 
active at the solution which enables the problem 
to be efficiently solved by use of a Lagrange 
multiplier technique [5]. Trivedl and Kinicki [6] 
exploit the above results and provide several 
examples of how a system designer might select 
device speeds by using this technique. Although 
the speeds of the devices will be discrete in real 
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life, our model will approximate them to be 
continuous variables. Due to this and other 
assumptions, solutions obtained by our model 
should be considered initial approximations in an 
essentially iterative design process. 

Section 2 of this paper will briefly describe 
the model used by Trivedi and Kinicki and will 
then describe the modifications necessary to allow 
the modeling of virtual memory. Section 3 will 
describe the parameterization of the models and 
will then discuss the results of the comparisons 
of the computer systems with and without virtual 
memory. 

II. Dgscription of the Models 

We first describe the model of a computer 
system operating in s multiprogramming environment 
without virtual memory where each active program's 
address space resides in main memory until its 
completion. The system is represented by a closed 
queuing network of the central server type [7] 
(see figure I). Each significant device in the 
system is represented by one of the m+1 service 
facilities (numbered 0 to m) where the i-th 
service facility consists of a queue and a single 
server which is capable of processing b(i) work 
units per unit time. All service facilities are 
assumed to operate under a FCFS scheduling 
discipline and their service time distributions 
are assumed to be negative exponential with mean 
service rate u(i) (i = 0,1 .... ,m). Any 
differentiable service time distribution is 
permitted if the scheduling discipline is PS or 
LCFS-PR [8]. The network contains n (the degree 
of multiprogramming) stochastically equivalent 
programs which alternate between service at the 
CPU (device 0) and one of the m I/O devices 
according to branching probabilities which 
characterize the movement of a typical program 
through the computer system, p(0) is the 
probability that upon completion of service at the 
CPU the program terminates and a new program 
enters the system via the new program path. By 
assuming that there is a sufficiently large 
backlog of programs awaiting service, a departure 
from the system triggers the instantaneous arrival 
of a new program which maintains the degree of 
multiprogramming at n. The throughput of the 
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system can then be easily described as the rate of 
flow along the new program path. p(i) for 
i = 1,2,...,m is the probability that upon leaving 
the CPU a program will next require service at the 
i-th I/O device. 

Let t(i) be the average number of program 
visits to the i-th facility, and let J(i) be the 
total number of work units processed per program 
at the i-th facility. Thus, J(O)/t(0) represents 
the average number of instructions executed by the 
CPU between two I/O requests and J(i)/t(i) 
(i = 1,2,...,m) is interpreted as the number of 
information units transferred between the i-th 
device and main memory per visit. Now the speed 
of the i-th service facility can be expressed as a 
function of the service rate as follows: 

J(1) 
b(i) = u(i)* ...... 

t(i) 
i : 0,1,...,m . (I) 

The cost of the computer system is 
approximated by the sum of the individual 
component costs and the main memory cost. The 
cost of each component is expressed in terms of a 
continuous power function of the device speed and 
the cost of main memory is assumed to be a linear 
function of n. 

The Trivedi-Kinicki design problem can now be 
expressed as the following optimization problem: 

maximize T(b(O),b(1),...,b(m)) (2) 

subject to 
m alpha(1) 

C(i)*b(i) + Mem(n) ~ COST 
i:O 

and b(i) > 0 i=0,1,...,m 

where T(b(O),b(1),...,b(m)) is the throughput of 
the system. In words, the design problem is: 
given a fixed topology, a fixed degree of 
multiprogramming, a workload description (in terms 
of fixed branching probabilities and J(~), t(i) 
for i = 0,1,...,m), and the amount of main memory 
required per program (equal to the size of its 
entire address space), determine the device speeds 
which maximize the system throughput subject to a 
cost constraint. Trivedi and Kinickl then use a 
Lagrange multiplier technique to solve the above 
problem for several examples. (Since the degree 
of multlprogramming is an integral variable, a 
discrete search is performed to find the optimal 
degree of multiprogramming.) 

