
A PERFORMANCE COMPARISON OF OPTIMALLY DESIGNED

COMPUTER S~STEMS WITH AND WITHOUT VIRTUAL MEMORY

Kishor S. Trivedi and Timothy M. Sigmon

Department of Computer Science
Duke University

Durham, North Carolina 27706

ABSTRACT

In this paper, a comparison of the
performance of optimally designed computer systems
with and without virtual memory is made. The
computer systems in question are modeled by closed
queuing networks of the central server type. The
design of the systems is formulated as a nonlinear
optimization problem where the objective function
is to maximize the throughput subject to a
nonlinear cost constraint. The decision variables
are the speec~ of the individual devices. This
optimization problem is then solved by use of the
Lagrange multiplier technique. The comparisons of
the systems demonstrate the affect on performance
of the addition of another I/O device to handle
paging and the affect on performance of the
additional overhead generated by the page fault
handler. Also, the optimal amount of money to be
spent on main memory is investigated.

I. Introduction

Recently, an increasing amount of effort has
been directed toward the development of models to
aid the computer system designer in his work. Of
particular concern in this paper are the efforts
in the area of the optimization of closed queuing
networks which are suitable for modeling
multiprogrammed computer systems [1,2,3]. Trivedi
and Wagner [4] have recently shown that the
problem of maximizing the throughput in a closed
queuing network subject to a rich class of
nonlinear cost constraints has only one local
maximum which is, therefore, the global optimum.
They also show that the cost constraint must be
active at the solution which enables the problem
to be efficiently solved by use of a Lagrange
multiplier technique [5]. Trivedl and Kinicki [6]
exploit the above results and provide several
examples of how a system designer might select
device speeds by using this technique. Although
the speeds of the devices will be discrete in real

* Supported in part under the National Science
Foundation grant number US NSF MCS 76-24417.

** Supported in part under the National Library of
Medicine Training grant number LM-07003.

CH1394-6/79/0000-0117
117

life, our model will approximate them to be
continuous variables. Due to this and other
assumptions, solutions obtained by our model
should be considered initial approximations in an
essentially iterative design process.

Section 2 of this paper will briefly describe
the model used by Trivedi and Kinicki and will
then describe the modifications necessary to allow
the modeling of virtual memory. Section 3 will
describe the parameterization of the models and
will then discuss the results of the comparisons
of the computer systems with and without virtual
memory.

II. Dgscription of the Models

We first describe the model of a computer
system operating in s multiprogramming environment
without virtual memory where each active program's
address space resides in main memory until its
completion. The system is represented by a closed
queuing network of the central server type [7]
(see figure I). Each significant device in the
system is represented by one of the m+1 service
facilities (numbered 0 to m) where the i-th
service facility consists of a queue and a single
server which is capable of processing b(i) work
units per unit time. All service facilities are
assumed to operate under a FCFS scheduling
discipline and their service time distributions
are assumed to be negative exponential with mean
service rate u(i) (i = 0,1 ,m). Any
differentiable service time distribution is
permitted if the scheduling discipline is PS or
LCFS-PR [8]. The network contains n (the degree
of multiprogramming) stochastically equivalent
programs which alternate between service at the
CPU (device 0) and one of the m I/O devices
according to branching probabilities which
characterize the movement of a typical program
through the computer system, p(0) is the
probability that upon completion of service at the
CPU the program terminates and a new program
enters the system via the new program path. By
assuming that there is a sufficiently large
backlog of programs awaiting service, a departure
from the system triggers the instantaneous arrival
of a new program which maintains the degree of
multiprogramming at n. The throughput of the

$00.7501979 IEEE

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800090.802900&domain=pdf&date_stamp=1979-04-23

system can then be easily described as the rate of
flow along the new program path. p(i) for
i = 1,2,...,m is the probability that upon leaving
the CPU a program will next require service at the
i-th I/O device.

Let t(i) be the average number of program
visits to the i-th facility, and let J(i) be the
total number of work units processed per program
at the i-th facility. Thus, J(O)/t(0) represents
the average number of instructions executed by the
CPU between two I/O requests and J(i)/t(i)
(i = 1,2,...,m) is interpreted as the number of
information units transferred between the i-th
device and main memory per visit. Now the speed
of the i-th service facility can be expressed as a
function of the service rate as follows:

J(1)
b(i) = u(i)*

t(i)
i : 0,1,...,m . (I)

The cost of the computer system is
approximated by the sum of the individual
component costs and the main memory cost. The
cost of each component is expressed in terms of a
continuous power function of the device speed and
the cost of main memory is assumed to be a linear
function of n.

