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Abstract (i) 

Microprogramming is a basic technique that 
realizes functionally specialized processors in a 
functionally distributed multiprocessor system 
which consists of many small processors. In such 
a multiprocessor system, it is necessary to 
change processor functions dynamically in order 
to back up a heavily loaded processor or a failed 
processor by a lightly loaded processor. This 
paper proposes a mechanism for exchanging pro- 
cessor functions in firmware level and shows a 
hardware organization which realizes the mechanism 
in an experimental system. In order to clarify 
the design conditions of an operating system and 
microprograms, the performance of the mechanism is 
analyzed from the load balancing point of view. 
Moreover, the conditions which the mechanism 

must satisfy are derived. 

(2) 

The scheme, in which control storage is 
implemented as being in the same address 
space as the main memory, provides the 
capability of writing or reading microprog- 
rams into the writable control storage (WCS) 
like a main memory [4]. However, it is 
difficult to prevent some failures in one 
space from spreading to another space effec- 
tively. 
The other scheme, in which control storage is 
separated from main memory in terms of physi- 
cal construction and addressing logic, pro- 
vides the capability of preventing software 
failures from spreading into microprograms. 
In this scheme, micrprograms can be loaded 

into WCS by calling utility programs that 
treat WCS as an I/O device [5]. However, it 
is inefficient to load a variable small 
number of microinstructions into WCS. 

I. Introduction 

In this paper, the Poly-Processer System 
(PPS) is defined as a computer complex consisting 
of many small, tightly coupled, and functionally 
dedicated processors. The objective of PPS is to 
realize a computer system which has easier ex- 
pandability, higher reliability, and better cost 
to performance ratio than existing systems [1,2,3]. 

In PPS, microprogramming is one of the basic 
techniques, since it is useful for realizing 
functionally specialized processors without 
changing processor hardware and is thought to 
attain an economical advantage by using a large 
amount of LSIs of the same kind. The results of 
PPS software simulation show that the load for 
each processor varies according to the type of 
user program involved. Therefore, several kinds 

of load balancing mechanism are necessary to avoid 
overload for each processor [i]. Since there is a 
possibility that some processor failures could 
completely halt system operations, some system 
reconfiguration mechanisms are necessary [3]. In 
PPS, in order to realize the above mechanisms, a 
lightly loaded processor is used to back up a 
heavily loaded processor or a failed processor. 
Hence, it is necessary that microprogramscan be 
dynamically changed in order to change processor 
functions dynamically. 

Many schemes, which alter microprograms 
dynamically, have been proposed. These schemes 
have the following merits and demerits. 

This paper proposes a mechanism for ex- 
changing processor functions in firmware level and 
shows the hardware construction realizing the 
mechanism in a PPS pilot model system. Charac- 
teristics of the mechanism were analyzed from the 
viewpoint of effects on load balancing among 
processors. Moreover, the conditions which the 
mechanism must satisfy are shown. 

2. Address Mapping Mechanism 

In PPS pilot model, an address mapping 
mechanism is provided for each processor to enable 
dynamic function exchanging. 

2.1 Addressing Mechanism 

The address mapping mechanism allows use of 
both control storage and main memory interchangea- 
bly and keeps control storage space separated from 
main memory space. 

As illustrated in Fig. I, the mechanism 
defines bus windows. Window (Wm) maps main memory 
space (a-b) to control storage space (c-d). 
Window (Wc) maps control storage space (e-f) to 
main memory space (g-h). Word size of the control 
storage is n times as large as that of the main 
memory. A control storage word is divided into n 
blocks of equal size. Windows are opened under 
the control of an operating system or microprog- 
rams, only when necessary to operate the mecha- 
nism. 
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The mechanism operates as follows: 
(i) If operand address X in the main memory space 

is a X b, data is fetched from the (X-a)(mod. 
n)-th block of c+[(X-a)/n] in the control 
storage space. 

(2) If the next micronstruction address Y in the 
control storage space is e Y f, the five 
words beginning from g+n(Y-e) in the main 
memory space are fetched andexecuted. 

Dynamic microprogramming, which uses the 
address mapping mechanism, has the following 
advantages. 

(AI) Since control storage space and main memory 
space are separated from each other, the 
mutual interference between microprograms and 
programs can be decreased. 

(A2) Since control storage is accessible, as if it 
were a main memory, it is easy to load micro- 
programs dynamically under program control. 

(A3) Since microprograms in main memory can be " 
directly executed, the microprogram execution 
area is enlarged. 

(A4) The mechanism provides operating system 
software with two means of exchanging pro- 
cessor functions. One is overlaying micro- 
programs and the other is direct execution of 
microprograms in main memory. 

