
DYNAMIC FUNCTION EXCHANGING MECHANISM IN POLY-PROCESSOR SYSTEM

M. Sato, S. Nishikawa, K. Murakami and S. Takahira

Musashino Electrical Communication Laboratory, NTT
Musashino-shi, Tokyo, 180

Japan
Abstract (i)

Microprogramming is a basic technique that
realizes functionally specialized processors in a
functionally distributed multiprocessor system
which consists of many small processors. In such
a multiprocessor system, it is necessary to
change processor functions dynamically in order
to back up a heavily loaded processor or a failed
processor by a lightly loaded processor. This
paper proposes a mechanism for exchanging pro-
cessor functions in firmware level and shows a
hardware organization which realizes the mechanism
in an experimental system. In order to clarify
the design conditions of an operating system and
microprograms, the performance of the mechanism is
analyzed from the load balancing point of view.
Moreover, the conditions which the mechanism

must satisfy are derived.

(2)

The scheme, in which control storage is
implemented as being in the same address
space as the main memory, provides the
capability of writing or reading microprog-
rams into the writable control storage (WCS)
like a main memory [4]. However, it is
difficult to prevent some failures in one
space from spreading to another space effec-
tively.
The other scheme, in which control storage is
separated from main memory in terms of physi-
cal construction and addressing logic, pro-
vides the capability of preventing software
failures from spreading into microprograms.
In this scheme, micrprograms can be loaded

into WCS by calling utility programs that
treat WCS as an I/O device [5]. However, it
is inefficient to load a variable small
number of microinstructions into WCS.

I. Introduction

In this paper, the Poly-Processer System
(PPS) is defined as a computer complex consisting
of many small, tightly coupled, and functionally
dedicated processors. The objective of PPS is to
realize a computer system which has easier ex-
pandability, higher reliability, and better cost
to performance ratio than existing systems [1,2,3].

In PPS, microprogramming is one of the basic
techniques, since it is useful for realizing
functionally specialized processors without
changing processor hardware and is thought to
attain an economical advantage by using a large
amount of LSIs of the same kind. The results of
PPS software simulation show that the load for
each processor varies according to the type of
user program involved. Therefore, several kinds

of load balancing mechanism are necessary to avoid
overload for each processor [i]. Since there is a
possibility that some processor failures could
completely halt system operations, some system
reconfiguration mechanisms are necessary [3]. In
PPS, in order to realize the above mechanisms, a
lightly loaded processor is used to back up a
heavily loaded processor or a failed processor.
Hence, it is necessary that microprogramscan be
dynamically changed in order to change processor
functions dynamically.

Many schemes, which alter microprograms
dynamically, have been proposed. These schemes
have the following merits and demerits.

This paper proposes a mechanism for ex-
changing processor functions in firmware level and
shows the hardware construction realizing the
mechanism in a PPS pilot model system. Charac-
teristics of the mechanism were analyzed from the
viewpoint of effects on load balancing among
processors. Moreover, the conditions which the
mechanism must satisfy are shown.

2. Address Mapping Mechanism

In PPS pilot model, an address mapping
mechanism is provided for each processor to enable
dynamic function exchanging.

2.1 Addressing Mechanism

The address mapping mechanism allows use of
both control storage and main memory interchangea-
bly and keeps control storage space separated from
main memory space.

As illustrated in Fig. I, the mechanism
defines bus windows. Window (Wm) maps main memory
space (a-b) to control storage space (c-d).
Window (Wc) maps control storage space (e-f) to
main memory space (g-h). Word size of the control
storage is n times as large as that of the main
memory. A control storage word is divided into n
blocks of equal size. Windows are opened under
the control of an operating system or microprog-
rams, only when necessary to operate the mecha-
nism.

CH1394-6/79/0000-0130 $00.7501979 IEEE

130

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800090.802902&domain=pdf&date_stamp=1979-04-23

The mechanism operates as follows:
(i) If operand address X in the main memory space

is a X b, data is fetched from the (X-a)(mod.
n)-th block of c+[(X-a)/n] in the control
storage space.

(2) If the next micronstruction address Y in the
control storage space is e Y f, the five
words beginning from g+n(Y-e) in the main
memory space are fetched andexecuted.