The Trivedi-Kinicki design problem can now be
expressed as the following optimization problem:

maximize T(b(O),b(1),...,b(m)) (2)

subject to
m alpha(1)

C(i)*b(i) + Mem(n) ~ COST
i:O

and b(i) > 0 i=0,1,...,m

where T(b(O),b(1),...,b(m)) is the throughput of
the system. In words, the design problem is:
given a fixed topology, a fixed degree of
multiprogramming, a workload description (in terms
of fixed branching probabilities and J(~), t(i)
for i = 0,1,...,m), and the amount of main memory
required per program (equal to the size of its
entire address space), determine the device speeds
which maximize the system throughput subject to a
cost constraint. Trivedi and Kinickl then use a
Lagrange multiplier technique to solve the above
problem for several examples. (Since the degree
of multlprogramming is an integral variable, a
discrete search is performed to find the optimal
degree of multiprogramming.)

Based upon the above model of a computer
system without virtual memory, we now develop the
two basic models of a computer system with virtual
memory which will be used in the comparisons of
section 3. The difference between these two
models is the method of implementing the virtual
memory which yields two different system
topologies. In one model, another I/O device is
added to the system to handle the paging traffic,
while in the other model, all paging I/O is

handled by one of the existing I/O devices whose
capacity has been increased. As far as the
mathematical and computational aspects are
concerned, the only difference between either one
of the virtual models and its topologically
equivalent non-virtual model is in the
characterization of the workload. In particular,
the branching probabilities in the virtual models
are functions of the degree of multiprogrammlng,
n, instead of being fixed. This can be easily
shown as follows.

The total I/O activity of the system consists
of two parts - paging I/O and all other I/O. The
average CPU burst between two paging I/O requests
is given by the system lifetime function e(mem),
where mem is the amount of main memory allocated
to each program in the active set. Note that this
lifetime function is clearly a function of n since
mem = M/n where M is the total amount of main
memory. The average CPU burst between two non-
paging I/O requests is w which is given by
w = J(O)/(~t(i) + I) where the index of the
summation, i, is varied over all non-paging I/O
devices. Note that w does not depend on n.
Combining the above two expressions yields E(n),
the average CPU burst:

I I I
. . . . = ÷ ---

E(n) e(n) w

or

E(n) = +-- (3)

Since J(O) is the total number of instructions to
be executed per program, then t(O) = J(O)/E(n).
Realizing that p(O) = I/t(O) yields
p(O) = E(n)/J(O). Also the branching
probabilities for all non-paging I/O devices are
given by p(i) = t(i)/t(O) : p(O)*t(i) where
i = indices of all non-paging I/O devices. The
branching probability for the paging I/O device
can then be easily found by summing all known
probabilities and subtracting from one. Thus we
see that the branching probabilities in the
virtual models are functions of the degree of
multiprogramming. This does not affect the
mathematical optimization problem, however, since
it is assumed that the degree of multlprogramming
is fixed.

One additional feature of the virtual models
is the inclusion of a term to account for the CPU
overhead generated by the page fault handler.
This is accomplished by modifying J(O) as follows:

where

FJ(o>]
J(O)' = J(O) +]----I*PFH (4)

[e(n) l

i ~ i is the number of page faul ts that

118

were generated and PFH is the number of
instructions executed by the page fault handler.

III. Results of the Comparisons

The comparisons of computer systems with and
without virtual memory will be based on the
following three models: I) a multiprogrammed
computer system without virtual memory and having
three I/O devices, 2) a multiprogrammed computer
system with virtual memory and having four IIO
devices one of which is dedicated to paging I/O,
and 3) a multiprogrammed computer system with
virtual memory and having three llO devices one of
which handles both paging and non-paging IIO.