2.2 Hardware Organization 

The processor organization of PPS pilot model 
is shown in Fig. 2. The processor is a conven- 
tional microprogrammed minicomputer, to which the 
address mapping mechanism is added. The address 
mapping hardware consists of an extended control 
storage unit (ECS) and an address space control 
unit (ASC). ASC is connected to the main memory 
by the memory bus (M-bus). ECS is connected to 
ASC by the bus transmitting microprogram data (MP- 
bus). Hardware characteristics are described in 
Table i. 

Extended Control Storage Unit. As shown in 
Fig. 2, ECS consists of writable control storage 
and a controller (ECSC). ECSC activates writable 
control storage read/write operations or micro- 
instruction execution, as ordered by ASC. If the 
operation is finished, ECSC reports machine 
states or a next microinstruction address to ASC. 

Address Space Control Unit. As shown in Fig. 
2, ASC consists of an address mapping module, an 
M-bus control module, a data transmission bus and 
a controller (ASCC). 
(Sl) The address mapping module performs two kinds 

of mapping. One is mapping from main memory 
space to control memory space. An operand 
address on M-bus is examined to determine 
whether it is in window (Wm) or not. If the 
address is in the window and the window is 
open, the signal for enabling mapping, or Gmc 
is activated, is sent to the M-bus control 
module. At the same time, the operand ad- 
dress is transformed to a control storage 
address and block number pair. The other is 
mapping from control memory space to main 
memory space. The next microinstruction 

address on MP-bus is examined to determine 
whether it is in window (Wc) or not. If the 
address is in the window and the window is 
open, the signal for enabling mapping, or Gcm 
is activated, is sent to the ASCC. At the 
same time, the microinstruction address is 
tranformed to a main memory address. 

($2) The M-bus control module either controls 
accesses issued from the ASC to the main 
memory or makes a response to accesses issued 
from the CPU to the control storage. In case 
of acces control, if Gcm is activated, the 
M-bus control module begins main memory 
access sequences under the control of the 
ASCC. In case of response operation, if Gcm 
is activated, the M-bus control module sends 
an acknowledge signal to the CPU instead of 
to the main memory and also sends a signal to 
the ASCC to begin a control storage access 
operation. 

(S3) The ASCC operates as follows: When the ASCC 
receives a termination signal for a micro- 
instruction, it examines Gcm. If Gcm is not 
activated, it sends an initiation signal for 
the next microinstruction to the ECS. If Gcm 
is activated, it fetches a next microinstruc- 
tion from the main memory through the M-bus 
control module and sends it to the ECS. 
Then, it sends an initiation signal for the 
next microinstruction to ECS. When the ASCC 
recognizes that Gmc is activated, it sends a 
signal to the ECS to initiate a control 
memory access operation. 

2.3 Firmware Organization 

The emulator program structure is shown in 
Fig. 3 [6]. In PPS, semantic routines are divided 
into two classes. One class is a set of semantic 
routines, Basic Semantic Routines, which realize 
the basic functions common to all processors. The 
other class is a set of semantic routines, Op- 
tional Semantic Routines, which realize the 
functions local to each processor, or microprog- 
rammed operating system functions. Copies of the 
optional semantic routines are stored in the 
common memory. The functions of each processor 
are dynamically changed by exchanging optional 
semantic routines. 

As described before, in PPS pilot model, 
there are two methods of dynamically exchanging 
processor functions; (i) mapping control storage 
references into main memory, thus switching which 
microprogram is being executed, and (2) mapping 
main memory into control storage, so that micro- 
programs can be over-written. 

3. Effects on Load Balancing 

The address mapping mechanism may affect 
system characteristics, such as allowed perform- 
ance and load imbalance. Therefore, its effects 
must be analyzed and requirements for a load 
balancing scheme must be investigated for de- 
signing an operating system and firmware. 
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3.1 Analysis Model 

From the load balancing point of view, the 
system is defined to be in a balanced state when 
an average response time of each processor is 
equal to that of all the others and less than the 
fixed value, or permitted limit for response time: 
Rt. As shown in Fig. 4, a load balancing process 
is modeled that a request to a heavily loaded 
processor, CPU-b, is processed at random by a 
lightly loaded processor, CPU-a, with probability 
X. 

Followings are assumed in this model: 
(Pi) Arrivals of type A requests follow a Poisson 

process with rate Aa, and the service time is 
exponentially distributed with average 
service time i/Ma. Arrivals of type B 
requests follow a Poisson process with rate 
Ab, and the service time is exponentially 
distributed with average service time i/~b. 
Expected response time for each processor is 
equal to Rt. 

(P2) The values of ~a, Ab, ~a and ~b are changed 
without delay. 