Dynamic microprogramming, which uses the
address mapping mechanism, has the following
advantages.

(AI) Since control storage space and main memory
space are separated from each other, the
mutual interference between microprograms and
programs can be decreased.

(A2) Since control storage is accessible, as if it
were a main memory, it is easy to load micro-
programs dynamically under program control.

(A3) Since microprograms in main memory can be "
directly executed, the microprogram execution
area is enlarged.

(A4) The mechanism provides operating system
software with two means of exchanging pro-
cessor functions. One is overlaying micro-
programs and the other is direct execution of
microprograms in main memory.

2.2 Hardware Organization

The processor organization of PPS pilot model
is shown in Fig. 2. The processor is a conven-
tional microprogrammed minicomputer, to which the
address mapping mechanism is added. The address
mapping hardware consists of an extended control
storage unit (ECS) and an address space control
unit (ASC). ASC is connected to the main memory
by the memory bus (M-bus). ECS is connected to
ASC by the bus transmitting microprogram data (MP-
bus). Hardware characteristics are described in
Table i.

Extended Control Storage Unit. As shown in
Fig. 2, ECS consists of writable control storage
and a controller (ECSC). ECSC activates writable
control storage read/write operations or micro-
instruction execution, as ordered by ASC. If the
operation is finished, ECSC reports machine
states or a next microinstruction address to ASC.

Address Space Control Unit. As shown in Fig.
2, ASC consists of an address mapping module, an
M-bus control module, a data transmission bus and
a controller (ASCC).
(Sl) The address mapping module performs two kinds

of mapping. One is mapping from main memory
space to control memory space. An operand
address on M-bus is examined to determine
whether it is in window (Wm) or not. If the
address is in the window and the window is
open, the signal for enabling mapping, or Gmc
is activated, is sent to the M-bus control
module. At the same time, the operand ad-
dress is transformed to a control storage
address and block number pair. The other is
mapping from control memory space to main
memory space. The next microinstruction

address on MP-bus is examined to determine
whether it is in window (Wc) or not. If the
address is in the window and the window is
open, the signal for enabling mapping, or Gcm
is activated, is sent to the ASCC. At the
same time, the microinstruction address is
tranformed to a main memory address.

($2) The M-bus control module either controls
accesses issued from the ASC to the main
memory or makes a response to accesses issued
from the CPU to the control storage. In case
of acces control, if Gcm is activated, the
M-bus control module begins main memory
access sequences under the control of the
ASCC. In case of response operation, if Gcm
is activated, the M-bus control module sends
an acknowledge signal to the CPU instead of
to the main memory and also sends a signal to
the ASCC to begin a control storage access
operation.

(S3) The ASCC operates as follows: When the ASCC
receives a termination signal for a micro-
instruction, it examines Gcm. If Gcm is not
activated, it sends an initiation signal for
the next microinstruction to the ECS. If Gcm
is activated, it fetches a next microinstruc-
tion from the main memory through the M-bus
control module and sends it to the ECS.
Then, it sends an initiation signal for the
next microinstruction to ECS. When the ASCC
recognizes that Gmc is activated, it sends a
signal to the ECS to initiate a control
memory access operation.

2.3 Firmware Organization

The emulator program structure is shown in
Fig. 3 [6]. In PPS, semantic routines are divided
into two classes. One class is a set of semantic
routines, Basic Semantic Routines, which realize
the basic functions common to all processors. The
other class is a set of semantic routines, Op-
tional Semantic Routines, which realize the
functions local to each processor, or microprog-
rammed operating system functions. Copies of the
optional semantic routines are stored in the
common memory. The functions of each processor
are dynamically changed by exchanging optional
semantic routines.

As described before, in PPS pilot model,
there are two methods of dynamically exchanging
processor functions; (i) mapping control storage
references into main memory, thus switching which
microprogram is being executed, and (2) mapping
main memory into control storage, so that micro-
programs can be over-written.

3. Effects on Load Balancing

The address mapping mechanism may affect
system characteristics, such as allowed perform-
ance and load imbalance. Therefore, its effects
must be analyzed and requirements for a load
balancing scheme must be investigated for de-
signing an operating system and firmware.