The model of the non-virtual computer system
will be parameterized exactly as it was in [6].
These parameters are displayed in table I. Tables
2 and 3 display the parameters of the two
virtual models. Belady's lifetime function,
e(mem) = a*mem h, was chosen to represent the
length of the CPU burst between page faults. The
values for a (4.69) and b (2.88) were obtained
from Spirn [9] who provided a fit of Belady's
lifetime function based on empirical data. All of
the pricing information is the same as that used
by Trivedi and Kinicki except for the cost
coefficient of the drum in table 3 which was
doubled to reflect the increased capacity required
by its double duties. As was done in [6], the
price of main memory was approximated by $1.00 per
32-bit word. The total system budgets that will
be considered range from $1,000,000 to $2,000,000
in increments of $250,000. One final parameter
concerns the amount of main memory required by
each program in the active set in the non-virtual
model. This value will be assumed to be 50,000
words.

Figure 2 is a graph of optimal throughput
versus dollars spent on main memory for the non-
virtual model and the virtual model with four I/O
devices. The dashed lines are the results from
the non-virtual model and the solid lines are the
results from the virtual model with four I/O
devices. The results from two total system
budgets and three values of page fault handler
overhead are plotted on the same graph. Each
point of the virtual model's curves was obtained
by choosing the optimal point after a discrete
search over n, the degree of multiprogramming, was
performed. The small numbers written beside each
point of the virtual model's curves are the
optimal degrees of multiprogramming. The degree
of multiprogramming for each point of the non-
virtual model's curves is not given since it is
easily obtained from n = $MM/50000 where SMM is
the amount of money spent on main memory. It can
be easily seen that when the page fault handler
overhead (PFH) equals 10000 instructions the
virtual curve lies completely below the non-
virtual curve and when PFH = 0 the virtual curve
lies completely above the non-virtual curve. When
PFH = 5000, however, the virtual curve lies above
the non-virtual curve for small amounts of main
memory and below for larger amounts of main

memory. This figure also clearly displays the
increased degree of multiprogramming possible with
virtual memory.

Figure 3 is a similar graph for the non-
virtual model and the virtual model with only
three I/O devices. Here it is easily seen that
for all three values of PFH, the virtual curve
lles completely above the non-virtual curve.
Thus, for this set of values for the model
parameters, we conclude that virtual memory will
yield a performance increase when the paging I/O
is handled by an existing I/O device.

Figure 4 is a graph of optimal throughput
versus total system budget for all three models.
The dashed curve again represents the non-vlrtual
model while the two solid curves representing the
virtual models are labeled. In this figure, the
page fault handler overhead is 10000 instructions
for both virtual models. Associated with each
point on the graph is a pair of numbers which
specify the optimal degree of multiprogramming and
the optimal amount of money to be spent on main
memgry (in thousands of dollars). It is assumed
that money is allocated to main memory in
increments of $50,000. This type of graph clearly
shows the affect that an increased system budget
has on the optimal degree of multiprogramming and
on the amount of money that should be spent on
main memory.

IV. Conclusion

The examples in this paper demonstrate a
mathematical tool which could prove useful in
aiding the system designer in his decision of
whether to use virtual memory and, if so, the
appropriate method of implementing it. This paper
does not advocate one method of implementation
over another since this is dependent on the system
workload and costs by which the designer is
currently constrained. A particular advantage of
this tool is that it provides a simple and
inexpensive method of gaining insights about a
large number of different system configurations
operating under varying workloads and constrained
by different cost estimates.

119

REFERENCES

[I]

[2]

C3]

[4]

C5]

[6]

[7]

[8]

[9~

Chiu, W.W.-Y. Analysis and applications of
probabllistic models of multlprogrammed
computer systems. Ph.D. Dissertation,
Department of Electrical Engineering,
University of California, Santa Barbara,
California, December 1973.

Hogarth, J. Optimization and analysis of
queueing networks. Ph.D. Dissertation,
Department of Computer Science,
University of Texas, Austin, Texas, May
1975.

Kachhal, S.K. and Arora, S.R. Seeking
configurational optimization in computer
systems. ACM Annual Conference (1975),
pp. 96-101.

Trivedi, K.S. and Wagner, R.A. A decision
model for closed queuing networks.
Accepted subject to revision, IEEE
Transactions~j!Software Engineering.

Luenberger, D.G. Introduction~gLinear ~n~
Nonlinear Programming. Addison-Wesley
Publishing, Reading, Massachusetts,
1973.