Based upon the above model of a computer 
system without virtual memory, we now develop the 
two basic models of a computer system with virtual 
memory which will be used in the comparisons of 
section 3. The difference between these two 
models is the method of implementing the virtual 
memory which yields two different system 
topologies. In one model, another I/O device is 
added to the system to handle the paging traffic, 
while in the other model, all paging I/O is 

handled by one of the existing I/O devices whose 
capacity has been increased. As far as the 
mathematical and computational aspects are 
concerned, the only difference between either one 
of the virtual models and its topologically 
equivalent non-virtual model is in the 
characterization of the workload. In particular, 
the branching probabilities in the virtual models 
are functions of the degree of multiprogrammlng, 
n, instead of being fixed. This can be easily 
shown as follows. 

The total I/O activity of the system consists 
of two parts - paging I/O and all other I/O. The 
average CPU burst between two paging I/O requests 
is given by the system lifetime function e(mem), 
where mem is the amount of main memory allocated 
to each program in the active set. Note that this 
lifetime function is clearly a function of n since 
mem = M/n where M is the total amount of main 
memory. The average CPU burst between two non- 
paging I/O requests is w which is given by 
w = J(O)/(~t(i) + I) where the index of the 
summation, i, is varied over all non-paging I/O 
devices. Note that w does not depend on n. 
Combining the above two expressions yields E(n), 
the average CPU burst: 

I I I 
. . . .  = . . . .  ÷ --- 

E(n) e(n) w 

or 

E(n) = +-- (3) 

Since J(O) is the total number of instructions to 
be executed per program, then t(O) = J(O)/E(n). 
Realizing that p(O) = I/t(O) yields 
p(O) = E(n)/J(O). Also the branching 
probabilities for all non-paging I/O devices are 
given by p(i) = t(i)/t(O) : p(O)*t(i) where 
i = indices of all non-paging I/O devices. The 
branching probability for the paging I/O device 
can then be easily found by summing all known 
probabilities and subtracting from one. Thus we 
see that the branching probabilities in the 
virtual models are functions of the degree of 
multiprogramming. This does not affect the 
mathematical optimization problem, however, since 
it is assumed that the degree of multlprogramming 
is fixed. 

One additional feature of the virtual models 
is the inclusion of a term to account for the CPU 
overhead generated by the page fault handler. 
This is accomplished by modifying J(O) as follows: 

where 

FJ(o>] 
J(O)' = J(O) + ]----I*PFH (4) 

[e(n) l 

i ~ i  is the number of page faul ts that 
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were generated and PFH is the number of 
instructions executed by the page fault handler. 

III. Results of the Comparisons 

The comparisons of computer systems with and 
without virtual memory will be based on the 
following three models: I) a multiprogrammed 
computer system without virtual memory and having 
three I/O devices, 2) a multiprogrammed computer 
system with virtual memory and having four IIO 
devices one of which is dedicated to paging I/O, 
and 3) a multiprogrammed computer system with 
virtual memory and having three llO devices one of 
which handles both paging and non-paging IIO. 

The model of the non-virtual computer system 
will be parameterized exactly as it was in [6]. 
These parameters are displayed in table I. Tables 
2 and 3 display the parameters of the two 
virtual models. Belady's lifetime function, 
e(mem) = a*mem h, was chosen to represent the 
length of the CPU burst between page faults. The 
values for a (4.69) and b (2.88) were obtained 
from Spirn [9] who provided a fit of Belady's 
lifetime function based on empirical data. All of 
the pricing information is the same as that used 
by Trivedi and Kinicki except for the cost 
coefficient of the drum in table 3 which was 
doubled to reflect the increased capacity required 
by its double duties. As was done in [6], the 
price of main memory was approximated by $1.00 per 
32-bit word. The total system budgets that will 
be considered range from $1,000,000 to $2,000,000 
in increments of $250,000. One final parameter 
concerns the amount of main memory required by 
each program in the active set in the non-virtual 
model. This value will be assumed to be 50,000 
words. 