(P3) The overhead time for overlaying is in pro- 
portion to the size of overlayed microprog- 
rams. The size of microprograms to be 
overlayed is in proportion to the number of 
its running steps. The ratio of the overhead 
time to the original processing time is 
called "overlayin9 overhead", V. 

(P4) The processing time required for a processor 
to execute other processor functions needs 
more processing time than the original pro- 
cessing time. The ratio of the incremental 
time to the original time is called "substi- 
tutin@ overhead", U. 

(P5) A processor must not exchange its functions 
while it is processing a request. 

(P6) When processor functions are exchanged, a 
system is assumed to be in statistical 
equilibrium without delay. 

From the above assumptions, the average CPU-a 
service time varies as follows; 

i/~a' (AgA)= (l-~pa)/)~a 

i/~a' (A+B) = (l+~b) (i+V+U)/~b 

i/@a' (B+B)= (i+APb) (l+U)/~b 

i/#a' (B+A)= (l-A~a) (i+V)/~a 

(i) 

(2) 

(3) 

(4) 

where ~a' (A~B), for example, represents the aver- 
age service rate, when a B-type request is pro- 
cessed after an A-type request. 

3.2 Expected CPU-a Response Time 

Two types of requests arrive at CPU-a at 
random and independently. Queue discipline is 
first-come, first-served. The changeover times 
are involved in changes from type-A to type-B, and 
from type-B to type-A. This kind of queueing 
model with service orientation times was analyzed 
by d. p. Gaver [7]. 

In the following, it is assumed that over- 
laying of microprograms corresponds to the case 
where U=0; and direct execution of microprograms 
in main memory corresponds to the case where V=0. 
For simplicity, it is assumed that~a equals~b 
and that both ~a and A~b equal 0. 

Microprogram Overlaying. The expected CPU-a 
response time, Rt'(A), in case of microprogram 
overlaying (U=0) is computed as 

1 , x~' 

+ 3 Ad(A)A~(B) (VZ÷2 V)- 2 VAa(A)A~CB} 

where 

k~ 2 v ~a '  (A)X~(B) 
Pa'=~*" Aa'~ 
Xi(A)= Xa- z~Aa , 

3.g(S)= x (A.b +dAb), 

Aa'= Xa'(A) +)L~(B), 

and Fa(0) and Fb(0) represent boundary conditions 
for the steady state equations. 

If the total arrival rate, Aa', is constant, 
Rt' (A) takes a maximum value, where Aa' (A) is 
equal to ka' (B). 

Direct Execution. The expected CPU-a re- 
sponse time for direct execution of microprograms 
in main memory (V=0) is computed as 

R~(A) = 
l.,t a 

+ >i (AI~.gCB)(O'+2 O)}, (6) 

where 

~_X o ;L~ CB) 
PX= ~a ~a 

3.3 Expected CPU-b Response Time 

Since the CPU-b service is modeled as M/M/i, 
the exepected response time, Rt' (B), is computed 
as 

R4(B)= { t+~b- 0 C7) 
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3.4 Total System Request 

Let At' represent the maximum value of the 
total arrival rate the system can service under 
the limited response time constraint, Rt. Then, 
Rt' is 

At'=C~a-Aka)+(kb+~Xb-max) (8) 

where ~Ab-max is the maximum increment of ~b. To 
that extent, CPU-a can process B-type requests. 

Microprogram Overlayin 9. The results of 
paragraph 3.2 show that, if the total load for 
CPU-a is constant, the expected CPU-a response 
time takes a maximum value when B-type load is 
equal to A-type load. Hence, ~t' takes the 
minimum value: 

i- ( 6a. -Xa)( i  

I-e..~ t- ~a-ka V 2 
(9) 

Direct Execution. From Eq. (6), it is shown 
that ~t' decreases as AAa increases. Therefore, 
when CPU-a processes only B-type requests, At' 
takes a minmum value: 

, i-( a'Xa)O+2u)Y  j 

_  a-X C2d+u 2) " 
#a 

(lO) 

Numerical results of At' are shown in Fig. 5, 
where 

Xt = A.atZb 

In case of no dynamic function exchanging, kt' is 

t% '= A,.a - ~Xb*lb (11) 

3.5 Applying Conditions 

In the following, conditions are derived for 
U and V to satisfy when processor functions are 
exchanged dynamically in order to balance the 
load. 

It is assumed that the system operates under 
the following conditions: 
(Cl) In any imbalanced state, it is assured that a 

ratio of a total system load to that of the 
balanced state is greater than a constant 
value, L. 

(C2) The utilization factor, for each processor, 
is equal to ~ in a balanced state. 

(C3) For parameters shown in Fig. 4, it is assumed 
that Aa is equal to ~b and thatpa is equal 
to ~b. 