Trivedi, K.S. and Kinicki, R.E. A
Mathematical Model for Computer System
Configuration Planning. Proc.
International Conference ~J! the
Perform~nq@9.~ Computer Installations,
D. Ferrari (ed.), North Holland,
Amsterdam, 1978.

Buzen, J.P. Computational algorithms for
closed queueing networks with
exponential servers. CACM 16,
9(September 1973), pp. 527-531.

Chandy, K.M., Howard, J.H., and Towsley,
D.F. Product form and local balance in
queueing networks. JACM 24, 2(April
1977), pp. 250-263.

Spirn, J.R. Program Behavior: Models and
Measurement. Elsevier North-Holland,
N.Y., N.Y., 1977.

Dev i ce I
i Name [J (l) t (t) p (i) C (t) a l p h ~ (l)

- ; - - - ~ ; ; ; ; ; ~ ; ; ; ; ; ; ~ ; ; - - - ; ~ ; ; ~ ? ; ; T ; ; ; T ; ; ~ ; ; - '
1 Drum 10,000 10 0 . 5 0 1 , 4 3 2 , 6 6 4 , 0 0 1 .00000
2 Disk I 6,000 6 0 .30 707,648.00 0.67290
3 Disk 2 3,000 3 O.15 707,648.00 0.67290

Table I - without virtual memory (m = 3)

Device : :
t Name J (i) : t (i) C (I) : a l p h a (l)

" o ' - - ~ ; ; ; : ; ; ; ; U ; ; ; : ; ; ; : ; ; ~ T ; ; ; ; ; - '
I Paging Drum * • I,~32,66a.00 1.OOOOO
2 Drum 10,000 10 I,~32,664.D0 1.00000
3 Disk I 6,000 6 707,648.00 0.67290
4 Dlsk 2 3,000 3 707,648.00 0.67290

• t hese v a l u e s are d e p e n d e n t on n and t h e l i f e t i m e f u n c t i o n

Table 2 - with virtual memory (m = 4)

D e v i c e ; ; ;
t Name J (l } ~ t (i) ; C (l) ~ a l p h a (i)

.
0 CPU 400,000 * 1,1117,835.00 0.55309
I Paging Drum J • 2,865,328.00 1.00000
2 Disk 1 6,000 6 707,648.00 0.67290
3 Disk 2 3,000 3 707,648.00 0.67290

• these values are dependent on n mnd the llfetlme function

Table 3 - with virtual memory (m = 3)

120

,<

N~W PR~I~AM PATH

,(o,1

IOl

l "
Figure I - Central Server Model

A

Throughput

3.2

3.0 -- ~ PFH=0

2 . 6 * ~ u

i ~ ~" PFH= 5000 ' 2.4 ' ~ J $1,750,000

2.2-

2.0

1.0""

" ~ PFH=0
1.6 I b t

#~ total budget
• ~ $1,250.000

1.0

" ' , . . . , $ spent on
-~ main memory

50 100 150 200 250 300 350 400 (in thousands

Figure 2 - Throughput vs. $ spent on main memory
for the non-virtual model (dashed
lines) and the virtual model with
4 I/O devices.

Throughput

/ PFH=0

3.2-- ~ y

3.0 ~

2.0-

total budget
2.6- ~ $1,750,000

2.4-

2 . 2 - '6 / / /

/
2 . 0 - -

J

1 . 8 - PFH=0

3 • f
1.6-

1.4- 1 c ~

1.2- * ~ total budget
$1,250,000

1.0--

$ spent on
I [" ' l ~] ~ I "" I > main memory
50 100 150 200 250 300 350 400 (in thousands)

Figure 3 - Throughput vs. $ spent on main memory
for the non-virtual model (dashed
lines) and the virtual model with

3 I/O devices.

Throughput

i 3 . 8 -

3.4-

3.2.

3.0-

2.8-

2.6.

2.4.

2.2-

virtual with
3 I/O's '

(4,200)

5,200)

(3,150)/d/i.
~ --(4,200)

/t # (5,200)

(4,250)

fl(5,250)
/

(6,250)

~virtual with
4 I/O' 9

. 200)

1.6-

1250 1500 1750 2000

total budget
(in thousands of $)

Figure 4 - Throughput vs. total budget

121