131

3.1 Analysis Model

From the load balancing point of view, the
system is defined to be in a balanced state when
an average response time of each processor is
equal to that of all the others and less than the
fixed value, or permitted limit for response time:
Rt. As shown in Fig. 4, a load balancing process
is modeled that a request to a heavily loaded
processor, CPU-b, is processed at random by a
lightly loaded processor, CPU-a, with probability
X.

Followings are assumed in this model:
(Pi) Arrivals of type A requests follow a Poisson

process with rate Aa, and the service time is
exponentially distributed with average
service time i/Ma. Arrivals of type B
requests follow a Poisson process with rate
Ab, and the service time is exponentially
distributed with average service time i/~b.
Expected response time for each processor is
equal to Rt.

(P2) The values of ~a, Ab, ~a and ~b are changed
without delay.

(P3) The overhead time for overlaying is in pro-
portion to the size of overlayed microprog-
rams. The size of microprograms to be
overlayed is in proportion to the number of
its running steps. The ratio of the overhead
time to the original processing time is
called "overlayin9 overhead", V.

(P4) The processing time required for a processor
to execute other processor functions needs
more processing time than the original pro-
cessing time. The ratio of the incremental
time to the original time is called "substi-
tutin@ overhead", U.

(P5) A processor must not exchange its functions
while it is processing a request.

(P6) When processor functions are exchanged, a
system is assumed to be in statistical
equilibrium without delay.

From the above assumptions, the average CPU-a
service time varies as follows;

i/~a' (AgA)= (l-~pa)/)~a

i/~a' (A+B) = (l+~b) (i+V+U)/~b

i/@a' (B+B)= (i+APb) (l+U)/~b

i/#a' (B+A)= (l-A~a) (i+V)/~a

(i)

(2)

(3)

(4)

where ~a' (A~B), for example, represents the aver-
age service rate, when a B-type request is pro-
cessed after an A-type request.

3.2 Expected CPU-a Response Time

Two types of requests arrive at CPU-a at
random and independently. Queue discipline is
first-come, first-served. The changeover times
are involved in changes from type-A to type-B, and
from type-B to type-A. This kind of queueing
model with service orientation times was analyzed
by d. p. Gaver [7].

In the following, it is assumed that over-
laying of microprograms corresponds to the case
where U=0; and direct execution of microprograms
in main memory corresponds to the case where V=0.
For simplicity, it is assumed that~a equals~b
and that both ~a and A~b equal 0.

Microprogram Overlaying. The expected CPU-a
response time, Rt'(A), in case of microprogram
overlaying (U=0) is computed as

1 , x~'

+ 3 Ad(A)A~(B) (VZ÷2 V)- 2 VAa(A)A~CB}

where

k~ 2 v ~a ' (A)X~(B)
Pa'=~*" Aa'~
Xi(A)= Xa- z~Aa ,

3.g(S)= x (A.b +dAb),

Aa'= Xa'(A) +)L~(B),

and Fa(0) and Fb(0) represent boundary conditions
for the steady state equations.

If the total arrival rate, Aa', is constant,
Rt' (A) takes a maximum value, where Aa' (A) is
equal to ka' (B).

Direct Execution. The expected CPU-a re-
sponse time for direct execution of microprograms
in main memory (V=0) is computed as

R~(A) =
l.,t a

+ >i (AI~.gCB)(O'+2 O)}, (6)

where

~_X o ;L~ CB)
PX= ~a ~a

3.3 Expected CPU-b Response Time

Since the CPU-b service is modeled as M/M/i,
the exepected response time, Rt' (B), is computed
as

R4(B)= { t+~b- 0 C7)

132

3.4 Total System Request

Let At' represent the maximum value of the
total arrival rate the system can service under
the limited response time constraint, Rt. Then,
Rt' is

At'=C~a-Aka)+(kb+~Xb-max) (8)

where ~Ab-max is the maximum increment of ~b. To
that extent, CPU-a can process B-type requests.