To satisfy the condition (Cl) by means of the 
overlay, from Eq. (9), V is required to satisfy 

( 2 L -  I ) [ 0 - ? )  
(12) 

To satisfy the condition by means of the 
direct execution of microprogram in main memory, 
from Eq. (i0), U is required to satisfy 

)[ L'°9 

(=- du). (13) 

Next, the implications of conditions for U 
and V are examined. Parameters, V and U, are 
approximated by 

SaW C .5 
V= -~- ) 

, (Ds*Dc}E ~(Ds*Dc}E (14) 

S~ W Ds 

S~*Sb E Ps ~Dc (15) 

Where, the means of variables are follows: 
Sb: Average size of total semantic routines 

common to all processors. 
So: Average size of total semantic routines which 

characterize functions local to a processor. 
Dc: Sum of the average number of running steps 

for the control process and that for the 
decoding process. 

Ds: Average number of running steps for semantic 
routines. 

N: Average number of software running steps per 
request. 

W: Time required to load a microinstruction into 
writable control storage: this is nearly 
equal to the time required to fetch a micro- 
instruction from the main memory. 

C: Average number of running steps required to 
set up microprogram overlaying. 

E: Average execution time of a microinstruction 
which resides in writable control storage. 

ters have fixed values, except for So. 
Eq. (12) gives 

If the system has been constructed, parame- 
Therefore, 

-~ N(Ds*D=)- C] 

and Eq. (13) gives 

, ~/ D$ _ l i  I " 
50-~ Sb(~ E Ds*P¢ 

(17) 
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Table 2 shows numerical examples of these 
parameters. Values for W and E are determined 
from Table i, respectively. Experiments with PPS 
pilot model give the values of Sb, Dc and Ds. The 
results of the software simulation give the value 
of N. 

Above results show that the direct execution 
of microprograms in the main memory can have a 
load balancing effect, only when the size of 
microprograms located in the main memory is less 
than 13.5% of that of basic semantic routines. On 
the other hand, the overlaying of microprograms 
can have an effect when the size of microprograms 
to be loaded is less than 7% of the total micro- 
program running steps per request. Therefore, the 
overlaying is effective in general cases, while 
the direct execution of microprograms in the main 
memory is effective only in a case where there are 
few functional differences between processors. 

The results of paragraph 3.4 show that, as 
more B-type requests are processed by CPU-a, the 
total system load takes a minimum, in case of 
overlaying, and decreases monotonically, in case 
of direct execution. Therefore, more load balanc- 
ing effects can be gained, if both schemes are 
used interchangeably. The former is used when B- 
type requests are less than A-type requests and 
the latter is used when B-type requests are.more 
than A-type requests. 

4. Conclusion 

In PPS, microprogramming technique plays a 
major role in realizing functionally specialized 
processors. Moreover, it is necessary to change 
microprograms dynamically in order to back up a 
failed or heavily loaded processor by a lightly 
loaded processor. This paper proposes an address 
mapping mechamism as a dynamic function exchanging 
mechanism in the PPS pilot model system, and the 
implementation of the mechanism is described. In 
addition, effects of the mechanism on load balanc- 
ing are analyzed, and conditions which the mecha- 
nism must satisfy are obtained. 

The conditions of applying the mechanism are 
shown as follows. 

Load Imbalance Degree 

Small Large 

Functional 
Small o * 

Difference 
Between 
Processors Large * * 

o: A suitable area for direct execution of 
microprogram in the main memory. 

*: A suitable area for overlaying. 

Load balancing programs are now under devel- 
opment in the operating system of PPS pilot 
model. The important problems to be solved are 
the detection method of load imbalance and the 
scheduling policy. In this paper, it is assumed 
that a request to a heavily loaded processor is 

selected at random and serviced on a first-come, 
first-served discipline by a lightly loaded 
processor. Since changeover times are incurred 
every time the service changes between two types 
of requests, this scheduling policy may be ineffi- 
cient. Hence, it seems better to adopt another 
policy in which one type of request is processed 
successively for some time duration once a change 
occurred. 
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Table 1 Hardware Characteristics 

Cycle Word Capacity Comments 
Time Size 

ROM 240ns 80bits 256w/PU l=2kw 

480ns 80bits ikw/PU n=5 

Control 

Storage WCS 

Main Private 1.2Bs 16bits 8kw/PU 

Memory Common 1.2ps 16bits 7x8kw 
L=64kw 

Table 2 Numerical Examples 

Parameter L Sb p Dc Ds 
(w) (step) (step) 

Value 0.8 0.8 388 17.89 19.29 

Overlay Vu = .8858, So < 553.3 

Direct 
Execution Uu = .7734, So < 52.5 

N W C E 
(step) (~s) (step) (~s) 

211.8 6 67 .48 
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