Figure 2 is a graph of optimal throughput 
versus dollars spent on main memory for the non- 
virtual model and the virtual model with four I/O 
devices. The dashed lines are the results from 
the non-virtual model and the solid lines are the 
results from the virtual model with four I/O 
devices. The results from two total system 
budgets and three values of page fault handler 
overhead are plotted on the same graph. Each 
point of the virtual model's curves was obtained 
by choosing the optimal point after a discrete 
search over n, the degree of multiprogramming, was 
performed. The small numbers written beside each 
point of the virtual model's curves are the 
optimal degrees of multiprogramming. The degree 
of multiprogramming for each point of the non- 
virtual model's curves is not given since it is 
easily obtained from n = $MM/50000 where SMM is 
the amount of money spent on main memory. It can 
be easily seen that when the page fault handler 
overhead (PFH) equals 10000 instructions the 
virtual curve lies completely below the non- 
virtual curve and when PFH = 0 the virtual curve 
lies completely above the non-virtual curve. When 
PFH = 5000, however, the virtual curve lies above 
the non-virtual curve for small amounts of main 
memory and below for larger amounts of main 

memory. This figure also clearly displays the 
increased degree of multiprogramming possible with 
virtual memory. 

Figure 3 is a similar graph for the non- 
virtual model and the virtual model with only 
three I/O devices. Here it is easily seen that 
for all three values of PFH, the virtual curve 
lles completely above the non-virtual curve. 
Thus, for this set of values for the model 
parameters, we conclude that virtual memory will 
yield a performance increase when the paging I/O 
is handled by an existing I/O device. 

Figure 4 is a graph of optimal throughput 
versus total system budget for all three models. 
The dashed curve again represents the non-vlrtual 
model while the two solid curves representing the 
virtual models are labeled. In this figure, the 
page fault handler overhead is 10000 instructions 
for both virtual models. Associated with each 
point on the graph is a pair of numbers which 
specify the optimal degree of multiprogramming and 
the optimal amount of money to be spent on main 
memgry (in thousands of dollars). It is assumed 
that money is allocated to main memory in 
increments of $50,000. This type of graph clearly 
shows the affect that an increased system budget 
has on the optimal degree of multiprogramming and 
on the amount of money that should be spent on 
main memory. 

IV. Conclusion 

The examples in this paper demonstrate a 
mathematical tool which could prove useful in 
aiding the system designer in his decision of 
whether to use virtual memory and, if so, the 
appropriate method of implementing it. This paper 
does not advocate one method of implementation 
over another since this is dependent on the system 
workload and costs by which the designer is 
currently constrained. A particular advantage of 
this tool is that it provides a simple and 
inexpensive method of gaining insights about a 
large number of different system configurations 
operating under varying workloads and constrained 
by different cost estimates. 
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Dev i ce  I 
i Name [ J ( l )  t ( t )  p ( i )  C ( t )  a l p h ~ ( l )  

- ; - - - ~ ; ;  . . . . . .  ; ; ; ~ ; ; ;  . . . .  ; ;  . . . .  ; ~ ; ; - - - ; ~ ; ; ~ ? ; ; T ; ;  . . . .  ; T ; ; ~ ; ; - '  
1 Drum 10,000 10 0 . 5 0  1 , 4 3 2 , 6 6 4 , 0 0  1 .00000 
2 Disk I 6,000 6 0 .30  707,648.00 0.67290 
3 Disk 2 3,000 3 O.15 707,648.00 0.67290 

Table I - without virtual memory (m = 3) 

Device : : 
t Name J ( i )  : t ( i )  C ( I )  : a l p h a ( l )  

" o ' - - ~  . . . . . . . . . . .  ; ; ; : ; ; ;  . . . . .  ; . . . .  U ; ; ; : ; ; ; : ; ;  . . . .  ~ T ; ; ; ; ; - '  
I Paging Drum * • I,~32,66a.00 1.OOOOO 
2 Drum 10,000 10 I,~32,664.D0 1.00000 
3 Disk I 6,000 6 707,648.00 0.67290 
4 Dlsk 2 3,000 3 707,648.00 0.67290 

• t hese  v a l u e s  are d e p e n d e n t  on n and t h e  l i f e t i m e  f u n c t i o n  

Table 2 - with virtual memory (m = 4) 

D e v i c e  ; ; ; 
t Name J ( l }  ~ t ( i )  ; C ( l )  ~ a l p h a ( i )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 CPU 400,000 * 1,1117,835.00 0.55309 
I Paging Drum J • 2,865,328.00 1.00000 
2 Disk 1 6,000 6 707,648.00 0.67290 
3 Disk 2 3,000 3 707,648.00 0.67290 

• these values are dependent on n mnd the llfetlme function 

Table 3 - with virtual memory (m = 3) 
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Figure I - Central Server Model 
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4 I/O devices. 
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