Microprogram Overlayin 9. The results of
paragraph 3.2 show that, if the total load for
CPU-a is constant, the expected CPU-a response
time takes a maximum value when B-type load is
equal to A-type load. Hence, ~t' takes the
minimum value:

i- (6a. -Xa)(i

I-e..~ t- ~a-ka V 2
(9)

Direct Execution. From Eq. (6), it is shown
that ~t' decreases as AAa increases. Therefore,
when CPU-a processes only B-type requests, At'
takes a minmum value:

, i-(a'Xa)O+2u)Y j

_ a-X C2d+u 2) "
#a

(lO)

Numerical results of At' are shown in Fig. 5,
where

Xt = A.atZb

In case of no dynamic function exchanging, kt' is

t% '= A,.a - ~Xb*lb (11)

3.5 Applying Conditions

In the following, conditions are derived for
U and V to satisfy when processor functions are
exchanged dynamically in order to balance the
load.

It is assumed that the system operates under
the following conditions:
(Cl) In any imbalanced state, it is assured that a

ratio of a total system load to that of the
balanced state is greater than a constant
value, L.

(C2) The utilization factor, for each processor,
is equal to ~ in a balanced state.

(C3) For parameters shown in Fig. 4, it is assumed
that Aa is equal to ~b and thatpa is equal
to ~b.

To satisfy the condition (Cl) by means of the
overlay, from Eq. (9), V is required to satisfy

(2 L - I) [0 - ?)
(12)

To satisfy the condition by means of the
direct execution of microprogram in main memory,
from Eq. (i0), U is required to satisfy

)[L'°9

(=- du). (13)

Next, the implications of conditions for U
and V are examined. Parameters, V and U, are
approximated by

SaW C .5
V= -~-)

, (Ds*Dc}E ~(Ds*Dc}E (14)

S~ W Ds

S~*Sb E Ps ~Dc (15)

Where, the means of variables are follows:
Sb: Average size of total semantic routines

common to all processors.
So: Average size of total semantic routines which

characterize functions local to a processor.
Dc: Sum of the average number of running steps

for the control process and that for the
decoding process.

Ds: Average number of running steps for semantic
routines.

N: Average number of software running steps per
request.

W: Time required to load a microinstruction into
writable control storage: this is nearly
equal to the time required to fetch a micro-
instruction from the main memory.

C: Average number of running steps required to
set up microprogram overlaying.

E: Average execution time of a microinstruction
which resides in writable control storage.

ters have fixed values, except for So.
Eq. (12) gives

If the system has been constructed, parame-
Therefore,

-~ N(Ds*D=)- C]

and Eq. (13) gives

, ~/ D$ _ l i I "
50-~ Sb(~ E Ds*P¢

(17)

133

Table 2 shows numerical examples of these
parameters. Values for W and E are determined
from Table i, respectively. Experiments with PPS
pilot model give the values of Sb, Dc and Ds. The
results of the software simulation give the value
of N.

Above results show that the direct execution
of microprograms in the main memory can have a
load balancing effect, only when the size of
microprograms located in the main memory is less
than 13.5% of that of basic semantic routines. On
the other hand, the overlaying of microprograms
can have an effect when the size of microprograms
to be loaded is less than 7% of the total micro-
program running steps per request. Therefore, the
overlaying is effective in general cases, while
the direct execution of microprograms in the main
memory is effective only in a case where there are
few functional differences between processors.

The results of paragraph 3.4 show that, as
more B-type requests are processed by CPU-a, the
total system load takes a minimum, in case of
overlaying, and decreases monotonically, in case
of direct execution. Therefore, more load balanc-
ing effects can be gained, if both schemes are
used interchangeably. The former is used when B-
type requests are less than A-type requests and
the latter is used when B-type requests are.more
than A-type requests.

4. Conclusion

In PPS, microprogramming technique plays a
major role in realizing functionally specialized
processors. Moreover, it is necessary to change
microprograms dynamically in order to back up a
failed or heavily loaded processor by a lightly
loaded processor. This paper proposes an address
mapping mechamism as a dynamic function exchanging
mechanism in the PPS pilot model system, and the
implementation of the mechanism is described. In
addition, effects of the mechanism on load balanc-
ing are analyzed, and conditions which the mecha-
nism must satisfy are obtained.

The conditions of applying the mechanism are
shown as follows.

Load Imbalance Degree

Small Large

Functional
Small o *

Difference
Between
Processors Large * *

o: A suitable area for direct execution of
microprogram in the main memory.

*: A suitable area for overlaying.

Load balancing programs are now under devel-
opment in the operating system of PPS pilot
model. The important problems to be solved are
the detection method of load imbalance and the
scheduling policy. In this paper, it is assumed
that a request to a heavily loaded processor is

selected at random and serviced on a first-come,
first-served discipline by a lightly loaded
processor. Since changeover times are incurred
every time the service changes between two types
of requests, this scheduling policy may be ineffi-
cient. Hence, it seems better to adopt another
policy in which one type of request is processed
successively for some time duration once a change
occurred.

Acknowledgement

The authors wish to thank the members of the
First Research Section for the construction of PPS
pilot model hardware.

References

[i] K.Murakami, S.Nishikawa and M.Sato: Poly-
Processor System Analysis and Design, Proc.
of 4th Annual Symposium on Computer Archi-
tecture, PP. 49-56, 1977.

[2] S.Nishikawa, M.Sato and K.Murakami: Inter-
connection Unit for Poly-Processor System:
Analysis and Design, Proc. of 5th Annual
Symposium on Computer Architecture, PP. 216-

222, 1978.
[3] S.Takahira, K.Murakami, S.Nishikawa and

M.Sato: A Reliability Aspect of Function
Distribution System: PPS, Proc. of 3rd UJCC,
1978.

[4] A.B.Tucker and M.J.Flynn: Dynamic Micro-
programming: Processor Organization and
Programming, CACM, 14, 4, PP. 240-250, 1971.

[5] A.K.Agrawala and T.G.Raucher: Foundations of
Microprogramming, Academic Press, 1976.

[6] V.R.Lessor: An Introduction to the Direct
Emulation of Control Structures by a Parallel
Microcomputer, IEEE Tans. on Computers, C-20,
7, PP. 751-764, 1971.

[7] D.P.Gaver, Jr.: A Comparison of Queue Dis-
ciplines When Service Orientation Times
Occur, Naval Research Logistics Quartery, i0,
PP. 219-235, 1963.

134

Control Storage

ROM

WCS

Main Memory

~ g Private
Memory

Common
Memory

h

a

X

b

Fig. 1 Address Space Organization

M-Bus

Control Unit

to ALU

J
ECS next IMp-

address Bus

WCS

Controller
(ECSC)

ASC
'Data Transmission Bus

Address Mapping
Module

Gmc Gcm

~ Controlle~
(ASCC)

Main Memory

Control
storage
Space

Common
Memory
Space

¼

I C°ntr°l I
Process

Routines RoutJ.nes
! .

(Basic) (Optlon)

/ S
Window / ! Window

/
Copies of I
Semantic
Routines

----overlay

!

Copies of I
Semantic I
R °utines I

--- direct execution

• Fig. 3 Firmware Organization

control - - data

Fig. 2 Processor Hardware Oarganization

assess F
a a a

i/~a÷ (i-AUa)/~/a

B-Type Requests I

lb÷lb+Al b

i/~b÷(l-A~b)/~ b

CPU-a

X

l-X ~ , CPU-b

Fig. 4 Analysis Model

135

1 . O

. 9

<

. 8

. 7

. 6

. 5

\

I !

.2 .4

\

\

\
"\

"\

I I "\t

.6 .8 1.0
Ala/l a

Overlay (U=0)

--- Direct Execution (V=0)

--.-- Without Dynamic
Exchanging

I a = I b = .75

-I -i
~a = I/b = .8

Fig. 5 Total Request Rate

Table 1 Hardware Characteristics

Cycle Word Capacity Comments
Time Size

ROM 240ns 80bits 256w/PU l=2kw

480ns 80bits ikw/PU n=5

Control

Storage WCS

Main Private 1.2Bs 16bits 8kw/PU

Memory Common 1.2ps 16bits 7x8kw
L=64kw

Table 2 Numerical Examples

Parameter L Sb p Dc Ds
(w) (step) (step)

Value 0.8 0.8 388 17.89 19.29

Overlay Vu = .8858, So < 553.3

Direct
Execution Uu = .7734, So < 52.5

N W C E
(step) (~s) (step) (~s)

211.8 6 67 .48

136

